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Abstract. A model for superconductors co-existing with normal materials is presented. The

model, which applies to such situations as superconductors containing normal impurities and supercon-
ductor/normal material junctions, is based on a generalization of the Ginzburg-Landau model for

superconductivity. After presenting the model, it is shown that it reduces to well-known models due

to de Gennes for certain superconducting/normal interfaces, and in particular, for Josephson junc-
tions. A provident feature of the modified model is that it can, by itself, account for all of these as

well as other physical situations. The results of some preliminary computational experiments using
the model are then provided; these include flux pinning by normal impurities and a superconduc-

tor/normal/superconductor junction. A side benefit of the modified model is that, through its use,

these computational simulations are more easily obtained.

1. Introduction

Samples consisting of both non-superconducting (normal) and superconducting
materials are of interest in both the study of superconducting phenomena and the
design of superconducting devices. For example, it is widely accepted that normal
impurities in an otherwise superconducting material provide pinning sites for vortices,
and thus prevent their motion and the resultant induced resistivity. Another exam-
ple is, of course, the Josephson junction in which a thin layer of normal material is
sandwiched between layers of superconducting material.

When a normal material is placed adjacent to a superconducting material, two
phenomena are observed, which are collectively known as the proximity effect. Firstly,
the presence of the normal material hampers the pairing of electrons in the supercon-
ducting material, so that the number density of superconducting electron pairs is
reduced near the boundary to a value below that of the bulk. Secondly, the presence
of the superconducting material promotes the formation of electron pairs in the nor-
mal material, so that there is a nonzero density of superconducting electron pairs in
the normal material near the boundary; see Figure 1.1. The strength of each effect is
determined by the nature of the normal material.

In the Ginzburg-Landau theory of superconductivity, these phenomena are usu-
ally modelled through the boundary conditions (see, e.g., [4]) on the superconducting
order parameter at the normal/superconducting interface. There are several draw-
backs with this approach. Firstly, there is only one parameter in the boundary con-
dition to describe the normal material, so that the two phenomena alluded to above
cannot be separated: a normal material which does not break the superconducting
electron pairs in the superconducting material is forced to also have a large number
density of superconducting electron pairs induced in itself. (An extreme situation in
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which this is clearly not the case is that in which the non-superconducting material
is in fact a vacuum, which has no effect on the superconducting electron pairs in the
superconducting material, but which also can have no induced superconducting elec-
tron pairs itself.) Related to this is the second drawback, which is that the boundary
conditions only allow for the calculation of the supercurrent in the superconducting
material – the normal material is ignored. However, a complete solution involves a
coupling with the magnetic field through Maxwell’s equations in the normal material.
In this case any supercurrent in the normal material will affect the magnetic field and
so alter the solution. Thirdly, the boundary condition used implies that no current
may pass through the boundary. Since there is a nonzero density of superconducting
electron pairs in the normal material, there seems to be no reason to impose such a
condition, particularly in cases with a lack of symmetry.

FIG. 1.1. The proximity effect; in the superconducting region, the density is lower than

the bulk value; in the normal region, the density is non-zero.

In this paper we study a different approach, still within the framework of the
Ginzburg-Landau theory, to modelling superconducting/normal junctions. We will
find that in some cases the model reduces to the usual boundary condition, although
allowing the supercurrent in the normal material to be calculated. However, in other
cases it will not result in this boundary condition, and may lead to a current passing
through the interface. The model can be used to describe various types of interactions
involving normal/superconducting materials, including Josephson junctions and the
effects of normal impurities within a superconducting material.

The model also results in a substantial simplification of computer simulations
involving normal/superconducting samples. Instead of solving a Ginzburg-Landau
model in the superconductor coupled with a Maxwell model in normal regions, one
now merely employs a single model throughout the sample.

The layout of the paper is as follows. In §2, we introduce the Ginzburg-Landau
theory of superconductivity. In §3, we modify this theory to obtain a better de-
scription of the proximity effect, and we show that the modified approach does in
fact reduce to the old approach both in one-dimension and when the region exter-
nal to the superconductor is a vacuum. In §4, we examine a planar superconduct-
ing/normal/superconducting Josephson junction using the modified model, and find
that it results in the usual expression for the tunnelling current. Finally, in §5, we
provide the results of some computational experiments utilizing the modified model.

We note that one feature of the modified model has been previously proposed in
[3]. We discuss this further in §3 where the modified model is presented.
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2. The Ginzburg-Landau model

In [2]. Ginzburg and Landau postulated that the Gibbs free energy of a super-
conducting material should be given by

Gs =
∫

Ωs

{
fs + a|ψ̃|2 +

b

2
|ψ̃|4 +

1
2m̃s

∣∣∣(ih̄∇+
es
c

Ã
)
ψ̃
∣∣∣2 +

µ̃s
8π

H̃ · (H̃− 2H̃0)
}
dΩ ,

where fs is the free energy density of the non-superconducting state in the absence
of a magnetic field, ψ̃ is the (complex-valued) superconducting order parameter, Ã
is the magnetic vector potential, H̃ = (1/µ̃s)curl Ã is the magnetic field, H̃0 is the
applied magnetic field, a and b are constants whose values depend on the temperature
and such that b > 0, es is mass of the superconducting charge carriers which is twice
the electronic charge e, c is the speed of light, µ̃s is the permeability, 2πh̄ is Planck’s
constant, and Ωs is the (bounded) region occupied by the superconducting material.
The mass m̃s is in fact arbitrary within the framework of the phenomenological theory
(modifying m̃s simply scales ψ̃, a, and b) but is usually taken to be the twice the
electron mass. We will consider only temperatures below the critical temperature of
the superconductor, in which case a < 0.

The basic postulate of the Ginzburg-Landau theory is that the total Gibbs free
energy is minimized. Before we perform the minimization we must add to the Gibbs
free energy of the superconducting material the Gibbs free energy of the region external
to the superconductor, which we denote by Ωn, due to the magnetic field there:

Gn =
∫

Ωn

{
fn +

µ̃n
8π

H̃ · (H̃− H̃0)
}
dΩ .

Note that the permeability µ̃ may take different values in the superconducting and
normal regions. Also, Ωn may itself consist of of subregions, each occupied by different
materials, e.g., a metal and/or a vacuum.

Minimizing the total Gibbs free energy with respect to ψ̃∗, the conjugate of ψ̃,
and Ã, we obtain the celebrated Ginzburg-Landau equations

1
2m̃s

(
ih̄∇+

es
c

Ã
)2

ψ̃ + aψ̃ + b|ψ̃|2ψ̃ = 0 in Ωs ,

1
4πµ̃s

(curl )2Ã = − iesh̄

2cm̃s

(
ψ̃∗∇ψ̃ − ψ̃∇ψ̃∗

)
− e2

s

c2m̃s
|ψ̃|2Ã in Ωs ,

(curl )2Ã = 0 in Ωn ,

n ·
(
ih̄∇+

es
c

Ã
)
ψ̃ = 0 on ∂Ωs ,[

1
µ̃

curl Ã× n
]

= 0 ,

[Ã] = 0 ,

and, if Ωn contains an exterior domain,

curl Ã→ µ̃nH̃0 as |x̃| → ∞ ,
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where ∂Ωs denotes the boundary of the region Ωs occupied by the superconductor, [ · ]
denotes the jump in the enclosed quantity across ∂Ωs, and |x̃| denotes the distance
from the origin. We note that these equations can also be derived as a suitable limit
of the microscopic (BCS) theory of superconductivity, and that this will evaluate
the parameters a, b, ms, etc. in terms of parameters appearing in the microscopic
equations. We employ the usual nondimensionalizations:

ψ̃ =

√
|a|
b
ψ , H̃ =

√
8πa2

bµ̃s
H , Ã =

√
2|a|c2m̃s

e2
s

A , and x̃ =

√
m̃sbc2

4π|a|e2
sµ̃s

x ,

giving

(2.1)
(
i

κ
∇+ A

)2

ψ − ψ + |ψ|2ψ = 0 in Ωs ,

(2.2) (curl )2A = − i

2κ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A in Ωs ,

(2.3) (curl )2A = 0 in Ωn ,

(2.4) n ·
(
i

κ
∇+ A

)
ψ = 0 on ∂Ωs ,

(2.5)
[

1
µ

curl A× n
]

= 0 ,

(2.6) [A] = 0 ,

and, if Ωn contains an exerior domain,

(2.7) curl Aµn → H0 as x→∞ ,

where

κ =

√
m̃2
sc2b

2πµ̃se2
sh̄

2

denotes the Ginzburg-Landau parameter and µ = µ̃/µ̃s so that µs = 1 and µn =
µ̃n/µ̃s.

The boundary condition (2.4) is the natural boundary condition associated with
the minimization process, and corresponds to the superconductor being adjacent to a
vacuum. For an interface between a superconducting material and another material,
de Gennes (see [1]) has proposed a modification of this boundary condition to

(2.8) n ·
(
i

κ
∇+ A

)
ψ = −iγψ on ∂Ωs ,
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where γ is a real, positive parameter. This relation is derived from the BCS theory for
a planar normal/superconducting interface in the absence of a magnetic field (so that
A = 0 and ψ is real) by assuming (i) that no current passes through the boundary,
and (ii) that there exists a local boundary condition of the form f(ψ,ψn, ψnn, · · ·) = 0.
Since higher derivatives can be expressed in terms of ψ and ψn using the Ginzburg-
Landau equations, such a condition can be written in the form

ψn = −γψ − δψ3 + · · · .

The BCS theory implies that only odd powers of ψ appear in the expansion, and can
also be used to evaluate the coefficients γ, δ, etc. The ψ3 term is shown to be negligible
in the regime of validity of the Ginzburg-Landau equations, to give

ψn = −γψ.

In the presence of a magnetic field, and for curved boundaries, this is replaced by
(2.8), in which the derivative has simply been made gauge invariant.

Equation (2.8) describes the proximity effect in the sense shown in Figure 2.1.
If the order parameter is extended into the normal material linearly from its value
and slope on the boundary, then it penetrates a distance 1/(κγ) before reaching zero.
This is taken to be the extent to which the superconducting electrons penetrate the
normal material. (Notice that if the same interpretation is applied to the boundary
condition (2.4) when the superconductor is adjacent to a vacuum, we would find a large
density of superconducting electrons throughout the vacuum region, which is obviously
absurd.) Note that the number density of superconducting electrons is reduced near
the interface. For insulating materials, γ is supposed to be small, so that |ψ| is close
to its value in the bulk material. For magnetic materials, there is a large disruption of
the superconducting electron pairs in the superconducting material, and γ is supposed
to be large so that |ψ| is small on the boundary.

FIG. 2.1. The proximity effect: straight line extension of the order parameter into the
normal region.

We note that (2.2) implies that the (nondimensionalized) supercurrent J = curl H
is given by

J = − i

2κ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A = −1

2

{
ψ∗
(
i

κ
∇+ A

)
ψ + ψ

(
− i
κ
∇+ A

)
ψ∗
}

so that (2.8) implies that J ·n = 0 on ∂Ωs, i.e., no current flows through the boundary
of the superconductor.
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3. The modified Ginzburg-Landau model

In this section we reformulate the Gibbs free energy for the normal material. In-
stead of simply minimizing the energy due to the magnetic field, we now allow for
the possibility of a nonzero density of superconducting electrons. We let the normal
material be capable of becoming superconducting, and be described by a free energy
functional similar to that of the superconducting material. However, the parameters
in the two functionals may be different. In particular, we will assume that the normal
material is above its critical temperature, and so the corresponding coefficient a will
be positive. (We note that the procedure could equally well be applied to a boundary
between different superconductors, in which the coefficient a would still be negative.)
Other coefficients which will change in the normal material are b (which will hence-
forth, for simplicity, be taken to be zero since with a positive the free energy functional
is convex and the effect of nonzero b will presumably be a minor perturbation), µ, and
m, which, as we have said, is arbitrary in the Ginzburg-Landau model.

The use of positive values of the parmeter a to model normal metals within
the framework of the Ginzburg-Landau free energy functional has been previously
proposed in [3]. Here, we show that if in addition one chooses appropriate values
for the mass parameter m in non-superconducting regions, one can then model other
types of normal regions within the Ginzburg-Landau framework.

The total Gibbs free energy is now given by∫
Ωs

{
fs + as|ψ̃|2 +

bs
2
|ψ̃|4 +

1
2m̃s

∣∣∣(ih̄∇+
es
c

Ã
)
ψ̃
∣∣∣2 +

µ̃s
8π
|H̃|2 − µ̃s

4π
H̃ · H̃0

}
dΩ

+
∫

Ωn

{
fn + an|ψ̃|2 +

1
2m̃n

∣∣∣(ih̄∇+
en
c

Ã
)
ψ̃
∣∣∣2 +

µ̃n
8π
|H̃|2 − µ̃n

4π
H̃ · H̃0

}
dΩ ,

which, on minimizing, leads to

1
2m̃s

(
ih̄∇+

es
c

Ã
)2

ψ̃ + asψ̃ + bs|ψ̃|2ψ̃ = 0 in Ωs ,

1
4πµ̃s

(curl )2Ã = − iesh̄

2cm̃s

(
ψ̃∗∇ψ̃ − ψ̃∇ψ̃∗

)
− e2

s

c2m̃s
|ψ̃|2Ã in Ωs ,

1
2m̃n

(
ih̄∇+

en
c

Ã
)2

ψ̃ + anψ̃ = 0 in Ωn ,

1
4πµ̃n

(curl )2Ã = − ienh̄

2cm̃n

(
ψ̃∗∇ψ̃ − ψ̃∇ψ̃∗

)
− e2

n

c2m̃n
|ψ̃|2Ã in Ωn ,

[Ã] = 0 , [ψ̃] = 0 ,[
n · 1

m̃

(
ih̄∇+

e

c
Ã
)
ψ̃

]
= 0 ,

and [
1
µ̃

curl Ã× n
]

= 0 .

As before, es and en are equal to the charge of the superconducting charge carriers, and
are both equal to twice the electron charge. Of the masses m̃n and m̃s we are free to
choose one arbitrarily. We again choose m̃s to be twice the electron mass. This leaves
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m̃n as a parameter depending upon the normal material. The dependence of m̃n and
ãn on the type of normal material can be determined either phenomenologically, or, as
we have said, from the microscopic theory. Since the Ginzburg-Landau equations are
widely used as phenomenological equations outside their strict range of validity as a
limiting form of the microscopic theory we adopt the former viewpoint. However, we
note that in particular the microscopic theory implies that m̃n ∝ 1/σn, where σn is
the (normal) conductivity of the normal region. Using the values of the parameters in
the superconducting material to effect the nondimensionalization as before leads to:

(3.1)
(
i

κ
∇+ A

)2

ψ − ψ + |ψ|2ψ = 0 in Ωs ,

(3.2) (curl )2A = − i

2κ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A in Ωs ,

(3.3)
(
i

κ
∇+ A

)2

ψ + αψ = 0 in Ωn ,

(3.4)
1
µn

(curl )2A = − 1
mn

(
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A

)
in Ωn ,

(3.5) [A] = 0 , [ψ] = 0 ,

(3.6)
[
n · 1

m

(
i

κ
∇+ A

)
ψ

]
= 0 ,

and

(3.7)
[

1
µ

curl A× n
]

= 0 ,

where m = m̃/m̃s and µ = µ̃/µ̃s (so that ms = µs = 1), and α = m̃nan/(m̃s|as|).

FIG. 3.1. The proximity effect with continuous or discontinuous normal derivative at
the interface. The dashed curve for a continuous derivative must penetrate deep into

the normal region. The solid curve for a discontinuous derivative need not peneterate
as much.
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Note that the single parameter γ of the de Gennes boundary condition (2.8)
has been replaced by two parameters, α and mn, which will depend on the normal
material. Also, note that the normal derivative of ψ is not required to be continuous,
so that a low pairbreaking strength does not necessarily imply a large penetration; see
Figure 3.1. Note that the (nondimensionalized) current in the normal region is now
given by

J = − 1
mn

(
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A

)
.

We now consider the behavior of the equations for various values of the parame-
ters. In particular, we wish to verify that the model is consistent with the de Gennes
theory in situations in which that theory has been justified microscopically.

3.1 One-dimension

In one-dimension, in the absence of a magnetic field, we expect the theory to
be able to recover the de Gennes boundary condition (2.8). In the one-dimensional
setting, the equations in the normal region x > 0 are given by

1
κ2
ψ′′ = αψ +A2ψ and A′′ =

µn
mn

ψ2A ,

where ′ ≡ d/dx. At x = 0, we have the interface conditions

(3.8) [A] = 0 , [ψ] = 0 ,
[

1
µ
A′
]

= 0 , and
[

1
m
ψ′
]

= 0 .

Let us consider the case A = 0. Then, in the normal region x > 0, we have

ψ′′ = κ2αψ

so that
ψ = ψ(0+)e−κ

√
αx .

Therefore,
ψ′(0+) = −κ

√
αψ(0+) .

Hence, using the interface conditions (3.8), we have, on the superconducting side of
the boundary,

ψ′(0−) = −κ
√
α

mn
ψ(0−) .

Thus, we retrieve de Gennes boundary condition (2.8) with γ =
√
α/mn.

When A 6= 0 we can still in principle solve the equations in the region x > 0 and
relate ψ′(0+) to ψ(0+). However, in this case the relationship will not be linear, and
will depend on the applied magnetic field. The reason for the increased complexity
is the interaction between ψ and A via the supercurrent in the normal region, which
was not taken into account in deriving (2.8).

3.2 Vacuum

We also expect to be able to retrieve the classical Ginzburg-Landau boundary
conditions for an interface with a vacuum. For a vacuum, we should have ψ = 0, and
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this can be achieved by letting α→∞ in equation (3.3), which gives ψ → 0 except in
thin boundary layers. This now implies that the gradient of ψ is becoming large on
the normal side of the boundary, so that in order to retrieve the boundary condition
(2.5) on the superconducting side of the boundary we must also let mn → ∞. (Note
that this is in agreement with σn = 0.) Equation (3.3) implies that the gradient of ψ
grows as

√
α, hence to retrieve (2.5) mn must grow more quickly than

√
α.

Thus, we see that the limit α → ∞, mn → ∞ in such a way that
√
α/mn → 0

corresponds to the non-superconducting region being a vacuum. Equations (3.4) and
(3.6) then reduce to equations (2.3) and (2.5) respectively, and ψ is equal to zero in
the vacuum region, so that ψ is discontinuous in the limit.

In general, the limit mn →∞,
√
α/mn → 0 will lead to (2.3) and (2.5), and the

current in the non-superconducting region will be zero whatever the value of ψ; in this
sense, ψ in the normal region is irrelevant when mn =∞.

4. Josephson junctions

We now consider a planar S-N-S Josephson junction. In [1], De Gennes used the
Ginzburg-Landau theory to model such a junction in the following way. The values
of ψ and n ·

(
i
κ∇+ A

)
ψ as the normal region is approached from the right-hand

superconducting side [denoted by (·)+] are taken to be related to their values as the
junction is approached from the left-hand superconducting side [denoted by (·)−]. This
relationship is linearized to give

(4.1)
(

ψ
n ·
(

1
κ∇− iA

)
ψ

)+

=
(
M11 M12

M21 M22

)(
ψ

n ·
(

1
κ∇− iA

)
ψ

)−
,

where the Mij are real and are determined by the particular junction and depend on
its thickness, the type of material, etc.

The supercurrent across the junction is then given by

(4.2) J =
1

M12
|ψ+ψ−| sin(χ+ − χ−) ,

where ψ = |ψ|eiχ. (Note that the previously used boundary condition (2.8) at a
normal/superconducting interface now does not hold, since that condition would imply
no current through the junction.) Then, de Gennes postulates that for an insulating
material M11 = M22 = 1, and M12 and M21 are small. The junction is symmetric if
and only if M11 = M22. In this case (see [1]),

(4.3) M11M22 −M12M21 = 1 .

Here we model such a junction by the modified Ginzburg-Landau approach intro-
duced in §3. We consider a junction of small but nonzero thickness 2d; see the sketch
in Figure 4.1. We will find that for d � 1 we do in fact retrieve the condition (4.1),
and that we can evaluate the coefficients Mij in terms of the junction parameters.
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FIG. 4.1. A superconducting-normal-superconducting junction of thickness 2d.

We have the following equations: in the left superconducting region x < −d we
have (

i

κ
∇+ A

)2

ψ − ψ + |ψ|2ψ = 0

and
(curl )2A = − i

2κ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A ;

in the normal region −d ≤ x ≤ d we have(
i

κ
∇+ A

)2

ψ + αψ = 0

and

(curl )2A = − µn
mn

{
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A

}
;

in the right superconducting region we have(
i

κ
∇+ A

)2

ψ + as2ψ + bs2 |ψ|2ψ = 0

and

(curl )2A = − µs2
ms2

{
i

2κ
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A

}
;

we also have the interface conditions at both x = −d and x = d

[A] = 0 , [ψ] = 0 ,[
1
µ

curl A
]

= 0 ,

and [
1
m

(
i

κ
∇+ A

)
ψ

]
= 0 .

Here we have allowed the possibility of having a different superconducting material in
x > d to that in x < −d, and have used the parameters refering to the material in
x < −d for the nondimensionalization, so that ms1 = µs1 = bs1 = −as1 = 1.
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By solving the equations in the normal region, we now analyse this model to deter-
mine the supercurrent through the junction, and to retrieve the de Gennes condition
(4.1). We rescale lengths with d by setting x = dX to obtain

(4.4)
(
i

dκ
∇X + A

)2

ψ + αψ = 0

and

(curl X)2A = − µn
mn

d2

{
i

2dκ
(ψ∗∇Xψ − ψ∇Xψ∗) + |ψ|2A

}
in −1 < X < 1. Here, the notation∇X and curl X serves to remind us that derivatives
are with respect to the scaled variable X. We have denoted the first component of X
by X. We assume that d is small, and that the current

(4.5) J = − 1
mn

{
i

2dκ
(ψ∗∇Xψ − ψ∇Xψ∗) + |ψ|2A

}
is o(d−2), so that to a first approximation the vector potential A is constant. We will
return to check the consistency of this assumption later. Let

ψ(X) = eiκdA·Xφ(X) .

(This corresponds to a change in the gauge of the magnetic potential.) Then, (4.4)
yields

(4.6)
1

κ2d2
∆Xφ+ αφ = 0 .

We assume that φ, and thus the modulus of ψ, depends only on X. The solution of
(4.6) is then

(4.7) φ = C cosh(κd
√
αX) +D sinh(κd

√
αX) .

We have four boundary conditions, namely

(4.8) [ψ] = 0 and
[
n · 1

m

(
i

κd
∇X + A

)
ψ

]
= 0 at X = ±1 .

These imply that φ and (1/m)∇Xφ · n are continuous at X = ±1, or, since we have
assumed that φ is a function of X only, that

[φ] = 0 and [(1/m)dφ/dX] = 0 at X = ±1 .

This will allow us to determine C and D, and to ultimately relate the values of ψ and
n ·
(

1
κ∇− iA

)
ψ at x = d to those at x = −d. From (4.7), we have

(4.9) φ(−1) = C cosh(κd
√
α)−D sinh(κd

√
α) ,

(4.10) φ(1) = C cosh(κd
√
α) +D sinh(κd

√
α) ,
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(4.11)
dφ

dX
(−1) = −Cκd

√
α sinh(κd

√
α) +Dκd

√
α cosh(κd

√
α) ,

and

(4.12)
dφ

dX
(1) = Cκd

√
α sinh(κd

√
α) +Dκd

√
α cosh(κd

√
α) .

Solving (4.9) and (4.11) for C and D in terms of the values at X = −1 gives

C = φ(−1) cosh(κd
√
α) +

dφ

dX
(−1)

1
κd
√
α

sinh(κd
√
α)

and
D = φ(−1) sinh(κd

√
α) +

dφ

dX
(−1)

1
κd
√
α

cosh(κd
√
α) .

Substituting into (4.10) and (4.12) yields

φ(1) = cosh(2κd
√
α)φ(−1) +

sinh(2κd
√
α)

κd
√
α

dφ

dX
(−1)

and
dφ

dX
(1) = κd

√
α sinh(2κd

√
α)φ(−1) + cosh(2κd

√
α)

dφ

dX
(−1) .

Returning to the original gauge and length scale, we find that since(
1
κ

d

dx
− iA

)
ψ =

(
1
κd

d

dX
− iA

)
ψ =

1
κd
eiκdA·X

(
dφ

dX

)
,

then (
ψ(

1
κ
d
dx − iA

)
ψ

)∣∣∣∣
d−

=
(

cosh(2κd
√
α) sinh(2κd

√
α)/
√
α√

α sinh(2κd
√
α) cosh(2κd

√
α)

) (
ψ(

1
κ
d
dx − iA

)
ψ

)∣∣∣∣
−d+

.

Finally, using the interface conditions (4.8), we find(
ψ(

1
κ
d
dx − iA

)
ψ

)∣∣∣∣
d+

=
(

cosh(2κd
√
α) (mn/

√
α) sinh(2κd

√
α)

(ms2

√
α/mn) sinh(2κd

√
α) ms2 cosh(2κd

√
α)

) (
ψ(

1
κ
d
dx − iA

)
ψ

)∣∣∣∣
−d−

,

which is the de Gennes condition (4.1) with(
M11 M12

M21 M22

)
=
(

cosh(2κd
√
α) (mn/

√
α) sinh(2κd

√
α)

(ms2

√
α/mn) sinh(2κd

√
α) ms2 cosh(2κd

√
α)

)
.

Note that the junction is symmetric if and only if ms2 = 1, i.e., whenever the two
superconductors are the same. Also, note that in this case, (4.3) is satisfied. From
(4.2), we then expect the supercurrent through the junction to be given by

J =
√
α

mn sinh(2κd
√
α)
|ψ(d+)ψ(−d−)| sin

(
χ(d+)− χ(−d−)

)
.
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Let us verify this directly. In the normal region, we have from (4.4) that J = (J, 0, 0)T
is given by

J = − 1
mn

{
i

2dκ

(
ψ∗

dψ

dX
− ψdψ

∗

dX

)
+ |ψ|2A

}
= − i

2dκmn

(
φ∗

dφ

dX
− φdφ

∗

dX

)
= − i

√
α

2mn
(C∗D − CD∗) .

Writing C and D in terms of φ(−1) and φ(+1) gives

C =
φ(1) + φ(−1)
2 cosh(κd

√
α)

and

D =
φ(1)− φ(−1)
2 sinh(κd

√
α)

.

Hence, indeed, we have that

J = − i
√
α

2mn sinh(2κd
√
α)

(
φ(1)φ(−1)∗ − φ(1)∗φ(−1)

)
=

√
α

mn sinh(2κd
√
α)
|ψ(d+)ψ(−d−)| sin

(
χ(d+)− χ(−d−)

)
.

We note that as d→ 0, J = O(d−1), so that the approximation of A by a constant
is valid. We also note that, as expected, J decreases exponentially as d increases
and as α increases. Furthermore, J also decreases as mn increases. Since large mn

corresponds to a highly insulating material, this is in agreement with the experimental
observation that junctions made from insulating materials need to be thinner than
junctions made from metals, in order to obtain the same tunneling current.

5. Computational results

We now present the results of some computational experiments based on the
model of §3. These results were obtained using a biquadratic finite element discretiza-
tion of (3.1)-(3.4) applied to various normal-superconductor configurations. Although
in each case we give results for only a single grid, grid refinement studies were carried
out to insure that the results displayed are converged to graphical accuracy.

First, we consider a square of unit (dimesionless) size of homogeneous supercon-
ducting material; thus, in this example there is no normal region. We subdivide the
unit square into a 12×12 uniform grid. We set κ = 3 and obtain Figure 5.1 for the level
curves of the magnitude of the order parameter. Note the symmetric, diamond-shaped
arrangement of the four vortices.
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FIG. 5.1. Level curves of the magnitude of the order parameter for a unit square sample
of a homogeneous superconductor having κ = 3.

Next, we consider the arrangement sketched in the left-hand picture in Figure
5.2. We have a square of unit size with the shaded square of side 0.3 placed so that its
lower left-hand corner is located at the point (0.6,0.6) within the larger square. (The
origin is located at the lower-left hand corner of the larger square.) The unshaded
region is superconducting, while the shaded region is normal with α = 1. Again, we
choose a 12 × 12 grid and set κ = 3 and obtain Figure 5.3 for the level curves of the
magnitude of the order parameter. Note that one of the vortices is attracted, i.e.,
pinned, by the normal region; the positions of the other three vortices also change so
that the configuration has minimum energy. Instead of the diamond-shaped pattern of
Figure 5.1, we roughly have, in Figure 5.3, a square-shaped pattern that is symmetric
about the line x = y.

FIG. 5.2. Normal (shaded) and superconducting (unshaded) regions for the computa-
tional examples.
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FIG. 5.3. Level curves of the magnitude of the order parameter for a unit square sample

of a homogeneous superconductor having κ = 3 and having an embedded square normal
region as sketched in the left-hand picture of Figure 5.2.

Our next example is for a homogeneous superconducting rectangle of width 0.7
and unit height. There is no normal region. We choose a 10×16 grid and set κ = 6 and
obtain Figure 5.4 for the level curves of the magnitude of the order parameter. Note
that there are six vortices arranged symmetrically about the center of the rectangle.

Next, consider the superconducting-normal-superconducting junction sketched in
the right-hand picture of Figure 5.2. Here we have a layer of normal material of thick-
ness 0.02 sandwiched between two superconducting regions. (The unshaded region is
superconducting, while the shaded region is normal with α = 1.) The overall S-N-S
configuration has width 0.7 and unit height. The left edge of the normal layer is
located at a distance equal to 0.3 from the left edge of the overall sample. Again,
we choose a 10 × 16 grid and set κ = 6 and obtain Figure 5.5 for the level curves of
the magnitude of the order parameter. Note that the vortices are all attracted, i.e.,
pinned, by the normal region. One should compare the arrangement of vortices in
Figure 5.4 for which there is no normal region, with that of Figure 5.5 for which a
thin vertical normal region is present.

These examples illustrate that our model is potentially very useful in computa-
tional studies involving samples containing both superconducting and normal mate-
rials. They also serve to illustrate the fact that the model can, by itself, account for
the various types of interactions involving normal/superconducting materials. In a
future paper we intend to give much more comprehensive computational results using
our model, including examples of transient flux-pinning phenomena and more detailed
studies of S-N-S junctions.
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FIG. 5.4. Level curves of the magnitude of the order parameter for a 0.7× 1.0 rectan-

gular sample of a homogeneous superconductor having κ = 6.

FIG. 5.5. Level curves of the magnitude of the order parameter for a superconduct-

ing/normal/superconduting junction of the type sketched in the right-hand picture of
Figure 5.2. The superconductor has κ = 6, the overall sample size is 0.7 × 1.0, and

the normal region has thickness equal to 0.02 and is located to the left of the vertical
centerline of the sample.
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