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Abstract. We develop a calculus for nonlocal operators that mimics Gauss’ theorem and the
Green’s identities of the classical vector calculus. The operators we define do not involve the deriva-
tives. We then apply the nonlocal calculus to define variational formulations of nonlocal “boundary-
value” problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic
partial differential equations. For the nonlocal variational problems, we derive fundamental solu-
tions, show how one can derive existence and uniqueness results, and show how, under appropriate
limits, they reduce to their classical analogs.
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1. Introduction. Gauss’s theorem and the Green’s identities are crucial for the
analysis of the second-order scalar elliptic boundary-value problem

−∇ ·
(
D(x) · ∇u(x)

)
= b(x) in Ω ⊂ Rd (1.1)

augmented with Dirichlet or Neumann boundary conditions on the boundary ∂Ω,
where D denotes a symmetric, positive definite, second-order tensor, b a scalar-valued
data function, and d a positive integer. Gauss’s theorem and the ensuing Green’s
identities provide compatibility relations, a solution operator, and a variational for-
mulation for the boundary-value problem (1.1).

The first contribution of this paper is the development of a calculus for nonlocal
analogues of (1.1) that mimics Gauss’s theorem and the Green’s identities of the
classical vector calculus. The nonlocal second-order scalar “elliptic boundary-value”
problem is given by

L(u)(x) := 2
∫

Rd

(
u(x′)− u(x)

)
µ(x,x′) dx′ = b(x) in Ω ⊂ Rd (1.2)

augmented with nonlocal “Dirichlet” or “Neumann” “boundary” conditions, where
µ(x,x′) denotes a positive, symmetric function of its arguments. The “boundary-
value” problem (1.2) characterizes the solution of the formal minimization problem∫

Ω

∫
Rd

(
u(x′)− u(x)

)2
µ(x,x′) dx′ dx−

∫
Ω

b(x)u(x) dx→ min! (1.3)

augmented with nonlocal “boundary” conditions. The relationship between (1.3) and
(1.2) is equivalent to the relationship between (1.1) and the minimization problem

1
2

∫
Ω

∇u(x) ·D(x) · ∇u(x) dx−
∫

Ω

b(x)u(x) dx→ min!

∗Department of Scientific Computing, Florida State University, Tallahassee FL 32306-4120;
gunzburg@fsu.edu. Supported in part by the US Department of Energy under grant number DE-
FG02-05ER25698 as part of the Office of Science’s “Multiscale Mathematics” program.
†Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185–1320; rblehou@

sandia.gov. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000.

1



2 MAX GUNZBURGER AND R. B. LEHOUCQ

Our second contribution applies the nonlocal calculus to define variational formu-
lations of nonlocal “boundary-value” problems that mimic the Dirichlet and Neumann
problems for second-order scalar elliptic partial differential equations. In contrast to
their local counterparts, e.g., (1.1), the nonlocal “Dirichlet” and “Neumann” data
needed for (1.2) are defined on a nonzero volume exterior to Ω. We also establish
existence and uniqueness results, and demonstrate how, under appropriate limits, the
nonlocal “Dirichlet” and “Neumann” problems reduce to their classical analogs.

Underpinning our analyses are two relatively unknown lemmas established in [14,
15]. The lemmas lead to a closed form expression for a flux such that the divergence
of this flux is equal to L(u).

The second-order elliptic operator associated with (1.1) is local, e.g., ∇·D(x) ·∇
only depends on the point x whenever D(x) only depends upon x. In contrast, the
operator L eschews the gradient of the scalar function u, and is nonlocal because
points x′ 6= x can interact with x. The solution operator for (1.2) does not, in
general, smooth the data b(x) as does the solution operator associated with (1.1). For
example, given homogenous Dirichlet boundary conditions and appropriate conditions
on the tensor D(x), the solution operator for the variational formulation of (1.1) maps
H−1(Ω) to H1

0 (Ω); see [6]. In contrast, given appropriate conditions on µ(x,x′), L−1

maps a subspace of H−1(Ω) to Hs
0(Ω), 1/2 < s < 1; see [4] and also [7].1 This implies

that the solution of (1.2) exhibits multiscale character beyond that achieved by the
solution of (1.1). In particular, the solution u of (1.1) is differentiable, albeit in a
weak sense, whereas the solution (1.2) is not necessarily weakly differentiable. The
minimal regularity of the latter solution suggests that the operator L is an attractive
alternative to ∇ ·D(x) · ∇ for modeling phenomena exhibiting discontinuities.

The nonlocal operator L is associated with the jump process of the master equa-
tion that generalizes Brownian motion; see [9, chap. 7] for a review. Such a jump
process was considered by Einstein in his seminal paper on the origins of diffusion.
The operator L gives rise to nonlocal diffusion that enables improved multiscale mod-
eling; see [3] and [5, chap. 3] for examples and citations to the literature. The nonlocal
p-Laplacian diffusion equation with Dirichlet and Neumann boundary conditions (the
operator L corresponds to p = 2) are investigated in [1, 2]. Those papers and the
citations found therein to related work about Neumann boundary conditions, provide
mathematical analyses for the existence and uniqueness of solutions of the nonlocal
p-Laplacian diffusion equation, including conditions under which its solution can ap-
proximate the solution to the classical p-Laplacian diffusion equation. See also [9,
chap. 7] for a review of the Kramers-Moyal and van Kampen asymptotic approxima-
tions of a jump process by a Fokker-Plank equation.2

In [10], the nonlocal operator L and its applications to image processing are con-
sidered and suggestions are made for its use for modeling physical phenomena. In
addition to nonlocal diffusion, the peridynamic continuum theory [16, 17] postulates
that the internal force density is given by an integral operator. The nonlocal operator
L results when the deformation is given by a scalar-valued function and the consti-
tutive relation is linear. Our results are directly applicable to the one-dimensional
peridynamic equilibrium equation associated with the equation of motion considered
in [18, 19]. The nonlocal vector calculus presented in our paper extends the ideas in-

1The paper [7] considers the free-space vector-valued formulation of L and demonstrates that the
associated solution operator maps the dual of [Hs(Rd)]d to [Hs(Rd)]d for 0 ≤ s ≤ 1.

2The classical diffusion equation is a specialization of the Fokker-Plank equation under the as-
sumption of no drift, i.e., no bias in the associated random walk.
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troduced in [10] and applies this calculus to scalar nonlocal boundary-value problems.
In a follow-up paper, we consider more general linear peridynamic models for which
deformation is given by a vector-valued function.

2. A nonlocal Gauss’s theorem. For any mapping3 r(x,x′) : Rd × Rd → R,
it is easily seen that∫

bΩ
∫

bΩ r(x,x
′) dx′dx =

∫
bΩ
∫

bΩ r(x
′,x) dx′dx ∀ Ω̂ ⊆ Rd. (2.1)

If p(x′,x) denotes an anti-symmetric mapping, i.e., if p(x′,x) = −p(x,x′) for all
x, x′ ∈ Rd, then (2.1) implies∫

bΩ
∫

bΩ p(x,x
′) dx′dx = 0 ∀ Ω̂ ⊆ Rd. (2.2)

Let Ω denote an open bounded subset of Rd. Obviously, if Γ ⊆ Rd \Ω and p(x′,x) is
anti-symmetric, by setting Ω̂ = Ω ∪ Γ, (2.2) implies∫

Ω

∫
Ω∪Γ

p(x,x′) dx′dx = −
∫

Γ

∫
Ω∪Γ

p(x,x′) dx′dx. (2.3)

Let α(x,x′) : Ω ∪ Γ × Ω ∪ Γ → R denote a symmetric mapping, i.e., α(x′,x) =
α(x,x′) for all x, x′ ∈ Ω ∪ Γ, and let f(x,x′) : Ω ∪ Γ× Ω ∪ Γ→ R denote a mapping
that is not necessarily symmetric or anti-symmetric. Let D denote the linear operator
mapping functions f(x,x′) into functions defined over Ω given by

D(f)(x) :=
∫

Ω∪Γ

(
f(x,x′)− f(x′,x)

)
α(x,x′) dx′ for x ∈ Ω. (2.4)

Similarly, let N denote the linear operator mapping functions f(x,x′) into functions
defined over Γ given by

N (f)(x) := −
∫

Ω∪Γ

(
f(x,x′)− f(x′,x)

)
α(x,x′) dx′ for x ∈ Γ. (2.5)

Then, setting p(x,x′) =
(
f(x,x′) − f(x′,x)

)
α(x,x′) in (2.3) results in the nonlocal

Gauss’s theorem ∫
Ω

D(f) dx =
∫

Γ

N (f) dx. (2.6)

Note that the operators D and N differ only in their domains and signs.4

2.1. Relation to the classical Gauss’s theorem. Let the vector-valued func-
tion q : Rd → Rd be defined by

q(x) := −
∫

Rd

(x′ − x)ϕ(x,x′ − x) dx′, (2.7)

3Throughout, vectors in Rd are denoted in lower-case Roman bold letters, scalar valued functions
in lower-case Roman or Greek letters, and second-order tensors in upper-case Roman bold letters.

4With Ω ∪ Γ = Ω, we have from (2.6) (or directly from (2.2)) that
R
Ω∪ΓD(f) dx = 0. In [10,

eq. (2.6)], this equation is referred to as the “divergence theorem;” however, we see here that it is a
special case of the nonlocal Gauss’s theorem (2.6).
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where, with p(x,x′) =
(
f(x,x′) − f(x′,x)

)
α(x,x′) and z = x′ − x, the function

ϕ : Ω× Ω→ R is given by

ϕ(x, z) =
∫ 1

0

p
(
x + λz,x− (1− λ)z

)
dλ. (2.8)

We also suppose, for this subsection only,5 that Γ = Rd \Ω so that Rd = Ω∪Γ. Then,
a formal application of Lemma I in [14, 15] implies

∇ · q(x) =
∫

Rd

(
f(x,x′)− f(x′,x)

)
α(x,x′) dx′ = D(f) for x ∈ Ω, (2.9)

where we used the definition (2.4) of the operator D. Lemma II in [14, 15] implies∫
∂Ω

q(x) · n dA =
∫

Ω

∫
Γ

(
f(x,x′)− f(x′,x)

)
α(x,x′) dx′dx, (2.10)

where ∂Ω denotes the boundary of Ω, dA the surface element on ∂Ω, and n the
outward pointing unit normal vector along ∂Ω. Two successive applications of (2.2),
first with Ω̂ = Ω and then with Ω̂ = Ω ∪ Γ, yields∫

Ω

∫
Γ

f(x,x′)α(x,x′) dx′dx =
∫

Ω

∫
Ω∪Γ

f(x,x′)α(x,x′) dx′dx

= −
∫

Γ

∫
Ω∪Γ

f(x,x′)α(x,x′) dx′dx.

Combining this result with (2.10) yields∫
∂Ω

q(x) ·n dA = −
∫

Γ

∫
Ω∪Γ

(
f(x,x′)−f(x′,x)

)
α(x,x′) dx′dx =

∫
Γ

N (f) dx, (2.11)

where we used the definition (2.5) of the operator N (·). Substituting (2.9) and (2.11)
into the nonlocal Gauss’s theorem (2.6) results in∫

Ω

∇ · q dx =
∫

∂Ω

n · q dA,

i.e., the classical Gauss’s theorem for the vector-valued function q. Thus, we have
shown that the nonlocal Gauss’s theorem (2.6) for the nonlocal scalar-valued map-
ping f implies the classical Gauss’s theorem for the nonlocal vector-valued function q
derived from f through (2.7).6 Hence, one can view the right-hand side of (2.3) as
a nonlocal “flux.” Evidently, Gauss’s theorem can be given a meaning without the
notions of the divergence operator, unit normal vector, or a surface.

5This assumption is made in [14, 15]; it is possible to extend the results of those papers to the
case of f(·, ·) having compact support, in which case we need not assume that Γ = Rd \ Ω.

6Under appropriate assumptions, the results of [13] can be invoked to show that the vector field
q solves the minimization problem

infbq∈H0(div,Rd)

1

2

Z
Ω
|bq|2dx subject to ∇ · bq = D(f) ∈ L2

0(Rd),

where H0(div,Rd) := {q | ∇ · q ∈ L2
0(Rd)} and L2

0(Rd) := {ψ ∈ L2(Rd) |
R

Rd ψ dx = 0}.
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2.2. An application of the nonlocal Gauss’s theorem. We apply the nonlo-
cal Gauss’s theorem (2.6) to the product of two mappings. In particular, for mappings
v(x) : Ω ∪ Γ → R and s(x,x′) : Ω ∪ Γ × Ω ∪ Γ → R, set7 f = sv in (2.6) to obtain,
using (2.4) and (2.5) as well,∫

Ω

∫
Ω∪Γ

(sv − s′v′)αdx′dx = −
∫

Γ

∫
Ω∪Γ

(sv − s′v′)αdx′dx

so that, setting sv − s′v′ = sv − s′v′ + s′v − s′v = v(s − s′) + s′(v − v′) in both
integrands,∫

Ω

∫
Ω∪Γ

v(s− s′)αdx′dx +
∫

Ω∪Γ

∫
Ω∪Γ

s′(v− v′)αdx′dx = −
∫

Γ

∫
Ω∪Γ

v(s− s′)αdx′dx.

We use (2.4) and (2.5) for the first and third terms and (2.1) for the second term to
obtain ∫

Ω

vD(s) dx +
∫

Ω∪Γ

∫
Ω∪Γ

s(v′ − v)αdx′dx =
∫

Γ

vN (s)dx. (2.12)

Let G denote the linear operator mapping functions v : Ω∪ Γ→ R into functions
defined over Ω ∪ Γ× Ω ∪ Γ given by8

G(v) := (v′ − v)α for x,x′ ∈ Ω ∪ Γ. (2.13)

Then, using (2.13) in (2.12) results in∫
Ω

vD(s) dx +
∫

Ω∪Γ

∫
Ω∪Γ

sG(v) dx′dx =
∫

Γ

vN (s) dx. (2.14)

The particular choice v = constant in (2.14) yields∫
Ω

D(s) dx =
∫

Γ

N (s) dx, (2.15)

which is simply the nonlocal Gauss’ theorem (2.6) applied to f = s.

3. Nonlinear, nonlocal boundary value problems. Let U(Ω∪Γ) and V (Ω∪
Γ) denote Banach spaces of scalar-valued functions defined over Ω ∪ Γ. Let

Γ := Γe + Γn with Γe ∩ Γn = ∅

and define

V0(Ω ∪ Γ) := {v ∈ V (Ω ∪ Γ) : v = 0 for x ∈ Γe}.

7In the sequel, for ease of notation, we define

v := v(x), v′ := v(x′), α := α(x,x′), α′ := α(x′,x),

f := f(x,x′), f ′ := f(x′,x), s := s(x,x′), s′ := s(x′,x),

and analogously for other similar functions yet to be introduced.
8In [10, eq.(2.2)], G is denoted by ∇wu, a nonlocal gradient, where our α is their

√
w. However,

denoting∇wu as a gradient (nonlocal or otherwise) is strictly formal because it is never demonstrated
that ∇wu corresponds to the best local linear approximation of u.
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Define the mappings

b : Ω→ R, he : Γe → R, and hn : Γn → R. (3.1)

For u ∈ U(Ω ∪ Γ), let s = A(u) for a possibly nonlinear operator A that may also
depend explicitly on x and x′. Then, consider the variational problem

seek u ∈ U(Ω ∪ Γ) such that
u = he for x ∈ Γe

and∫
Ω∪Γ

∫
Ω∪Γ

A(u)G(v) dx′dx =
∫

Ω

vb dx +
∫

Γn

vhn dx ∀ v ∈ V0(Ω ∪ Γ).

(3.2)

Then, (2.14) and v = 0 on Γe imply

−
∫

Ω

vD
(
A(u)

)
dx +

∫
Γn

vN (A(u)
)
dx =

∫
Ω

vb dx +
∫

Γn

vhn dx ∀ v ∈ V0(Ω ∪ Γ).

Hence, (3.2) can be viewed as a weak formulation of the “boundary-value” problem
−D(A(u)

)
= b for x ∈ Ω

u = he for x ∈ Γe

N (s) = hn for x ∈ Γn.

(3.3)

The second and third equations of (3.3) are the “Dirichlet boundary” and “Neumann
boundary” conditions that are essential and natural, respectively, for the variational
principle (3.2).

If Γe = ∅, then the space of test functions V0(Ω) in the variational problem (3.2)
is replaced by V (Ω ∪ Γ)/R and the compatibility condition9∫

Ω

bdx +
∫

Γ

hn dx = 0 (3.4)

must hold.

4. Linear, nonlocal operators and nonlocal Green’s identities. In this
section, we specialize the nonlocal Gauss’s theorem discussed in Section 2 and, in
particular, (2.14) to the case of U(Ω∪Γ) = V (Ω∪Γ) and to linear operators. To this
end, for u ∈ V (Ω ∪ Γ), let

s = A(u) = βG(u) = (u′ − u)αβ, (4.1)

where, at this time, no assumption is made about the symmetry or anti-symmetry of
the mapping β(x,x′) : Ω ∪ Γ × Ω ∪ Γ → R. Then, substitution into (2.14) results in
the nonlocal Green’s first identity∫

Ω

vD
(
βG(u)

)
dx +

∫
Ω∪Γ

∫
Ω∪Γ

βG(v)G(u) dx′dx =
∫

Γ

vN
(
βG(u)

)
dx. (4.2)

9If Γe = ∅, (3.4) is a necessary condition for the existence of solutions of the variational problem
(3.2) because, in this case, the left-hand side of (3.2) vanishes whenever v = constant. Note that
(3.4) states that the data b and hn have to be orthogonal to the one-dimensional null space of the
operator G(v) = (v′−v)α. Correspondingly, we exclude the constant functions from the space of test
functions in the variational problem (3.2). This is all entirely analogous to the situation for classical,
local Neumann boundary-value problems.
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Reversing the roles of u and v in (4.2) and then subtracting the result from (4.2)
results in the nonlocal Green’s second identity∫

Ω

vD
(
βG(u)

)
dx−

∫
Ω

uD
(
βG(v)

)
dx =

∫
Γ

(
vN
(
βG(u)

)
− uN

(
βG(v)

))
dx. (4.3)

From (4.2) we have, by setting v =constant,∫
Ω

D
(
βG(u)

)
dx =

∫
Γ

N
(
βG(u)

)
dx

and, by setting v = u, the “energy” identity∫
Ω

uD
(
βG(u)

)
dx +

∫
Ω∪Γ

∫
Ω∪Γ

βG(u)G(u) dx′dx =
∫

Γ

uN
(
βG(u)

)
dx.

See, e.g., [12], for the analogous identities in the classical linear elliptic operator case.
We defer discussion of a nonlocal Green’s third identity until after we discuss

linear, nonlocal boundary-value problems.
The relation (4.1) is a “constitutive” relation. To define a general form for the

constitutive function10 β, let K(x,x′) : Ω∪Γ×Ω∪Γ→ Rd×d denote a tensor. Then,
a general constitutive function β is given by

β = (x′ − x) ·K · (x′ − x), (4.4)

where, for ease of notation, we have suppressed the dependence of β and K on x and
x′. Note that, at this time, we make no assumptions about the symmetry or positive
definiteness of the tensor K or about the symmetry or positivity of the entries of K.

5. Linear, nonlocal boundary-value problems. With s given by (4.1) and
U(Ω ∪ Γ) = V (Ω ∪ Γ), the variational principle (3.2) reduces to

seek u ∈ V (Ω ∪ Γ) such that
u = he for x ∈ Γe

and∫
Ω∪Γ

∫
Ω∪Γ

βG(v)G(u) dx′dx =
∫

Ω

vb dx +
∫

Γn

vhn dx ∀ v ∈ V0(Ω ∪ Γ)

(5.1)

and the corresponding nonlocal “boundary-value” problem (3.3) reduces to the linear
problem 

−D
(
βG(u)

)
= b for x ∈ Ω

u = he for x ∈ Γe

N (βG(u)) = hn for x ∈ Γn,

(5.2)

where again the second equation is a “Dirichlet boundary” condition that is essential
for the variational principle (5.1) and the third equation is a “Neumann boundary”
condition that is natural for that principle.

10β plays a role analogous to the diffusion tensor D for the classical equation (1.1); in fact, in
Section 8, we see how they are related.
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Substituting the definitions (2.4) and (2.13) for D and G, respectively, we have
the explicit relations∫

Ω∪Γ

∫
Ω∪Γ

βG(v)G(u) dx′dx =
∫

Ω∪Γ

∫
Ω∪Γ

(v′ − v)(u′ − u)α2β dx′dx

D
(
βG(u)

)
= 2

∫
Ω∪Γ

(u′ − u)α2β dx′ for x ∈ Ω (5.3)

N
(
βG(u)

)
= −2

∫
Ω∪Γ

(u′ − u)α2β dx′ for x ∈ Γn.

6. Well posedness of linear nonlocal boundary value problems. We now
demonstrate that the variational problem (5.1) is well posed. We assume that U(Ω∪
Γ) = V (Ω ∪ Γ). See [4] for a well-posedness result when U(Ω ∪ Γ) = Hs

0(Ω), 1/2 <
s < 1, the two papers [7, 8] for results on the linear peridynamic model for which u
in (1.2) is a vector field, and [1, 2] for results about the strong form of the nonlocal
boundary value problem (5.2).

6.1. Bilinear forms, norms, and inner products. We now assume that the
constitutive function β is positive, i.e., β(x,x′) > 0 for all x,x′ ∈ Ω ∪ Γ. For all
u, v ∈ V (Ω ∪ Γ), define the symmetric bilinear form

B(u, v) :=
∫

Ω∪Γ

∫
Ω∪Γ

βG(v)G(u) dx′dx

=
∫

Ω∪Γ

∫
Ω∪Γ

(v′ − v)(u′ − u)βα2 dx′dx.
(6.1)

Note that B(u, u) ≥ 0 and let

((u, v)) := B(u, v) and |||u||| :=
(
B(u, u)

)1/2
.

Let the function space V (Ω ∪ Γ) be defined by

V (Ω ∪ Γ) := {u : |||u||| <∞}.

We now show that ||| · ||| and ((·, ·)) define a norm and an inner product, respectively,
on both V0(Ω ∪ Γ) and V (Ω ∪ Γ) \ R. Note that ||| · ||| only defines a semi-norm on
V (Ω ∪ Γ).

Let u ∈ V0(Ω ∪ Γ) so that u(x) = 0 for all x ∈ Γe. Then,

B(u, u) =
∫

Ω∪Γ

∫
Ω∪Γ

(u′ − u)2βα2 dx′dx

=
∫

Ω∪Γ

∫
Γe

(u′ − u)2βα2 dx′dx +
∫

Ω∪Γ

∫
Ω∪Γn

(u′ − u)2βα2 dx′dx

≥
∫

Ω∪Γ

∫
Γe

(u′ − u)2βα2 dx′dx =
∫

Ω∪Γ

u2

∫
Γe

βα2 dx′dx

=
∫

Ω∪Γn

u2

(∫
Γe

βα2 dx′
)
dx .

Assuming that 0 <
∫

Γe
βα2 dx′ <∞ for all x ∈ Ω ∪ Γn, we have that

B(u, u) = 0 implies that u = 0 ∀x ∈ Ω ∪ Γn.
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But, u = 0 in Γe as well so that we have that

B(u, u) = 0 implies that u = 0 ∀x ∈ Ω ∪ Γ.

Thus, we have that ||| · ||| defines a norm and ((·, ·)) defines and inner product on
V (Ω ∪ Γ).

Also, note that B(u, u) = 0 only if (u′ − u)2βα2 = 0 for all x,x′ ∈ Ω ∪ Γ, i.e.,
only if u = constant for all x ∈ Ω ∪ Γ. Thus, we again conclude that ||| · ||| defines a
norm and ((·, ·)) defines and inner product on V (Ω ∪ Γ) \ R.

6.2. Well-posedness of variational problems. Let

|||b|||∗ := sup
v∈V0(Ω∪Γ), v 6=0

∫
Ω

v(x)b(x) dx

|||v|||

and define the “dual” space

V ∗0 := {b : |||b|||∗ <∞}.

Next, define the “trace” space

Ve := {χΓe
u : u ∈ V (Ω ∪ Γ)},

where χ(·) denotes the characteristic function, along with the norm

|||u|||e := |||χΓeu|||.

Finally, define the norm

|||h|||n := sup
v∈V0(Ω∪Γ), v 6=0

∫
Γn

v(x)h(x) dx

|||v|||

and the second “trace” space

Vn := {h : |||h|||n <∞}.

The variational problem (5.1) then takes the form11


given b ∈ V ∗0 , he ∈ Ve, and hn ∈ Vn, seek u ∈ V (Ω ∪ Γ) such that

u = he for x ∈ Γe

and

B(u, v) = F (v) ∀ v ∈ V0(Ω ∪ Γ),

(6.2)

where the linear functional F (·) is defined by

Fn(v) :=
∫

Ω

vb dx +
∫

Γn

vhn dx ∀ v ∈ V0(Ω ∪ Γ). (6.3)

11Note that the solution of the variational “boundary-value” problem (6.2) corresponds to the
solution of the optimization problem

arg min{v∈V (Ω∪Γ), v = he for x ∈ Γe}

“1

2
B(v, v)− F (v)

”
.
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If Γe is empty, we replace the space V0(Ω ∪ Γ) in (6.2) and (6.3) by V (Ω ∪ Γ) \ R.
Consider the homogeneous essential boundary condition case he = 0. Because

B(·, ·) defines an inner product on V0(Ω ∪ Γ) or V (Ω ∪ Γ) \ R, it is continuous and
coercive on those spaces. Then, if we assume that the data are such that the functional
F (·) is continuous, the Lax-Milgram theorem can be applied to show that (6.2) has a
unique solution and, moreover, that solution satisfies

|||u||| ≤ |||b|||∗ + |||hn|||n.

The case he 6= 0 can be treated in a similar manner after rendering the essential
boundary condition in (6.2) homogeneous by subtracting from u a particular solution
ũ satisfying ũ = he for x ∈ Γe.

6.3. Decomposition of the solution space. Let the space S(Ω ∪ Γ) consist
of functions u ∈ V (Ω ∪ Γ) that satisfy

D
(
βG(u)

)
= 2

∫
Ω∪Γ

(u′ − u)βα2 dx′ = 0 ∀x ∈ Ω

N
(
βG(u)

)
= −2

∫
Ω∪Γ

(u′ − u)βα2 dx′ = 0 ∀x ∈ Γ.
(6.4)

Then, from (4.2), we have that, for all u ∈ S(Ω ∪ Γ) and v ∈ V0(Ω ∪ Γ),

((u, v)) =
∫

Ω∪Γ

∫
Ω∪Γ

G(v)G(u)β dx′dx = 0.

Thus, we conclude that

V (Ω ∪ Γ) = V0(Ω ∪ Γ)⊕ S(Ω ∪ Γ), (6.5)

i.e., any function in V (Ω ∪ Γ) can be written as a sum of two functions that are
orthogonal with respect to the inner product ((·, ·)), the first a function that vanishes
on Γe and the second a function satisfying (6.4).12

7. Nonlocal Green’s functions and a nonlocal Green’s third identity.

7.1. Nonlocal fundamental solutions. For each y ∈ Rd, let g(x; y) denote
the fundamental solution (or free-space Green’s function) for the operator D(βG(·)),
formally defined as the solution of13

D
(
βG(g(x; y))

)
= δ(|x− y|) ∀x ∈ Rd,

where δ(·) denotes the Dirac delta function. We assume that α and β are radial
functions of x and x′, e.g., α(x,x′) = α(x′ − x), and that g(x; y) = g(x− y). In this
case, we can assume, without loss of generality, that y = 0. Using (5.3), we then have

2
∫

Rd

(
g(x′)− g(x)

)
µ(x′ − x) dx′ = δ(|x|) x ∈ Rd, (7.1)

12If, in (6.4), we set β = 1 and Γe = Γ so that Γn is empty, then the space S(Ω ∪ Γ) consists
of “harmonic” functions; see (7.4). Then, the decomposition (6.5) is entirely analogous to the
decomposition of the Sobolev spaceH1(Ω) into functions belonging toH1

0 (Ω) and harmonic functions.
13In this section, we explicitly express the dependences of functions on x and x′.
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where µ = α2β. Assuming, again without loss of generality, that the radial function
µ satisfies

∫
Rd µdx = 1, (7.1) can be expressed in the form

2
∫

Rd

g(x′)µ(x′ − x) dx′ − 2g(x) = δ(|x|) ∀x ∈ Rd

so that

ĝ =
(2π)−d/2

2

(
1

(2π)d/2µ̂− 1

)
,

where the Fourier transforms of g and µ are given by

ĝ(k) := (2π)−d/2

∫
Rd

e−ik·xg(x) dx and µ̂(k) := (2π)−d/2

∫
Rd

e−ik·xµ(x) dx,

respectively. Therefore,

g(x) =
(2π)−d

2

∫
Rd

eik·x 1
(2π)d/2µ̂− 1

dk

so that, for general x,y ∈ Rd, the fundamental solution for (7.1) is given by

g(x; y) =
(2π)−d

2

∫
Rd

eik·(x−y) 1
(2π)d/2µ̂− 1

dk.

Note that the special choice

µ(x′ − x) = δ(x′ − x) +
d2

dx2
δ(x′ − x)

leads to the same fundamental solution as that for the Laplace operator, i.e.,

− (2π)−d

2

∫
Rd

eik·(x−y)|k|−2 dk =



1
2
|x− y|, d = 1,

1
2π

ln |x− y|, d = 2,

1
2ωd

|x− y|2−d

2− d
, d ≥ 3,

where ωd denotes the volume of the unit ball in Rd.

7.2. Nonlocal Green’s third identity. For any y ∈ Ω∪Γ, let G(x; y) : Ω∪Γ→
R denote any function satifying14

D(βG(G(x; y))) = δ(|x− y|) ∀x ∈ Ω. (7.2)

Then, using the nonlocal Green’s second identity (4.3) with v(·) = G(·; y), we obtain
the nonlocal Green’s third identity

u(y) =
∫

Ω

G(x; y)D
(
βG(u(x))

)
dx

−
∫

Γ

(
G(x; y)N

(
βG(u(x))

)
− u(x)N

(
βG(G(x; y))

))
dx ∀y ∈ Ω.

(7.3)

14Note that the fundamental solution satisfies this equation.
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Suppose that the constitutive function β = 1 (see (4.4)) and

D
(
G(u)

)
= 2

∫
Ω∪Γ

(u′ − u)α2 dx′ = 0 ∀x ∈ Ω. (7.4)

Then, the solution u(x) represents a nonlocal “harmonic” function that, from (7.3),
is given by

u(y) =
∫

Γ

(
u(x)N

(
G(G(x; y))

)
−G(x; y)N

(
G(u(x))

))
dx,

i.e., “harmonic” functions are determined by their “boundary” values on Γ. Nonlocal
versions of the Poisson integral formula and Gauss’s law of the arithmetic mean can
also be derived; see [12, Chap. 4] for the classical case.

7.3. Nonlocal Green’s functions. Let g(x; y) denote the fundamental solu-
tion defined in Section 7.1. For each y ∈ Ω ∪ Γ, define the nonlocal Green’s function
G(x; y) : Ω ∪ Γ→ R as

G(x; y) = g(x; y)− g̃(x; y),

where g̃(·; ·) is a solution of
D
(
βG(g̃)

)
= 0 for x ∈ Ω

N
(
βG(g̃)

)
= N

(
βG(g)

)
for x ∈ Γn

g̃(x; y) = g(x; y) for x ∈ Γe.

Then, G(·; ·) satisfies (7.2) and the homogeneous “boundary” conditions G(x; y) = 0
for x ∈ Γe and N

(
βG(G)

)
= 0 for x ∈ Γn. Applying (7.3), we then have that the

solution of the “boundary-value” problem (5.2) is given by

u(y) = −
∫

Ω

G(x; y)b(x) dx

+
∫

Γe

he(x)N
(
βG(G(x; y))

)
dx−

∫
Γn

G(x; y)hn(x) dx ∀y ∈ Ω.

Because the operators D and N differ only in their signs and domains, it follows that
this formula also holds for y ∈ Γn.

8. Local smooth limits. We now connect the linear nonlocal “boundary-value”
problem of Section 5 to variational formulations of the Dirichlet and Neumann prob-
lems for linear, second-order elliptic partial differential equations. To do so, we make
two assumptions,15 one about solutions and the other about the constitutive model,
beyond some geometric assumptions and those made in Section 6 for the existence
and uniqueness associated with the nonlocal “boundary-value” problem.16 First, we

15We emphasize that these assumptions are made only to make the connection to classical prob-
lems for partial differential equations and are not required for the well posedness of the nonlocal
“boundary-value” problems; see Section 6. In addition, the nonlocal “boundary-value” problems
admit solutions that are not solutions, even in the usual sense of weak solutions, of the partial differ-
ential equations. Thus, one can view solutions of the nonlocal “boundary-value” problems as further
generalizations of solutions of the partial differential equations, generalized in two ways: they are
nonlocal and they lack the smoothness needed for them to be standard weak solutions.

16The formal presentation we make here may be made completely rigorous using the procedures
and clever scalings introduced in [1, 2].
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assume that solutions of the nonlocal “boundary-value” problems are smooth; specifi-
cally, we assume that17

u(x′) = u(x) +∇u(x) · (x′ − x) + o(ε) if |x′ − x| ≤ ε, (8.1)

where, for n ≥ 0, ε−no(εn)→ 0 as ε→ 0. Second, we assume that the nonlocal oper-
ators are asymptotically local; specifically, we assume that β is a positive, symmetric
function18 such that, for ε > 0,

β(x,x′) = 0 whenever |x′ − x| ≥ ε (8.2)

and, for some positive constants β and β,19

β <

∫
Sε(x)

β(x,x′) dx′ < β uniformly for x ∈ Ω, (8.3)

where Sε(x) := {x′ ∈ Rd | |x′ − x| < ε}.
As in [10], we set

α(x,x′) =
1

|x′ − x|
. (8.4)

Note that, from (8.1), we have that this choice implies that, as ε→ 0, G(u) = (u′−u)α
tends to the directional derivative of u in the direction x′ − x.

The geometric assumptions we make are that,20 if ∂Ωe := ∂Ω ∩ ∂Γe and ∂Ωn :=
∂Ω ∩ ∂Γn, then

∂Ωe 6= ∅, ∂Ωn 6= ∅, and ∂Ω = ∂Ωe ∪ ∂Ωn.

Let

Γ(ε) := ∪x∈Ωsupp(β) \ Ω.

Then, with |Γ| denoting the volume of Γ, we have from (8.2) that

|Γ(ε)| = O(ε) and Γe → ∂Ωe and Γn → ∂Ωn as ε→ 0. (8.5)

Using (8.1) and (8.2), we now have that

B(u, v) =
∫

Ω∪Γ(ε)

∫
Ω∪Γ(ε)

G(v)G(u)β dx′dx

=
∫

Ω∪Γ(ε)

∫
Sε(x)∩(Ω∪Γ(ε))

(
∇v · (x′ − x)∇u · (x′ − x) + o(ε2)

)
βα2 dx′dx

=
∫

Ω∪Γ(ε)

∇v ·
(
Dε + o(ε0)

)
· ∇u dx

17Actually, we need only assume that (8.1) holds weakly.
18The symmetry and positive definiteness of a tensor K having elements that are symmetric

functions of x and x′ are sufficient conditions for such a β.
19The upper bounds in (8.2) imply the scaling β = ε−d eβ, where, as ε → 0, eβ is bounded from

above and below uniformly in ε. This is precisely the scaling used in, e.g., [1, 2], to rigorously connect
nonlocal diffusion equations to classical diffusion equations.

20These assumptions merely state that both Γe and Γn abut Ω and that the common boundaries
of both Γe and Γn with Ω make up the whole boundary of Ω. Other that this section and Section
2.1, the results presented do not require such assumptions, i.e., neither Γe or Γn need abut Ω.
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where, using (8.4) and (4.4),

Dε(x) =
∫

Sε(x)∩(Ω∪Γ(ε))

(x′ − x)⊗ (x′ − x)
|x′ − x|2

β dx′

=
∫

Sε(x)∩(Ω∪Γ(ε))

(x′ − x)⊗ (x′ − x)K(x′ − x)⊗ (x′ − x)
|x′ − x|2

dx′.

From (8.3) and (8.5), we conclude that if

D(x) := lim
ε→0

Dε(x), (8.6)

then D exists and is a symmetric, positive definite, non-vanishing tensor and

lim
ε→0

B(u, v) =
∫

Ω

∇v ·
(
D · ∇u

)
dx. (8.7)

Using (8.5), we then see that, in the limit ε → 0, the nonlocal variational problem
(5.1) reduces to the local variational problem


∫

Ω

∇v ·
(
D · ∇u

)
=
∫

Ω

vb dx +
∫

∂Ωn

vh̃n dx in Ω,

u = h̃e on ∂Ωe,

where h̃e and h̃n denote traces of the nonlocal data he and hn on ∂Ωe and ∂Ωn,
respectively. The corresponding “boundary-value” problem (5.2) reduces to


−∇ ·

(
D · ∇u

)
= b in Ω,

u = h̃e on ∂Ωe,(
D · ∇u

)
· n = h̃n on ∂Ωn.

9. Concluding remarks. We developed a nonlocal vector calculus that consists
of a nonlocal Gauss’s theorem and nonlocal Green’s identities that mimic the corre-
sponding theorem and identities of the classical vector calculus. We defined a nonlocal
variational principle and used the nonlocal vector calculus to show that the principle
corresponds to nonlocal “boundary-value” problems that mimic the classical Dirichlet
and Neumann problems for second-order elliptic partial differential equations. In fact,
we showed that, in an appropriate limit, the nonlocal variational principles and the
nonlocal boundary-value problems reduce to their classical counterparts. We also de-
rived fundamental solutions and showed how one can derive existence and uniqueness
results for the nonlocal “boundary-value” problems.

The nonlocal variational problem (5.1) and the corresponding nonlocal “boundary-
value” problem (5.2) mimic the variational setting described by (1.1) along with
Dirichlet and Neumann boundary conditions. Nonlocal versions of more general
second-order elliptic boundary value problems can also be defined; see [11]. For ex-
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ample, consider the nonlocal variational principle21

seek u ∈ V (Ω ∪ Γ) such that
u = he for x ∈ Γ

and ∫
Ω∪Γ

∫
Ω∪Γ

βG(v)G(u) dx′dx +
∫

Ω∪Γ

v

∫
Ω∪Γ

σG(u) dx′dx

+
∫

Ω∪Γ

v

∫
Ω∪Γ

ω(u′ + u) dx′dx =
∫

Ω

vb dx ∀ v ∈ V0(Ω ∪ Γ),

(9.1)

where σ(x,x′) and ω(x,x′) are anti-symmetric and symmetric functions, respectively.
The corresponding nonlocal “Dirichlet” boundary-value problems is given by{

−D(βG(u)) + σG(u) + ω(u′ + u) = b for x ∈ Ω
u = he for x ∈ Γ. (9.2)

General problems may be defined by setting β as in (4.4) and setting σ = a · (x′−x),
where a(x,x′) is a symmetric vector-valued function. We may then proceed as in
Section 8 to show that, for smooth solutions u and for asymptotically local operators,
(9.2) corresponds to the general linear convection-diffusion-reaction problem

−∇ ·
(
D · ∇u

)
+ w · ∇u+ cu = b

along with a Dirichlet boundary condition, where w and c are related to σ and ω,
respectively, through a limit process analogous to that relating D to β. Neumann
“boundary-value” problems can be defined in a similar manner.

Current work focuses on further refining and extending the results of this paper.
In particular, we are

• developing functional analytic characterizations of the solution, trace, and
data spaces used in Section 6;

• developing the equivalent multidomain formulations for the linear boundary
value problems introduced in Section 5;

• developing and analyzing finite element discretization methods, including dis-
continuous Galerkin methods, for nonlocal variational problems such as (5.1);

• extending the nonlocal vector calculus to vector-valued functions and develop-
ing nonlocal variational problems and their corresponding nonlocal “boundary-
value” problems for vector-valued functions; of particular interest is the ap-
plication of the nonlocal vector calculus to the peridynamic [16, 17] model for
materials.
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