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Abstract Thermal fluctuations and material inhomogeneities have a large
effect on superconducting phenomena, possibly inducing transitions to the
non-superconducting state. To gain a better understanding of these effects,
the Ginzburg–Landau model is studied in situations for which the described
physical processes are subject to uncertainty. An adequate description of such
processes is possible with the help of stochastic partial differential equations.
The boundary value problem of Neumann type for the stochastic Ginzburg–
Landau equations with additive and multiplicative white noise is investigated.
We use white noise with minimal restriction on its independence property.
The existence and uniqueness of weak and strong statistical solutions are
proved. Our approach is based on using difference schemes for the Ginzburg–
Landau equations.

1 Introduction

This paper is dedicated to the memory of Sergey L’vovich Sobolev. His
outstanding contributions to the theory for the equations of mathematical
physics are extremely deep and influential. Indeed, since the 1960s, practi-
cally all investigations in the aforementioned field of mathematics use Sobolev
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spaces and, at the least, are thereby guided by Sobolev’s ideas. The present
paper, of course, is no exception to this common rule. Moreover, the use of
Sobolev spaces in complicated functional constructions for stochastic partial
differential equations is especially successful and effective. Note also that be-
ing the closest aide to I.V. Kurchatov in the realization of the nuclear project
in the Soviet Union after 1943, S.L. Sobolev took part in the numerical so-
lution of huge problems of mathematical physics. From that time on to the
end of his life, he had an invariable interest in the discrete approximation of
continuum objects, especially in cubature formulas. In the present paper, dis-
crete approximations are not only used, they play a crucial role in obtaining
the main results.

This paper is devoted to the mathematical study of a boundary value
problem for the stochastic Ginzburg–Landau model of superconductivity; we
hope it will promote a better understanding of the transitions that occur
between the superconducting and nonsuperconducting states.

In 1908, Kamerlingh–Onnes discovered that when metals such as mercury,
lead, and tin are cooled to an absolute temperature below some small but
positive critical value, their electrical resistivity completely disappears. This
was a great surprise since what was expected is that the resistivity of met-
als would smoothly tend to zero as the temperature also tended to zero. In
addition to this zero resistance property, superconductors are characterized
by the property of perfect diamagnetism. This phenomenon was discovered
in 1933 by Meissner and Ochsenfeld and is also known as the Meissner effect.
What they observed is that not only is a magnetic field excluded from a su-
perconductor, i.e., if a magnetic field is applied to a superconducting material
at a temperature below the critical temperature, it does not penetrate into
the material, but also that a magnetic field is expelled from a superconduc-
tor, i.e., if a superconductor subject to a magnetic field is cooled through the
critical temperature, the magnetic field is expelled from the material. One
of the consequences of the Meissner effect is that superconductors cannot be
“perfect conductors” which are idealized (and unattainable) materials that
have zero resistivity and that can be described by the linear Maxwell equa-
tions of electromagnetism. For such materials the magnetic field would not be
expelled from the material when it is cooled through the critical temperature.

Superconductivity was not adequately explained until, in 1957, Bardeen,
Cooper, and Schrieffer (BCS) [1] published their landmark paper describing
a microscopic theory of superconductivity. However, even earlier, several phe-
nomenological continuum theories were proposed, most notably by Ginzburg
and Landau [20] in 1950. The Ginzburg–Landau theory was itself based
on a general theory, introduced by Landau in 1937, for second-order phase
transitions in fluids. Ginzburg and Landau thought of conducting electrons
as being a “fluid” that could appear in two phases, namely superconduct-
ing and normal (non-superconducting). Through a stroke of intuitive genius,
Ginzburg and Landau added to the theory of phase transitions certain ef-
fects, motivated by quantum-mechanical considerations, to account for how
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the electron “fluid” motion is affected by the presence of magnetic fields.
In 1959, Gor’kov [21] showed that, in an appropriate limit, the macroscopic
Ginzburg–Landau theory can be derived from the microscopic BCS theory.
Details about the Ginzburg–Landau model can be found in [7, 13, 12, 41],
the last of which may also be consulted for details about the BCS model.

The dependent variables of the Ginzburg–Landau model are the complex-
valued order parameter ψ and the vector-valued magnetic potential A. Phys-
ically interesting variables such as the density of superconducting electrons,
the current, and the induced magnetic field can be easily deduced from ψ and
A. The Ginzburg–Landau model itself can be expressed as a system of two
coupled partial differential equations from which ψ and A can be determined.
One of these equations is a vector-valued, nonlinear Maxwell equation that
relates the supercurrent, i.e., the current that flows without resistance, to
a nonlinear function of ψ, ∇ψ, and A. The second equation is a complex-
valued equation that relates spatial and temporal variations of ψ to a nonlin-
ear potential energy term. After appropriate non-dimensionalizations, there
are two non-dimensional parameters appearing in the differential equations.
One is the ratio of the relaxation times of ψ and A, the other, known as the
Ginzburg–Landau parameter, is the ratio of the characteristic lengths over
which ψ and A vary. These two length scales are referred to as the coherence
and penetration lengths respectively.

In this paper, we consider a simplified Ginzburg–Landau system for ψ in
which A is assumed to be a given vector-valued field. There are two situations
of paramount practical interest for which the use of this simplified Ginzburg–
Landau system can be justified. First, for high values of the Ginzburg–
Landau parameter, it can be shown [6, 12] that, to leading order, the mag-
netic field in a superconductor is simply that given by the linear Maxwell
equations so that A may be determined from these equations. Thus, insofar as
the other component equation of the Ginzburg–Landau model is concerned,
A can be viewed as a given vector field. A similar uncoupling can be shown to
occur for thin film samples [5] for all values of the Ginzburg–Landau param-
eter. Most superconductors of practical interest are characterized by “high”
values of the Ginzburg–Landau parameter and superconducting films are of
very substantial technological interest; the simplified Ginzburg–Landau sys-
tem we study can be used to model both of these situations. Furthermore, in
the more general case where one has to consider the fully coupled Ginzburg–
Landau equations for ψ and A, random fluctuations enter into the system
in very much the same way as they do for the simplified system, so much of
what is learned about stochastic versions of the simplified system applies to
stochastic versions of the full system.

The Ginzburg–Landau theory is applicable only to highly idealized phys-
ical contexts that do not take into account factors such as material inhomo-
geneities and thermal fluctuations due to molecular vibrations. Both these
factors play a crucial role in practical superconductivity since the former
enables large currents to flow through a superconductor without resistance
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while the latter can have the opposite effect, especially at temperatures close
to critical transition temperature (see, for example, [30, 39]). In [22], it is
shown that, within the Ginzburg–Landau framework, thermal fluctuations
are properly modeled by an additive white noise term in the Ginzburg–
Landau equation for ψ; the amplitude of the noise term grows as the temper-
ature approaches the critical temperature. In [4, 30], it is shown that, again in
the Ginzburg–Landau framework, material inhomogeneities can be correctly
modeled through the coefficient of the linear (in ψ) term in the Ginzburg–
Landau equation for ψ; random variations in the material properties can
thus be modeled as random perturbations in this coefficient which results
in a multiplicative white noise term in the Ginzburg–Landau equations. In
this paper, we treat both the additive and multiplicative noise cases. Studies
of the physics of superconductors in the presence of white noise perturba-
tions can be found in [11, 15, 23, 35, 39, 42, 43]; computational studies of
the Ginzburg–Landau equations with additive and multiplicative noise are
given in [9, 10].

In this paper, we study the stochastic Ginzburg–Landau equation written
in the following dimensionless form:

dψ(t, x) +
(
(i∇+ A(x))2ψ − ψ + |ψ|2ψ)

dt = r̂[ψ]dW, t > 0, x ∈ G ⊂ Rd ,
(1.1)

where G is a bounded domain, d = 2, 3, and an explanation of the notation
employed on the right-hand side of (1.1) is given below in (1.3) and (1.4). On
the boundary ∂G of G, we set

(
i∇+ A(x)

)
ψ(t, x) · n = 0, t > 0, x ∈ ∂G , (1.2)

where n denotes the unit outer normal vector to ∂G.
From the view of the general theory of dynamical systems, the supercon-

ducting state is a stable steady-state solution of (1.1) (with zero right-hand
side). The disappearance of the superconducting state (when some param-
eter of the system changes) means that some other steady-state solution of
(1.1) arises and becomes stable or either time-periodic or chaotic behavior is
realized.

We emphasize that when the dynamical system became unstable, the clas-
sical derivation of the equation for the superconducting state, rigorously
speaking, looses its correctness. Indeed, in that derivation, as well as in other
derivations of such a kind, only the main “forces” controlling the situation
are taken into account and all relatively small and unessential “forces” are
omitted, implicitly assuming stability in the sense that small fluctuations of
“forces” lead to small fluctuations of the state. In unstable situations, this
argument is evidently incorrect. The alternative is to replace, in the unstable
situation, all small and unessential “forces” by white noise forcing (additive
white noise) or perhaps by white noise multiplied by a function proportional
to the state (multiplicative white noise). The physical basis of this approach
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is that, since “values” of white noise at different times are statistically in-
dependent, white noise renders a “smoothing” influence on the dynamical
system. In more rigorous terms, this means the addition of white noise to the
right-hand side of (1.1) leads to the substitution of many steady-state solu-
tions of (1.1) by the unique (ergodic) statistical steady-state solution of (1.1)
that is stable, i.e., that satisfies the mixing property. We also note that, in
stable situations, replacing unessential “forces” by additive (multiplicative)
white noise means taking into account thermal (material inhomogenety) fluc-
tuations, as was noted above.

Very important arguments that can be used to justify the physical ade-
quateness of the aforementioned modeling of superconductivity effects with
the help of the stochastic problem (1.1) and (1.2) are given by recent re-
sults about ergodicity for abstract dynamical systems, including the two-
dimensional Navier–Stokes and Ginzburg–Landau equations with random
kick forces or additive white noise. The first results in this direction were
obtained in [14, 16, 29]. In these papers, ergodicity was proved in stable sit-
uations, i.e., when the corresponding dynamical system with random forces
omitted is stable. In the case of an unstable dynamical system, ergodicity was
established in [36, 37, 38]. A detailed exposition of this topic can be found
in [28].

Taking into account all of the above discussion, the following plan for
the mathematical investigation of the superconducting state and its possible
disappearance in industrial conditions is possible.

• Proof of the existence and uniqueness of weak and strong solutions of the
stochastic boundary value problem (1.1) and (1.2).

• Proof of the ergodicity property for the random dynamical system gener-
ated by (1.1) and (1.2).

• Investigation of the disappearance of the supercoducting state in terms of
the ergodic measure P that corresponds to the stochastic problem (1.1)
and (1.2).

This paper is devoted to the proof of the first of these assertions.
The list of investigations of stochastic parabolic partial differential equa-

tions is huge because equations of such type arise in many problems of mathe-
matics, physics, biology, and other applications. Here, we cite only the earliest
papers in this field and papers closely connected with our paper. Investiga-
tions of linear parabolic stochastic partial differential equations were begun in
the middle of 1960s [8]. Nonlinear stochastic parabolic equations were studied
in [2, 33] and the stochastic Navier–Stokes system was studied in [3, 44, 45].
The paper [27] and the book [34] contain many deep results on these topics
as well as a detailed historical review. Lastly, we note the works [25, 32].

In this paper, we study the stochastic boundary value problem (1.1) and
(1.2) for the Ginzburg–Landau equation. Note that the right-hand side in
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(1.1) should be written in a more detailed way as follows:

r̂[ψ]dW = r
(
Reψ(t, x)

)
dReW (t, x) + ir

(
Imψ(t, x)

)
dImW (t, x), (1.3)

where dW = dW (t, x) is a complex-valued white noise and, as usual, Re z and
Im z denote the real and imaginary parts of a complex number z respectively.
In addition, r(λ), λ ∈ R, is, roughly speaking,1 the following function:

r(λ) = max (ρ1, ρ2|λ|), ρ1 > 0, ρ2 > 0. (1.4)

In particular, when ρ2 = 0, (1.3) reduces to complex-valued additive white
noise. Note immediately that the main difficulties we are forced to overcome
in this paper are connected with the case ρ2 > 0 which results in some kind
of multiplicative white noise. The form (1.3) of the random fluctuations for
the Ginzburg–Landau equation is reasonable from our point of view when,
describing Ginzburg–Landau flow in instable situation, one replaces all small
and unessential “forces” by stochastically independent fluctuations, i.e., by
white noise. Indeed, since by the definition of complex-valued white noise
dW (t, x), its real (dReW (t, x)) and imaginary (dImW (t, x)) parts are mu-
tually independent white noises [19, Chapt. III, Sect. 1]), (1.3) gives the
maximal independent form of multiplicative white noise.

In this paper, we provide a detailed exposition of the proof of the exis-
tence and uniqueness of weak and strong statistical solutions of the stochastic
boundary value problem (1.1) and (1.2). The main feature of our exposition
is that, to prove the existence of a weak solution, we use, instead of Galerkin
approximations, approximations by method of lines, i.e., we introduce a finite
difference approximation of the Ginzburg–Landau equation with respect to
the spatial variables. Although the method of lines is more complicated in re-
alization than Galerkin’s method, it has one important advantage: method of
lines approximations inherit the structure of the Ginzburg–Landau equation
much better than do Galerkin ones and therefore we can obtain many esti-
mates for method of line approximations that cannot be obtained for Galerkin
approximations. All these estimates we essentially use in our proof in order
to overcome difficulties arising mostly because of the multiplicative structure
of white noise. Nevertheless, one important a priori estimate which can be
derived (formally) for the Ginzburg–Landau equation we cannot yet derive
for its method of lines approximation. That is why for the three-dimensional
Ginzburg–Landau equation with multiplicative white noise, we have proved
here only the existence of a weak solution. For the two-dimensional Ginzburg-
landau equation with multiplicative white noise as well as for the two- and
three-dimensional Ginzburg–Landau equation with additive white noise, we
can prove the existence and uniqueness of both weak and strong solutions.

1 In fact, r(λ), is the function (1.4) smoothed at points of discontinuity of its derivative.
See the exact definition given below in (3.19).
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The structure of the paper can be deduced from its content as described
above.

2 The Ginzburg–Landau Equation and Its Finite
Difference Approximation

In this section, we formulate the boundary value problem for the (simplified)
Ginzburg–Landau equations without fluctuations and define an approxima-
tion by the method of lines that will play an important role in our analysis.

2.1 Boundary value problem for the Ginzburg–Landau
equation

Let G ⊂ Rd, d = 2, 3, denote a bounded domain with C∞-boundary ∂G, and
let QT = (0, T ) × G denote a space-time cylinder. In QT , we consider the
Ginzburg–Landau equation for the complex-valued function ψ(t, x), referred
to as the order parameter,

∂ψ

∂t
+

(
i∇+ A

)2
ψ − ψ + |ψ|2ψ = 0 for (t, x) ∈ QT (2.1)

along with the boundary condition

(i∇+ A)ψ · n = 0 on (0, T )× ∂G (2.2)

and the initial condition

ψ(0, x) = ψ0(x) in G , (2.3)

where ∇ = ( ∂
∂x1

, . . . , ∂
∂xd

) denotes the gradient operator and A(x) =
(A1, . . . , Ad), the magnetic potential, is a given real-valued vector field such

that divA =
d∑

j=1

∂Aj

∂xj
= 0. Also, n = (n1, . . . , nd) denotes the unit outer nor-

mal vector to the boundary ∂G and ψ0(x) is a given initial condition. We
have

(i∇+ A)2ψ =
(
i∇+ A, i∇+ A

)
ψ

=
d∑

j=1

(
i

∂

∂xj
+ Aj(x)

)(
i
∂ψ(x)
∂xj

+ Aj(x)ψ(x)
)

. (2.4)
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We assume that A(x) ∈ (C2(G))d and, for any fixed time, ψ(t, x) ∈ L2(G).
We want to introduce function spaces within which it is natural to look

for the solution of the problem (2.1)–(2.3). The Sobolev space of complex-
valued functions defined in G and square integrable there together with their
derivatives up to order k is denoted by Hk(G), k ∈ N. Here, N denotes the
set of positive integers. In addition, we define the space

H2
A(G) = {φ(x) ∈ H2(G) : (i∇+ A)φ · n = 0 on ∂G} . (2.5)

The space of solutions of (2.1)–(2.3) is defined as follows:

Y =
{

ψ(t, x) ∈ L2
(
0, T ; H2

A(G)
) ∩ L6(QT ) :

∂ψ

∂t
∈ L2(QT )

}
. (2.6)

We also study generalized solutions of the problem (2.1)–(2.3). To obtain
a weak formulation, we multiply (2.1) by the complex conjugate of φ, de-
noted by φ, and integrate over QT . Using the boundary condition (2.2) and
integration by parts, we obtain

∫

QT

[
∂ψ

∂t
φ +

(
i∇+ A

)
ψ · (i∇+ A

)
φ− ψφ + |ψ|2ψφ

]
dxdt = 0 . (2.7)

Here, we will not make more precise the function space used for generalized
solutions, defined by (2.3) and (2.7) with arbitrary φ ∈ L2(0, T ; H1(G)), of
the problem (2.1)–(2.3) because just at this moment it is not necessary.

2.2 Approximation by the method of lines

The approximation of the solution of a partial differential equation by the
method of lines means that we approximate the continuous space variables
x = (x1, . . . , xd) by a discrete grid or mesh so that we approximate the partial
differential equation problem by a system of ordinary differential equations. In
our case, we use finite difference quotients to approximate spatial derivatives.
We assume that the grid is uniform and the scale of the grid, h > 0, is a fixed,
sufficiently small number. Let an arbitrary point on the grid be denoted by
kh, where k ∈ Zd, kh = (k1h, . . . , kdh), and Z denotes the set of integers.
Since ψ(x) is a function of the continuous variable x, we let ψk, defined on
the given grid, denote the approximation to ψ at the point kh.

We now define the corresponding discrete “derivatives” or difference quo-
tients; we distinguish the discrete derivatives from the continuous derivatives

∂
∂xj

by using the notation ∂j,h. Let δjk denote the Kronecker delta, and let

ej = (δj1, . . . , δjd), j = 1, . . . , d. We can approximate the derivative ∂ψ
∂xj

by
the forward difference quotient ∂+

j,hψk = 1
h (ψk+ej − ψk) or by the backward
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difference quotient ∂−j,hψk = 1
h (ψk−ψk−ej

). The discrete divergence operator
divh

±, the discrete gradient operator ∇±h , and the discrete Laplace operator
∆h = div−h∇+

h are then defined in an obvious manner.
Analogous to (2.4), we define

(i∇h + Ak)2ψk = (i∇−h + Ak, i∇+
h + Ak)ψk

=
d∑

j=1

(
i∂−j,h + Aj

k

)(
i∂+

j,hψk + Aj
kψk

)
,

(2.8)

where Ak = A(kh) and Aj
k denotes the jth component of the vector Ak =

(A1(kh), . . . , Ad(kh)).
We now approximate the domain G and its boundary ∂G.

Definition 2.1. The approximate boundary ∂Gh is the subset of the grid
kh, k ∈ Zd, that consists of two parts ∂Gh = ∂G+

h ∪ ∂G−h , where

(i) ∂G−h is the set of points kh ∈ G such that (k + ej)h ∈ Rd \ G or
(k − ej)h ∈ Rd \G for some j = 1, . . . , d

and

(ii) ∂G+
h the set of points kh ∈ Rd\G such that (k+ej)h ∈ G or (k−ej)h ∈

G for some j = 1, . . . , d.

Definition 2.2. The approximate domain Gh is the subset of points kh ∈ G,
k ∈ Zd; we also set G0

h = Gh\∂G−h .

We introduce the following subsets of the approximate boundary ∂Gh:

∂G+
h (−j) = {kh ∈ ∂G+

h : (k + ej)h ∈ ∂G−h }
∂G+

h (+j) = {kh ∈ ∂G+
h : (k − ej)h ∈ ∂G−h }

for j = 1, . . . , d (2.9)

and

∂G−h (−j) = {kh ∈ ∂G−h : (k + ej)h ∈ ∂G+
h }

∂G−h (+j) = {kh ∈ ∂G−h : (k − ej)h ∈ ∂G+
h }

for j = 1, . . . , d. (2.10)

The sets ∂G+
h (±j) and ∂G−h (±j) are illustrated in Fig. 2.1 for a domain in

R2. In addition, we note that the sets ∂G−h (±j), j = 1, . . . , d, can possess
nontrivial pairwise intersections.

We now turn to the approximation of the boundary value problem (2.1)–
(2.3) by the method of lines. We have

∂ψk

∂t
+ (i∇h + Ak)2ψk − ψk + |ψk|2ψk = 0 for kh ∈ Gh (2.11)

and
ψk

∣∣
t=0

= ψ0,k for kh ∈ Gh, (2.12)

where the notation (i∇h + Ak)2 is defined by (2.8).
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Fig. 2.1 The approximate boundary ∂G+
h is denoted by squares, and ∂G−h is denoted by

circles.

In order to define the analogue of the boundary condition (2.2), we first
note that the key property of this condition is that it implies the following
formula for integration by parts:

∫

G

(i∇+ A)2ψ(x)φ(x) dx =
∫

G

(i∇+ A)ψ(x)(i∇+ A)φ(x) dx

∀ ψ ∈ H2
A(G), φ ∈ H1(G) .

(2.13)

Using (2.13), one can define a weak solution of our problem (2.1)–(2.3) with
the aid of (2.7). To define the weak solution for the system (2.11) and (2.12),
we need the following discrete analogue of (2.13):

hd
∑

kh∈Gh

(
i∇−h + Ak, i∇+

h + Ak

)
ψkφk

= hd
d∑

j=1

∑

kh∈Gh∪∂G+
h (−j)

(i∂+
j,hψk + Aj

kψk)(i∂+
j,hφk + Aj

kφk) . (2.14)

We take this formula, which will be proved in the next subsection, as the
foundation for the definition of the discrete analogue of the boundary condi-
tion (2.2).
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2.2.1 Summation by parts formula

In this section, our goal is to prove the discrete analogue of (2.13) given by
(2.14).

Lemma 2.3. Let the discrete functions φk and ψk be defined for kh ∈ Gh ∪
∂G+

h . Assume that for each function φk

d∑

j=1

( ∑

kh∈∂G+
h (−j)

(iV j
k + hV j

k Aj
k)φk −

∑

kh∈∂G+
h (+j)

iV j
k−ej

φk

)
= 0 , (2.15)

where

V j
k = i

ψk+ej
− ψk

h
+ Aj

kψk . (2.16)

Then (2.14) holds.

Proof. Using (2.16) and setting r = k − ej , we obtain

hd
∑

kh∈Gh

(i∇−h + Ak, i∇+
h + Ak)ψkφk

= hd
∑

kh∈Gh




d∑

j=1

i
V j

k − V j
k−ej

h
+ Aj

kV j
k


 φk

= hd
d∑

j=1

[ ∑

kh∈∂G−h (+j)

(−i)
h

V j
k−ej

φk +
∑

kh∈∂G−h (−j)

(
i

h
V j

k + Aj
kV j

k

)
φk

+
∑

rh∈Gh\∂G−h (−j)

−i

h
V j

r φr+ej
+

∑

kh∈Gh\∂G−h (−j)

(
i

h
V j

k + Aj
kV j

k

)
φk

]

= hd−1
d∑

j=1

[ ∑

kh∈∂G−h (−j)

(
iV j

k + hAj
kV j

k

)
φk −

∑

rh∈∂G+
h (−j)

iV j
r φr+ej

]

+hd
d∑

j=1

∑

kh∈Gh\∂G−h (−j)

V j
k

(
i
φk+ej − φk

h
+ Aj

kφk

)
.

We add to the right-hand side of this relation the left-hand side of (2.15),
where in the second sum we use the change of variables r = k − ej . After
performing this substitution, we arrive at (2.14). ut
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Thus, the relation (2.15) contains the boundary conditions we need. We
only need to write these conditions in a more convenient form.

2.2.2 Boundary conditions for the system (2.11)

Since G ⊂ Rd, d = 2, 3, is a bounded domain with C∞-boundary ∂G, at each
point x ∈ ∂G the main curvatures of the surface ∂G are well defined. When
d = 2, the curve ∂G has at x ∈ ∂G one main curvature (usually called the
curvature). We denote the modulus of this curvature as κ(x). When d = 3,
we denote by κ(x) = max{|κ1(x)|, |κ2(x)|}, where κj(x), j = 1, 2, are the
main curvatures of ∂G at the point x. We set

κ̂ = max
x∈∂G

κ(x) .

We take a ball of radius r < 1/κ̂ and touch this ball at any x ∈ ∂G from each
of the two sides of the surface ∂G. Decreasing the radius r, we can position
this ball so that it will not intersect ∂G at any point other than the point
x of contact of the ball and ∂G. We denote such a radius r(x) by r0(x), set
r0 = min

x∈∂G
r0(x), and assume that

h <
r0

10
. (2.17)

Let kh ∈ ∂G+
h . The point `h ∈ ∂G−h is called the closest to kh if

dist(`h, kh) = h. The following lemma holds.

Lemma 2.4. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with C∞-boundary
∂G, and let h satisfy (2.17). Then, if d = 2, each point kh ∈ ∂G+

h has one or
two (not more) closest points `h ∈ ∂G−h (as illustrated in Fig. 2.2.) If d = 3,
each point kh ∈ ∂G+

h has one, two, or three closest points `h ∈ ∂G−h .

We have to make more precise what is needed to ensure that the relation
(2.14) is valid for every {φk, kh ∈ Gh∪∂G+

h }. For this relation, (2.15) should
be true for every {φk, kh ∈ ∂G+

h }, i.e., for each kh ∈ ∂G+
h the coefficient be-

fore φk in (2.15) should be equal to zero. First, we calculate these coefficients
and write down the boundary conditions for the d = 2 case.

(i) kh ∈ ∂G+
h possesses only one closest point from ∂G−h . Then either

kh ∈ ∂G+
h (+j) or kh ∈ ∂G+

h (−j) for some j. In the first case, V j
k−ej

= 0 and,
by virtue of (2.16),

ψk = ψk−ej (1 + ihAj
k−ej

), kh ∈ ∂G+
h (+j) with j = 1, 2 . (2.18)

In the second case, V j
k (i + hAj

k) = 0 and therefore
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kh

G

∂G

kh

G

∂G

Fig. 2.2 In the figure on the left, the point kh ∈ ∂G+
h (filled circle) has one closest point

`h ∈ ∂G−h (open circle). In the figure on the right, the point kh ∈ ∂G+
h has two closest

points `h ∈ ∂G−h .

ψk =
ψk+ej

1 + ihAj
k

, kh ∈ ∂G+
h (−j) with j = 1, 2 . (2.19)

(ii) kh ∈ ∂G+
h possesses two closest points from ∂G−h . Then three different

cases are possible.

(1) kh ∈ ∂G+
h (+1) ∩ ∂G+

h (+2). In this case, V 1
k−e1

+ V 2
k−e2

= 0 and, by
(2.16),

2ψk =
(
1 + ihA1

k−e1

)
ψk−e1 + (1 + ihA2

k−e2
)ψk−e2 . (2.20)

(2) kh ∈ ∂G+
h (−1)∩∂G+

h (−2). In this case, V 1
k (i+hA1

k)+V 2
k (i+hA2

k) = 0
and

ψk =
ψk+e1(1− ihA1

k) + ψk+e2(1− ihA2
k)

2 + h2 ((A1
k)2 + (A2

k)2)
. (2.21)

(3) kh ∈ ∂G+
h (−j) ∩ ∂G+

h (+`) for 1 6 j, ` 6 2, ` 6= j. In this case,
V j

k (1− ihAj
k)− V `

k−e`
= 0 and

ψk =
ψk+ej (1− ihAj

k) + ψk−e`
(1 + ihA`

k−ej
)

2 + h2(Aj
k)2

. (2.22)

For the d = 3 case, the derivation of the boundary conditions is absolutely
the same, but the number of distinct cases is larger. Note that, for our pur-
poses, we need only two things from the boundary conditions. First, that the
formula (2.14) holds and second, that for each kh ∈ ∂G+

h , ψk is expressed in
terms of ψ`, `h ∈ ∂G−h . That is why it is quite enough for us to write down
boundary conditions for both the d = 2 and d = 3 cases as follows. We have
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ψk =
3∑

j=1

(
a+

k,jψk+ej
+ a−k,jψk−ej

)
∀ kh ∈ ∂G+

h , (2.23)

where a±k,j are certain coefficients (that can be written down explicitly) such
that if a+

k,j 6= 0, (a−k,j 6= 0) then h(k+ej) ∈ ∂G−h (correspondingly h(k−ej) ∈
∂G−h ). Moreover, 0 <

3∑
j=1

|a+
k,j |2 + |a−k,j |2 < c, where c does not depend on h.

3 The stochastic Ginzburg–Landau Equation

In this section, we provide the formal definition of the Wiener process, the
Wiener measure, and some related concepts. Then these results are used in
the formulation of the stochastic problem for the Ginzburg–Landau equation.

3.1 Wiener process

We have an abstract probability space (Ω, Σ,m(dω)), where Ω is the set of
elementary events; Σ is a σ-algebra of subsets of Ω (if Ω is a metric space,
Σ is a Borel σ-algebra, i.e., Σ = B(Ω) is the σ-algebra generated by all open
subsets of Ω); and m(dω) is a probability measure defined on Σ. Recall that
a set A is of m-measure zero if there exists B ∈ Σ such that m(B) = 0 and
A ⊂ B. The σ-algebra Σm is called the completion of Σ with respect to m if
Σm is the family of all subsets of the form A ∪ B, where A is of m-measure
zero and B ∈ Σ. In the sequel, we change Σ on Σm, i.e., we will consider the
σ-algebra Σ that is complete with respect to m.

Let
W : Ω → C(0,∞;L2(G)) ≡ C

be a measurable mapping, i.e., for all B ∈ B(C), {ω : W (·, ·, ω) ∈ B} ∈ Σ.
The probability distribution of W is the measure Λ defined on B(C) by the
formula

Λ(B) ≡ m
({ω ∈ Ω : W (·, ·, ω) ∈ B}) ∀ B ∈ B(C) . (3.1)

W (t, x, ω) is called a Wiener process if Λ(B) is a Wiener measure. In the
following definition, we assume that C consists of real-valued functions.

Definition 3.1. Λ(B) for B ∈ B(C) is called a Wiener measure if its Fourier
transform Λ̃ is of the form

Λ̃(v) =
∫

ei[w,v]Λ(dW ) = e−
1
2 B(v,v) ∀ v ∈ C∞0 ≡ C∞0 ((0,∞)×G) , (3.2)
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where

[w, v] =

∞∫

0

∫

G

w(t, x)v(t, x) dxdt . (3.3)

Here, B(v, v) is the quadratic form

B(v, v) =

∞∫

0

∞∫

0

t ∧ s
〈
K(

v(t, ·), v(s, ·))
〉

dtds , (3.4)

where t ∧ s = min(t, s) and 〈f, g〉 =
∫

G

f(x)g(x) dx. Here, K is a self-adjoint,

nonnegative trace class operator in L2(G) called the correlation operator of
Λ; we have

K∗ = K > 0, S = SPK =
∞∑

j=1

λj < ∞ (SP is the spur-trace) , (3.5)

where λ1 > λ2 > · · · > λk > · · · > 0 is the set of all eigenvalues of the
operator K.

Evidently, (3.1)–(3.4) imply that
∫

W (t, x, ω)W (s, y, ω)m(dω) = t ∧ s K(x, y) , (3.6)

where W (t, x, ω) is a Wiener process and K(x, y) is the kernel of the operator
K from (3.4) and (3.5).

Lemma 3.2. The following conditions hold.

1. For any operator K : L2(G) → L2(G) satisfying (3.5) there exists a
unique Wiener measure Λ on C with the correlation operator K.

2. For any φ, ψ ∈ L2(G)
∫

C

〈W (t, ·)φ(·)〉〈W (s, ·)ψ(·)〉Λ(dW ) = t ∧ s〈Kφ, ψ〉. (3.7)

3. Let S = SPK be defined by (3.5). Then
∫
‖W (t, ·)‖2L2(G)Λ(dW ) = tS ∀ t > 0 . (3.8)

4. W (t, x, ω) is a process with independent increments, i.e., for any 0 6
τ 6 s 6 t,
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Λ({W : W (t, ·)−W (s, ·) ∈ B1,W (τ, ·) ∈ B2})

= Λ({W : W (t, ·)−W (s, ·) ∈ B1})Λ({W : W (τ, ·) ∈ B2})
∀ B1, B2 ∈ B(L2(G)) . (3.9)

For the proof, see [18].
Recall that, given a Wiener measure Λ(B), B ∈ B(C), one can easily con-

struct a Wiener process for which Λ(B) is a probability distribution. Indeed,
we take the probability space (Ω, Σ, m(dW )) = (C,B(C), Λ(dW )) and define
a Wiener process W (t, x, ω) as follows: for each W ∈ C, W (t, x, ω) = W (t, x).
Clearly, this map W (t, x, ω) satisfies the definition of a Wiener process.

Below we use Wiener processes W (t, x, ω) defined on the space C = C+ iC
of complex valued functions, where recall that C = C(0,∞; L2(G)). Taking
into account [19, Chapt. III, Sect. 1], we give the following definition.

Definition 3.3. The random process W (t, x, ω), t > 0, x ∈ G, ω ∈ Ω, is
called a complex Wiener process if

W (t, x, ω) = Re W (t, x, ω) + iImW (t, x, ω) , (3.10)

where Re W (t, x, ω) and Im W (t, x, ω) are real-valued Wiener processes on
(Ω,Σ, m(dω)) and W (t, x) satisfies the equality

∫
W (t, x, ω)W (s, y, ω)m(dω) ≡ 0 ∀ t > 0, s > 0, a.e. x, y ∈ G . (3.11)

It is clear that (3.11) is equivalent to the conditions

t ∧ s K11(x, y) ≡
∫

Re W (t, x, ω)Re W (s, y, ω)m(dω)

=
∫

Im W (t, x, ω)Im W (s, y, ω)m(dw)

(3.12)

and

t ∧ s K12(x, y) ≡
∫

Re W (t, x, ω)Im W (s, y, ω)m(dω)

= −
∫

Im W (t, x, ω)Re W (s, y, ω)m(dw) ,

(3.13)

where the first identities in (3.12) and (3.13) are the definitions of K11(x, y)
and K12(x, y) respectively. By virtue of (3.13), K12(x, x) ≡ 0 and therefore
the Wiener processes Re W (t, x) and Im W (t, x) are independent. Moreover,
(3.11) implies that

t ∧ s K(x, y) ≡
∫

W (t, x, ω)W (s, y, ω)m(dω)
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= 2t ∧ s
(
K11(x, y)− iK12(x, y)

)
, (3.14)

where the first identity is the definition of K(x, y). The function K(x, y) is a
non-negative definite kernel; this means that

∫

G

∫

G

K(x, y)z(y)z(x) dxdy > 0 ∀ z(x) ∈ L2(G) . (3.15)

Here, z(x) is a complex-valued function. As in the real-valued case, we sup-
pose that the operator Kz =

∫
G

K(x, y)z(y) dy is not only non-negative self-

adjoint, but is a trace class operator in L2(G), i.e.
∫

G

K(x, x) dx < ∞. (3.16)

Moreover, we assume that the kernel K satisfies the inequality:

∫

G

( d∑

j=1

∂2K(x, y)
∂xj ∂yj

)∣∣∣
y=x

dx < ∞ . (3.17)

Finally, we denote by Λ(B), B ∈ B(C), the Wiener measure, i.e., the dis-
tribution of a complex Wiener process W (t, x) from (3.10) and by ΛR(BR),
BR ∈ B(C), and ΛI(BI), BI ∈ B(C), we respectively denote the Wiener mea-
sures of the Wiener processes Re W (t, x) and Im W (t, x). It was mentioned
above that the Wiener processes ReW and Im W are independent. Therefore

Λ(B) = ΛR(BR)ΛI(BI) ∀ B = BR + iBI , BR, BI ∈ B(C) . (3.18)

3.2 The stochastic problem for the Ginzburg–Landau
equation

Let r(λ) be the function max{ρ1, ρ2|λ|}, λ ∈ R1, smoothed in a neighborhood
of the points λ = ±ρ1/ρ2, where ρ1 > 0 and ρ2 > 0 are given scalars. More
precisely, we define r(λ) as





r(λ) ∈ C2(R1), r(λ) = r(|λ|),

r′(λ) > 0 for λ >
ρ1

2ρ2
, r′′(λ) > 0 for

ρ1

2ρ2
< λ <

3ρ1

2ρ2
,

r(λ) = max{ρ1, ρ2|λ|} for λ ∈ R1 \
{

ρ1

2ρ2
< |λ| < 3ρ1

2ρ2

}
.

(3.19)
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For each real-valued function f(λ), λ ∈ R1, and complex number ψ = Re ψ +
iIm ψ, we denote

f [ψ] = f(Re ψ) + if(Im ψ) . (3.20)

Moreover, we set, for each complex z = Re z + iIm z,

f̂ [ψ]z = f(Re ψ)Re z + if(Imψ)Im z . (3.21)

This notation will be used throughout the paper. Using this notation, the
stochastic Ginzburg–Landau equation we consider has the form

dψ(t, x) + (i∇+ A)2ψ − ψ + |ψ|2ψ = r̂[ψ(t, x)]dW (t, x) , (3.22)

where, as in (2.1), (t, x) ∈ QT ≡ (0, T ) × G and the operator (i∇ + A)2 is
defined in (2.4). W (t, x) on the right-hand side of (3.22) is a complex Wiener
process introduced in the previous subsection, i.e., W (t, x) = Re W (t, x) +
ImW (t, x) and dW (t, x) is the corresponding white noise. r(·) is the function
defined in (3.19). The solution ψ(t, x) of (3.22) is a complex-valued random
function defined on the same probability space (Ω, Σ,m) in which the Wiener
process W (t, x) ≡ W (t, x, ω), ω ∈ Ω, is defined, i.e.,

ψ(t, x) = Re ψ(t, x, ω) + iImψ(t, x, ω), ω ∈ Ω,

is a Σ-measurable function with respect to ω.
Note that we interpret the right-hand side r̂(ψ)dW of (3.22) in the sense

of (3.21), i.e.,

r̂
[
ψ(t, x)

]
dW (t, x)

= r
(
Re ψ(t, x)

)
dRe W (t, x) + ir

(
Im W (t, x)

)
dIm W (t, x) .

(3.23)

Each component of the random force should be proportional to the corre-
sponding component of the solution. We introduce ρ1 in the definition of
r(λ) given in (3.19) because, should the solution be sufficiently small, the
consideration of additive white noise as a random force is more natural. For-
mally, the function defined in (3.19) multiplying the white noise dW allows us
to consider the case of additive white noise (when ρ1 > 0, ρ2 = 0) and multi-
plicative white noise (when ρ1 > 0, ρ2 > 0). However, note that the majority
of the difficulties we are forced to overcome are connected with multiplicative
white noise.

Equation (3.22) is supplied with the boundary condition (2.2) and the
initial condition (2.3). In this case, the initial function ψ0(x) = ψ0(x, ω),
ω ∈ Ω, is a random function, defined on the same probability space as the
Wiener process W (t, x), that has values in L1(G); ψ0 : Ω → L1(G). Moreover,
we assume that ψ0(x, ω) and W (t, x, ω) are independent.

Finally, note that Equation (3.22) is understood as an Ito differential equa-
tion. This means that, by definition, (3.22) is equivalent to the equation
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ψ(t, x) +

t∫

0

[
(i∇+ A)2ψ(s, x)− ψ(s, x) + |ψ|2ψ(s, x)

]
ds

=

t∫

0

r̂
[
ψ(s, x)

]
dW (s, x) + ψ0(x) .

(3.24)

A more precise definition of the stochastic integral on the right-hand side of
(3.24) will be given later.

4 Discrete Approximation of the Stochastic Problem

To prove the main result about the existence of a solution for the stochastic
Ginzburg–Landau problem, we approximate this problem by the method of
lines. In this section, we study these approximations. We begin with the
approximation of the Wiener process defined in Sect. 3. For this we need
some preliminaries.

4.1 Definition of a projector Ph in L2(G)

For each point kh ∈ G0
h, k = (k1, . . . , kd), we define

Qk = {x = (x1, . . . , xd) ∈ G : h(kj − 1
2
) 6 xj < h(kj +

1
2
), j = 1, . . . , d} .

(4.1)
If kh ∈ ∂G−h (−m) and kh 6= ∂G−h (±n) for each n 6= m, we set

Qk = {x = (x1, . . . , xd) ∈ G :
xm ∈ [h(km − 1

2 ), h(km + 1)), xj ∈ [h(km − 1
2 ), h(km + 1

2 )), ∀j 6= m} .
(4.2)

Analogously, for kh ∈ ∂G−h (+m) such that kh 6= ∂G−h (±n) for all n 6= m, we
set

Qk = {x = (x1, . . . , xd) ∈ G :
xm ∈ [h(km − 1), h(km + 1

2 )), xj ∈ [h(km − 1
2 ), h(km + 1

2 )), ∀j 6= m} .
(4.3)

Remark 4.1. We note that the change from (4.1) to (4.2) consists of increasing
the interval xm ∈ [h(km − 1

2 ), h(km + 1
2 )) from the right and, in (4.3), this

interval is increased from the left.

For each kh ∈ ∂G−h (−m)∩ ∂G−h (−n), kh 6= ∂G−h (±p), if p 6= n, p 6= m, we
define
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Qk = {x = (x1, . . . , xd) ∈ G :
xj ∈ [h(kj − 1

2 ), h(kj + 1)), j = n,m; xp ∈ [h(kp − 1
2 ), h(kp + 1

2 ))} .
(4.4)

The sets Qk for kh ∈ ∂G−h (+m) ∩ ∂G−h (±n), kh 6= ∂G−h (±p) for p 6= n,
p 6= m, and for kh ∈ ∂G−h (−m) ∩ ∂G−h (+n), kh 6= ∂G−h (±p), p 6= n, p 6= m,
are defined analogously to (4.4), but with the changes noted in Remark 4.1.

Finally, if d = 3, then for each kh ∈ ∂G−h (−m) ∩ ∂G−h (−n) ∩ ∂G−h (−p),
we set

Qk = {x = (x1, . . . , x3) ∈ G : xj ∈ (h(kj − 1
2
), h(kj + 1)), j = 1, 2, 3} .

(4.5)
In the other cases when kh ∈ ∂G−h (±m)∩∂G−h (±n)∩∂G−h (±p), the set Qk is
defined analogously by taking into account Remark 4.1. Important properties
of the sets Qk defined in (4.1)–(4.5) are as follows:

a. for each k, ` ∈ Zp such that kh ∈ Gh, `h ∈ Gh, and k 6= `, the relation
Qk ∩Q` = ∅ is true;

b.
⋃

kh∈Gh

Qk = G.

For each set Qk defined in (4.1)–(4.5) we put

V (Qk) =
∫

Qk

dx .

Clearly, V (Qk) = hd for Qk defined in (4.1) and, if h is small enough, which
is the situation we consider, then

hd

4
6 V (Qk) 6

(
3
2

)2

hd for Qk defined by (4.2)–(4.4) (4.6)

and
hd

8
6 V (Qk) 6

(
3
2

)3

h3 for Qk defined by (4.5). (4.7)

The space L2,h ≡ L2,h(Gh) is defined as the set of lattice functions f =
{fk, kh ∈ Gh} supplied with the scalar product and norm given by

(f ,g)L2,h = hd
∑

kh∈Gh

fkgk and ‖f‖2L2,h = hd
∑

kh∈Gh

|fk|2 , (4.8)

respectively. We introduce the operator Ph as follows:

Ph : L2(G) → L2,h(Gh) such that (Phf)k = V −1(Qk)
∫

Qk

f(x) dx . (4.9)
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Then, taking into account (4.6) and (4.7), we obtain

‖Phf‖2L2,h = hd
∑

kh∈Gh

V −2(Qk)

∣∣∣∣∣∣

∫

Qk

f(x) dx

∣∣∣∣∣∣

2

6 hd
∑

kh∈Gh

V −1(Qk)
∫

Qk

|f(x)|2 dx

6 8
∫

G

|f(x)|2 dx = 8‖f‖2L2(G) . (4.10)

4.2 Approximation of Wiener processes

Now let (Ω, Σ,m) be the probability space Ω 3 ω → W (t, x, ω) ∈ C, where
W (t, x, ω) is the complex-valued Wiener process introduced in Sect. 3.1; recall
that we defined C ≡ C(0,∞; L2(G)). In a similar manner, we let Ch denote
Ch = C(0,∞;L2,h(Gh)). Then the operator (4.9) defines the operator Ph :
C → Ch. Using this operator, we introduce the projection of the Wiener
process on the space Ch as follows:

W(t, ω) ≡ {Wk(t, ω), kh ∈ Gh} = PhW (t, ·, ω) , (4.11)

where W (t, ·, ω) = W (t, x, ω) is the initial Wiener process. We will show that
Wk(t, ω) is a scalar Wiener process and W(t, ω) is a vector-valued Wiener
process by calculating their probability distributions. Let Λ be the distribu-
tion defined by (3.1). Recall that, by definition (see [44]),2

PT
h Λ(Bh) ≡ P ∗hΛ(Bh) = Λ(P−1

h Bh) ∀ Bh ∈ B(Ch) , (4.12)

where P−1
h Bh = {ω ∈ C : Phω ∈ Bh}. This definition is equivalent to the

expression
∫

Ch

F (W)P ∗hΛ(dW) =
∫

C

F (PhW)Λ(dW) =
∫

Ω

F (PhW(·, ω))m(dω) (4.13)

for every F for which at least one integral from (4.13) is well-defined. Note
that the operator P ∗h : L2,h(Gh) → L2(G) is the adjoint of the operator (4.9)
and is defined as

2 In addition to the standard notation P ∗hΛ, we also introduce P T
h Λ in order to avoid

confusion in (4.15).
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(P ∗h f)(x) = fh(x) =
∑

kh∈Gh

fkhdV −1(Qk)XQk
(x), x ∈ G , (4.14)

where f = {fk} ∈ L2,h(Gh) and XQk
(x) is the characteristic function of the

set Qk, i.e., XQk
(x) = 1 for x ∈ Qk and XQk

(x) = 0 for x 6= Qk.
Taking into account (3.2), (4.13), and (4.14), we have

P̃T
h Λ(v) ≡ P̃ ∗hΛ(v) =

∫

Ch

e
i
∞∫
0

(W(t),v(t))
L2,h dt

P ∗hΛ(dW )

=
∫

Ch

e
i
∞∫
0

(PhW)(t),v(t))
L2,h dt

Λ(dW ) =
∫

C

ei[W,P∗hv]Λ(dW )

= e−
1
2 B(P∗hv,P∗hv) .

(4.15)

By virtue of (3.4) and (4.14),

Bh(v,v) ≡ B(P ∗hv, P ∗hv) =

∞∫

0

∞∫

0

t ∧ s h2d
∑

jh∈Gh
kh∈Gh

Kjkvk(t)vj(s) dtds ,

(4.16)
where

Kjk = V −1(Qj)V −1(Qk)
∫

Qj

∫

Qk

K(x, y)XQj (x)XQk
(y) dxdy (4.17)

and K(x, y) is the kernel defined in (3.14). The corresponding correlation
operator K is defined by the equality

∫

G

∫

G

K(x, y)u(y)v(x) dxdy = (Ku, v)L2(G) ∀ u, v ∈ L2(G) . (4.18)

The equality K = K∗ implies that K(x, y) = K(y, x) and therefore Kjk = Kkj .
Formulas (4.15)–(4.18) show that W(t, ω) is defined. In other words, the ma-
trix K̂ = ‖hdKij‖ is reduced to diagonal form by the unitary transformation
Θ̂ = ‖Θij‖, i.e.,

Θ̂∗K̂Θ̂ = L̂ , where L̂ = ‖L̂ik‖ = ‖δjkµk‖ . (4.19)

Here, µk are the eigenvalues of the operator K̂ = ‖hdKij‖. Since (3.15) implies
the positive semidefiniteness of K̂, the inequalities µk > 0 hold.

Lemma 4.1. The bound



Title Suppressed Due to Excessive Length 47

∑

jh∈Gh

µj 6 C

∫

G

K(x, x) dx < ∞ (4.20)

holds, where K(x, y) is the kernel (3.14) and C > 0 does not depend on h.

Proof. By virtue of (4.17),

∑

j

µj = hd
∑

j

Kjj = hd
∑

j

V −2(Qj)
∫

Qj

∫

Qj

K(x, y)XQj
(x)XQj

(y) dxdy .

(4.21)
It is well known that

K(x, y) =
∞∑

j=1

λjej(x)ej(y) , (4.22)

where ej(x), λj are the eigenfunctions and eigenvalues corresponding to
K(x, y). From this equality we have

|K(x, y)| 6
∞∑

j=1

λj |ej(x)| |ej(y)|

6 1
2

∞∑

j=1

λj

(
|ej(x)|2 + |ej(y)|2

)
=

1
2

(
K(x, x) +K(y, y)

)
.

(4.23)

Substituting this inequality into (4.21), we find

∑

j

µj 6 hd
∑

j

V −1(Qj)
1
2

( ∫

Qj

K(x, x)Xj(x) dx +
∫

Qj

K(y, y)Xj(y) dy
)

6 C

∫

G

K(x, x) dx < ∞ .

(4.24)
The lemma is proved ut

We set

ṽ(t) = Θ∗v(t) and W̃(t, ω) = Θ∗W(t, ω) . (4.25)

Since Θ∗ = Θ−1, we have, by (4.15), (4.16), and (4.19), that

P̃ ∗hΛ(v) = e
− 1

2

∞∫
0

∞∫
0

t∧s(K̂v(t),v(s))
L2,h dtds

= e
− 1

2

∞∫
0

∞∫
0

t∧s(K̂Θṽ(t),Θṽ(s))
L2,h dtds
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= e
− 1

2

∞∫
0

∞∫
0

t∧s hd ∑
k

µkṽk(t)ṽk(s) dtds

=
∏

k

e
−hd

2

∞∫
0

∞∫
0

t∧sµkvk(t)ṽk(s) dtds

=
∏

k

∫

Ω

e
ihd

∞∫
0

W̃k(t,ω)ṽk(t)dt
m(dω) .

Hence,

∫

Ω

e
i
∞∫
0

(W̃(t,ω),ṽ(t))dt
m(dω) =

∏

k

∫

Ω

e
ihd

∞∫
0

W̃k(t,ω)ṽk(t)dt
m(dω) . (4.26)

This equality implies that the scalar Wiener processes W̃k(t, ω) for kh ∈
Gh are independent. For the definition of independence of scalar Wiener
processes, see [26, p. 55].

4.3 The Ito integral

Together with the probability space (Ω, Σ,m) and the Wiener process W (t, x)
introduced in Sect. 3, we consider the increasing filtration Σt (see [26, p. 52]),
i.e., a collection of σ-fields Σt ⊂ Σ, defined for each t, such that Σs ⊂ Σt

for t > s. Also, we assume that W (t, ·) is Σt-measurable for every t and
W (t+h, ·)−W (t, ·) is independent on Σt. The last statement means that for
every A ∈ Σt and B ∈ B(L2(G))

m
(
A∩{W (t+h, ·)−W (t, ·) ∈ B}

)
= m(A)m

(
{W (t+h, ·)−W (t, ·) ∈ B}

)
.

Then W (t, x) is called the Wiener process relative to the filtration Σt and
the pair (W(t, ·), Σt) is called a Wiener process.

The operator Ph defined in (4.9) generates the operator Ph : B(L2(G)) →
B(L2,h(Gh)) and therefore generates the operator of filtrations

Ph : Σt → Σh,t , (4.27)

where, by definition, Bh ∈ Σh,t if there exists a set B ∈ Σt such that Bh =
PhB. It is clear that the pair (W(t), Σh,t) is a Wiener process.

Recall (see [26, p. 66]) that a vector-valued function f(t, ω) given on
(0,∞) × Ω is called Σh,t adapted if it is Σh,t-measurable for each t > 0.
By Υ we denote the set of all Σh,t adapted vector-valued functions which are
B(0,∞)⊗Σh measurable (recall that Σh = PhΣ) and satisfy



Title Suppressed Due to Excessive Length 49

E

∞∫

0

f2(t) dt ≡
∫

Ω

∞∫

0

f(t, ω)2 dt m(dω) < ∞ ,

where we have used the definition of the mathematical expectation. Here
f = (f1, . . . , fK) where K is the number of points in the grid kh belonging
to Gh: K = #{k ∈ Zd : kh ∈ Gh}.

It is well known (see [26, p. 68]) that the Ito integral of a Σh,t-adapted
function is defined as follows:

∞∫

0

f̂(t)dW(t) = lim
∞∑

j=0

f(tj)(W(tj+1)−W(tj)) , (4.28)

where supj |tj+1 − tj | → 0 and this limit is understood in the sense of the
space L2(Ω, m). Here, in accordance with (3.20) and (3.21),

f̂(t)dW =
K∑

k=1

(Re fk(t)dReWk(t) + iImfk(t)dImWk(t)).

By the definition of Σh,t-adaptiveness of f(t), we have, since EW(t) = 0,

E

∞∫

0

f̂(t)dW(t) = lim
∞∑

i=0

E
(
f̂(tj)(W(tj+1)−W(tj))

)

=
∞∑

i=0

E
(
f̂(tj)

)
E ((W(tj+1)−W(tj))) = 0 .

(4.29)

4.4 The discrete stochastic system

We consider the following discrete analogue of the stochastic Ginzburg–
Landau equation given in (3.22):

dψk(t) +
{
(i∇h + Ak)2ψk(t)− ψk(t) + |ψk(t)|2ψk(t)

}
dt

= r̂
[
ψk(t)

]
dWk(t) ,

(4.30)

where Wk(t) = Wk(t, ω) are the scalar Wiener processes introduced in
Sect. 4.2, dWk(t) is white noise, ψ(t) = {ψk(t), kh ∈ Gh} is the unknown
stochastic vector-valued process that we seek, and r(λ) is the function given
in (3.19). As was the case for (3.22), the right-hand side of (4.30) is inter-
preted in accordance with (3.20) and (3.21). If ψk(t) = Re ψk(t) + iIm ψk(t)
and dWk(t) = dRe Wk(t) + idImWk(t), then, by definition, we have

r̂
[
ψk(t)

]
dWk(t) = r(Re ψk(t))dRe Wk(t) + ir(Im ψk(t))dIm Wk(t) . (4.31)
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We assume that the solution ψ(t) = {ψk(t)} of the system (4.30) satisfies the
initial condition (2.12) and the boundary condition (2.23).

The problem (4.30), along with (2.12) and (2.23), is the differential form
of the Ito system that by definition is equivalent to the integral form

ψk(t) = ψ0,k −
t∫

0

{
(i∇h + Ak)2ψk(τ)− ψk(τ) + |ψk(τ)|2ψk(τ)

}
dτ

+

t∫

0

r̂
[
ψk(τ)

]
dWk(τ) kh ∈ Gh

(4.32)

combined with the boundary condition (2.23). The Ito integral from (4.32)
is defined by (4.28).

4.5 The Ito formula

To derive a priori estimates, we use the Ito formula written in convenient
form; it is formulated as follows. Let (W(t), Σh,t) be a Wiener process, where
W(t) is defined by (4.11) and Σh,t is defined by (4.27). Suppose that σ(t, ω)
is a K ×K-matrix-valued function3 with elements σk,`(t, ω) that are 2 × 2
real-valued matrices, i.e., σk,`(t, ω) = σk,`,i,j(t, ω), i, j = 1, 2. The functions
σk,`,i,j(t, ω) are assumed to be Σh,t-adapted random functions, B(0,∞)×Σh

measurable, and satisfy

E

∞∫

0

|σk,`(t, ω)|2 dt ≡
∫

Ω

∞∫

0

|σk,`(t, ω)|2|dt m(dω) < ∞ .

We set, by definition,

σ(t)d{W}(t) =
{ ∑

`h∈Gh

σ̂k,`(t)dW`(t), kh ∈ Gh

}
,

where

σ̂k,`dW` =
(
σk,`,1,1dRe W` + σk,`,1,2dImW`

)

+ i
(
σk,`,2,1dReW` + σk,`,2,2dIm W`

)
.

3 Recall that K = #{k ∈ Zd : kh ∈ Gh}.
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Let b(t, ω) be a K-dimensional vector-valued random process (with com-
plex components bi(t, ω)) that is jointly measurable in (t, ω), Σh,t-adapted,

and

T∫

0

|bs| dx < ∞ a.s.

Definition 4.2. A continuous, Σh,t-adapted CK-valued random process
ψ(t, ω) = (ψ1, . . . , ψK) has the stochastic differential

dψ(t) = σ̂(t)dW(t) + b(t)dt (4.33)

if and only if, a.s. for all t,

ψ(t) = ψ0 +

t∫

0

σ̂(s)dW(s) +

t∫

0

b(s) ds . (4.34)

Theorem 4.3 (Ito’s formula). Let u(x) be a real-valued, twice continuously
differentiable function of x ∈ CK , and let ψ(t) be the random process from
Definition 4.2. Then u(ψ(t)) has a stochastic differential and

du(ψ(t)) =
∑

j

∂u(ψ(t)
∂ψj

dψj +
∂u(ψ(t)

∂ψj

dψj

+
1
2

∑

j,n

(∂2u(ψ(t))
∂ψj∂ψn

dψjdψn +
∂2u(ψ(t))
∂ψj∂ψn

dψjdψn

+
∂2u(ψ(t))
∂ψj∂ψu

dψjdψn +
∂2u(ψ(t))
∂ψj∂ψn

dψjdψn

)
. (4.35)

In addition to calculating the products dψjdψn, dψjdψn, dψjdψn, and
dψjdψn, one has to take into account the following rules for calculating prod-
ucts of independent Wiener processes W̃j(t) ≡ Re W̃j + iIm W̃j :

dRe W̃j(t)dRe W̃k(t) = dIm W̃j(t)dIm W̃k(t) = µkδjkdt

dRe W̃j(t)dt = dIm W̃j(t)dt = 0, dRe W̃j(t)dIm W̃k(t) = 0 .

(4.36)

The proof of the Ito formula is given in [26] for the case of real-valued
functions. One can easily reduce the case of complex-valued functions to that
of real-valued functions by treating CK as R2K .

To derive a priori estimates, we will need the following corollary of (4.36).
(Below we will use the definition (4.31).)

Lemma 4.4. The following relationships hold:
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(
r̂[ψk]dWk

)2 =
(
r̂[ψk]dWk

)2 =
(
r2(Re ψk)− r2(Im ψk)

)∑

j

|Θkj |2 µj (4.37)

and

(r̂[ψk]dWk)
(
r̂(ψk)dWk

)
=

(
r2(Re ψk) + r2(Im ψk)

)∑

j

|Θkj |2 µj , (4.38)

where µk are the eigenvalues of the correlation operator (4.17) for the Wiener
process W(t) and Θkj are elements of the unitary matrix given in (4.19) that
reduces (4.17) to diagonal form.

Proof. We begin from the proof of the following corollaries of (4.36):

(dRe Wk)2 = (dIm Wk)2 =
∑

j

|Θkj |2µjdt and (dRe Wk)(dIm Wk) = 0 .

(4.39)
By virtue of (4.25), Wk =

∑
j

ΘkjdW̃j and therefore, using (4.36), we obtain

(dRe Wk)2 =
(∑

j

(Re ΘkjdRe W̃j − Im ΘkjdIm W̃j)
)2

=
∑

j

(
(Re Θkj)2 + (Im Θkj)2

)
µjdt =

∑

j

|Θkj |2µjdt .

The second and third equalities in (4.39) are proved in the same manner.
By (4.31), (4.36), and (4.39), we have

(
r̂[ψk]dWk

)2 =
(
r(Re ψk)dRe Wk + ir(Im ψk)dImWk

)2

=r2(Re ψk)(dRe Wk)2 − r2(Im ψk)(dIm Wk)2

+ 2ir(Re ψk)r(Im ψk)dRe WkdImWk

=
(
r2(Re ψk)− r2(Im ψk)

) ∑

j

|Θkj |2µjdt .

This equality and the fact that its right-hand side is a real function prove
(4.37). The relation (4.38) is proved analogously. ut

5 A Priori Estimates

In order to prove the solvability not only of the discrete stochastic system
(4.30), (2.12), and (2.23), but also of the main stochastic problem (3.22),
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(2.2), and (2.3), we have to establish a number of a priori estimates for the
system (4.30).

5.1 Application of the Ito formula

We take the function u(ψ) from Theorem 4.3 as

u(ψ) = hd
∑

hk∈Gh

|ψk(t)|2p ≡ ‖ψ(t)‖2p
L2p,h , (5.1)

where p = 1 or p = 2. Applying (5.1) in the Ito formula with the stochastic
differential du defined in (4.35) and using (4.37) and (4.38), we obtain

d‖ψ(t)‖2p
L2p,h = hd

∑

k

{
p|ψk|2p−2

(
ψkdψk + ψkdψk

)

+
1
2
p · (p− 1)|ψk|2(p−2)

(
ψ

2

kdψkdψk + ψ2
kdψkdψk

)

+p2|ψk|2(p−1)dψkdψk

}

= hd
∑

k

{
p|ψk|2p−2

{(−ψk(i∇+ Ak)2ψk + 2|ψk|2 − 2|ψk|4
)
dt

+ ψkr̂[ψk]dWk − ψk(i∇h + Ak)2ψkdt

+ ψkr̂[ψk]dWk

}
+

1
2
p(p− 1)|ψk|2(p−2)

(
ψ

2

k

{(−(i∇h + Ak)2ψk + ψk − |ψk|2ψk

)
dt + r̂[ψk]dWk

}2

+ ψ2
k

{(
−(i∇h + Ak)2ψk + ψk − |ψk|2ψk

)
dt + r̂[ψk]dWk

}2)

+ p2|ψk|2(p−1)
{(−(i∇h + Ak)2ψk + ψk − |ψk|2ψk

)
dt

+ r̂[ψk]dWk

{(
−(i∇h + Ak)2ψk + ψk − |ψk|2ψk

)
dt + r̂[ψk]dWk

}}

so that
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d‖ψ(t)‖2p
L2p,h

= hd
∑

k

p|ψk|2p−2
{(−2Re (ψk(i∇h + Ak)2ψk) + 2|ψk|2 − 2|ψk|4

)
dt

+ 2Re (ψkr̂[ψk]dWk)
}

+ hd
∑

k

{
p(p− 1)|ψk|2(p−2)Re (ψ2

k)(r2(Re ψk)

− r2(Im ψk))
∑

j

|Θkj |2µj

+ p2|ψk|2(p−1)
(
r2(Re ψk) + r2(Im ψk)]

) ∑

j

|Θkj |2µj

}
dt ,

(5.2)
where

∑
k

=
∑

kh∈Gh

. Applying (2.14) with φk = |ψk|2p−2ψk to the first term

on the right-hand side of (5.2) results in

−hd
∑

kh∈Gh

2p|ψk|2p−2Re
(
ψk(i∇h + Ak)2ψk

)

= −hd
∑̃

jk

2pRe
{(

(i∂+
j,h + Aj

k)ψk, (i∂+
j,h + Aj

k)(|ψk|2p−2ψk)
)}

,

(5.3)

where, for brevity, we use the following notation:

∑̃

jk

(
(i∂+

j,h + Aj
k)ψk, (i∂+

j,h + Aj
k)φk

)

=
d∑

j=1

∑

kh∈Gh∪∂G+
h (−j)

(
i∂+

j,hψk + Aj
kψk

)(
i∂+

j,hφk + Aj
kφk

)
.

(5.4)

Below, we will also use the notation
∑̃
jk

when in (5.4), Ak = {Aj
k} is

absent. Moreover, in the next subsection we use the following notation which
is closely related to (5.4):

‖∇+
h ψ‖2L2,h =

∑̃

j,k

|∂+
j,hψk|2 ≡

d∑

j=1

∑

kh∈Gh∪∂G+
h (−j)

|∂+
j,hψk|2 . (5.5)
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5.2 A priori estimate for p = 1

The following assertion holds.

Theorem 5.1. Let a random process {ψ(t)} = {ψk} have the stochastic dif-
ferential (4.30). Then ψ satisfies the estimate

E‖ψ(t)‖2L2,h + E
t∫
0

(‖∇+
h ψ(τ)‖2L2,h + ‖ψ(τ)‖4L4,h

)
dτ

6 C2

(
E‖ψ0‖2L2,h + 1

)
eC1t ,

(5.6)

where the constants C1 and C2 do not depend on h.

Proof. The equality (5.3) for p = 1 can be rewritten as follows:

−hd
∑

k

2Re
{
ψk(i∇h + Ak)2ψk

}
= −hd

∑̃

jk

2
∣∣∣(i∂+

j,h + Aj
k)ψk

∣∣∣
2

.

Here and in the sequel, we use the notation
∑
k

=
∑

kh∈Gh

as well as the notation

(5.4). We substitute this equality into the right-hand side of (5.2) to obtain

d‖ψ‖2L2,h

= −2hd


∑̃

jk

∣∣∣(i∂+
j,h + Aj

k)ψk)
∣∣∣
2

−
∑

k

(|ψk|2 − |ψk|4
)

 dt

+2hdRe
∑

k

(ψkr̂[ψk]dWk)

+hd
∑

k

(
r2(Re ψk) + r2(Im ψk)

)∑

j

|Θkj |2µj dt .

(5.7)

By virtue of the definition (3.19) for the function r(λ) and (3.20), we have

|r[ψk]|2 ≡ |r(Re ψk)|2 + |r(Im ψk)|2 6 C2(1 + |ψk(t)|)2 . (5.8)

An equivalent integral form of the Ito differential is written as

‖ψ(t)‖2L2,h + 2

t∫

0

hd


∑̃

jk

|(i∂+
j,h + Aj

k)ψk|2 +
∑

k

|ψk|4

 dτ

− 2

t∫

0

hd
∑

k

Re (ψkr̂[ψk]dWk)
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=

t∫

0

(
hd

∑

k

(2|ψk|2 +
∑

j

|Θkj |2µj |r[ψk]|2
)

dτ + ‖ψ0‖2L2,h . (5.9)

Thus, assuming that ψ(t) is a Σh,t adaptive vector function, we apply the
mathematical expectation to (5.9). Then, taking into account (5.8), (4.29),
the bound

∑
j

|Θkj |2µj 6
∑
j

µj , and (4.23), we obtain

E‖ψ(t)‖2L2,h + 2E

t∫

0

hd


∑̃

jk

|(i∂+
j,h + Aj

k)ψk(t)|2 +
∑

k

|ψk(t)|4

 dτ

6 E

t∫

0

C
(‖ψ(t)‖2L2,h + 1

)
dτ + E‖ψ0‖2L2,h .

(5.10)
Using the fact that

|(i∇+
h + Ak)ψk|2 > |∇+

h ψk|2 − C|ψk|2 , (5.11)

we obtain from (5.10) that

E‖ψ(t)‖2L2,h + 2E
t∫
0

(
‖∇+

h ψ‖2L2,h + ‖ψ(t)‖4L4,h

)
dτ

6 C1

(
E

t∫
0

‖ψ(t)‖2L2,h dτ + t

)
+ E‖ψ0‖2L2,h .

(5.12)

Note that the term |ψk|2 from (5.11) with kh ∈ ∂G+
h can be estimated by

‖ψ‖L2,h by virtue of (2.23) and the bounds following that inequality. Now,
by applying the Gronwall inequality to (5.12), we finally obtain the desired
estimate (5.6). ut

5.3 A priori estimate for p = 2

We now establish the following bound.

Theorem 5.2. Let a random process ψ(t) = {ψk} have the stochastic differ-
ential (4.30). Then ψ satisfies the estimate

E(‖ψ(t)‖4L4,h + E

t∫

0


‖ψ(t)‖6L6,h + hd

∑̃

j,k

|∂+
j,hψk|2|ψk|2


 dτ
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6 C1

(
1 + E‖ψ0‖4L4

)
eCt , (5.13)

where C and C1 do not depend on h.

Proof. Taking into account that

ψk+ej
− ψk = h∂+

j ψk , (5.14)

we obtain

|ψk+ej
|2ψk+ej

− |ψk|2ψk = |ψk+ej |2
(
ψk+ej

− ψk

)
+ ψk

(|ψk+ej |2 − |ψk|2
)

= |ψk+ej
|2h∂+

j ψk + ψk

(
ψk+ej

(ψk+ej − ψk) + ψk(ψk+ej
− ψk)

)

and therefore

Re
{(

∂+
j ψk

)
∂+

j (|ψk|2ψk)
}

= |ψk+ej |2|∂+
j ψk|2 + Re ((∂+

j ψk)2ψkψk+ej
) + |ψk|2|∂+

j ψk|2

> |∂+
j ψk|2

(|ψk+ej |2 + |ψk|2 − |ψk||ψk+ej |
)

> 3
4
|∂jψk|2|ψk|2 .

(5.15)

In addition,

Im
∑

j

(
Aj

k(∂+
j ψk)|ψk|2ψk

)
> −|Ak||∇+ψk||ψk|3

> −Cε|ψk|4 − ε|∇+ψk|2|ψk|2
(5.16)

so that

Im
(
ψk(Ak,∇+

h )(|ψk|2ψk)
)

= Im
(
ψk

∑

j

Aj
k

h
(|ψk+ej |2ψk+ej

− |ψk|2ψk)
)

= Im
(
ψk

∑

j

Aj
k

h

(
(ψk+ej − ψk)ψ

2

k+ej

+ ψk(ψk+ej
− ψk)(ψk+ej

+ ψk)
))

(5.17)
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= Im
( ∑

j

Aj
k

(
(∂+

j ψk)ψkψ
2

k+ej
+ ψ2

k∂+
j ψk(ψk+ej

+ ψk)
))

> −C
∑

j

|∂+
j ψk||ψk|

(
|ψk+ej

|2 + |ψk||ψk+ej
|+ |ψk|2

)

> −ε
∑

j

|∂+
j ψk|2|ψk|2 − Cε

∑

j

(
|ψk+ej

|4 + |ψk|4
)

.

Using (5.15)–(5.17), we obtain

Re
(
(i∇+

h + Ak)ψk, (i∇+
h + Ak)(|ψk|2ψk)

)

= Re (∇+
h ψk,∇+

h (|ψk|2ψk))− Im (∇+
h ψk, Ak|ψk|2ψk)

+Im (ψk(Ak∇+
h )(|ψk|2ψk)) + |Ak|2|ψk|4

> 3
4

d∑

j=1

|∂+
j ψk|2|ψk|2 − Cε(|ψk|4 +

d∑

j=1

|ψk+ej |4)− ε|∇+
h ψk|2|ψk|2 .

(5.18)
Now we substitute (5.18) into (5.3) and subsequently use this inequality in
(5.2). As a result, taking into account (5.8), we obtain the inequality

d‖ψ‖4L4,h 6 hd
∑̃

jk

(
−(3− 4ε)|∂+

j,hψk|2|ψk|2
)
dt

+
∑

k

{
C|ψk|4 + ε|ψk|2 − 4|ψk|6

}
dt

+
∑

k

(
2Re (ψkr̂[ψk]dWk) + C

(|ψk|2 + |ψk|4
)
dt

)
.

(5.19)

Rewriting (5.19) in integral form and taking the mathematical expectation
of the obtained inequality, we obtain the estimate

E‖ψ(t)‖4L4,h + E

t∫

0

hd


∑̃

jk

|∂+
j,hψk|2|ψk|2 +

∑

k

|ψk|6

 dτ

6 CE

t∫

0

hd
∑

k

(|ψk|4 + |ψk|2 + 1
)

dτ + E‖ψ0‖4L4 .

(5.20)
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Applying the bound (5.6) to the right-hand side of (5.20) and applying after
that the Gronwall inequality, we obtain the final estimate (5.13). ut

Note that, in addition to the estimates (5.6) and (5.13) corresponding to
the cases p = 1 and p = 2, one can prove by induction analogous estimates
for arbitrary natural p; specifically, we have

E‖ψ(t)‖2p
L2p,h +

t∫

0


‖ψ(τ)‖2(p+1)

L2(p+1),h + hd
∑̃

jk

|∂+
j,hψk|2|ψk|2(p−1)


 dτ

6 Cp

(
1 + E‖ψ0(t)‖p

Lp,h

)
eCt .

(5.21)
We will not prove the estimate (5.21) for p > 3 because, for our purposes,

the estimates (5.6) and (5.20) will suffice.

5.4 Auxiliary Wiener process

We will need a more general projection of the initial Wiener process than
(4.11). Roughly speaking, the new projection contains not only coordinates
from (4.11), but also their difference gradients at points kh. To be precise, in
a manner similar to (4.9), we define for, f(x) ∈ L2(G),

p0
k(f) = V −1(Qk)

∫

Qk

f(x) dx, for kh ∈ Gh , (5.22)

p0
k(f) for kh ∈ ∂G+

h is calculated by p0
k(f) with kh ∈ ∂G−h using (2.23) ,

(5.23)
and

pj
k(f) = i

p0
k+ej

(f)− p0
k(f)

h
+ Aj

kp0
k(f) for kh ∈ Gh ∪ ∂G+

h (−j) (5.24)

for j = 1, . . . , d. We denote

Ĝh = {(j, k) : j = 0, kh ∈ Gh; j = 1, . . . , d, kh ∈ Gh ∪ ∂G+
h (−j)}

and introduce the projector

PA
h : L2(G) → L2(Ĝh); PA

h (f) = {pj
k(f), (j, k) ∈ Ĝh} , (5.25)

where the scalar product in L2(Ĝh) is defined in the standard way:

for u = {uj
k, (j, k) ∈ Ĝh}, v = {vj

k, (j, k) ∈ Ĝh},
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(u, v)
L2(Ĝh)

= hd
∑

(j,k)∈Ĝh

uj
kvj

k .

Note that the components uj
k of u ∈ L2(Ĝh) with j 6= 0 are expressed via the

components u0
m by the formula analogous to (5.24):

uj
k =

u0
k+ej

− u0
k

h
+ Aj

ku0
k for j = 1, . . . , d, kh ∈ Gh ∪ ∂G+

h (−j) .

We can calculate the operator (PA
h )∗ : L2(Ĝh) → L2(G) which is adjoint to

(5.25) using (2.14) which is summation by parts:

(PA
h f, g)

L2(Ĝh)
= hd

∑

(j,k)∈Ĝh

pj
k(f)gj

k

= hd
∑̃

jk

(i∂+
j,h + Aj

k)p0(f)(i∂+
j,h + Aj

h)g0
k + hd

∑

kh∈Gh

p0
k(f)g0

k

= hd
∑

kh∈Gh

p0
k(f)

(
g0

k + (i∇−h + Ak, i∇+
h + Ak)g0

k

)

(5.26)
so that

(
(PA

h )∗g
)
(x) =

∑

kh∈Gh

hdV −1(Qk)
(
g0

k + (i∇−h + Ak, i∇+
h + Ak)g0

k

)Xk(x) .

(5.27)
Analogous to (4.11), we introduce the vector-valued process

AW(t, ω) = PA
h W (t, ·, ω) = {pj

k(W (t, ·, ω) ≡ AW j
k (t), (j, k) ∈ Ĝh} . (5.28)

Here, p0
k(W (t, ·, ω)) = W k(t, ω) for kh ∈ Gh, where W k(t, ω) is the Wiener

process from (4.11). In order to define pj
k(W (t, ·, ω)) by (5.24), one has to

know W k(t, ω) with kh ∈ ∂G+. These Wiener processes are defined by for-
mula (2.23) via Wm(t, ω) with mh ∈ Gh. Repeating the calculation in (4.13)
and (4.15), where the projector (4.9) is changed to the projector (5.25) and
L2h is changed to L2(Ĝh), we find that the process (5.28) is a vector-valued
Wiener process. Moreover,

B
(
(PA

h )∗v, (PA
h )∗v

)

=

∞∫

0

∞∫

0

t ∧ s

∫

G×G

K(x, y)(PA
h )∗(v(s))(y)(PA

h )∗(v(t))(x) dxdydsdt
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=

∞∫

0

∞∫

0

t ∧ s
∑

(j1,k1)∈Ĝh

∑

(j2,k2)∈Ĝh

Kj1,j2
k1,k2

vj1
k1

(t)vj2
k2

(s) dtds , (5.29)

where K0,0
j,k are defined by (4.17) with the upper indices (0,0) omitted,

Kj1,j2
k1,k2

=
(
i∂+

j1,h + Aj1
k1

)(
i∂+

j2,h + Aj2
k2

)K0,0
k1,k2

, (j`, k`) ∈ Ĝh, j` 6= 0, ` = 1, 2 ,
(5.30)

and Kj1,0
k1,k2

and K0,j2
k1,k2

are defined similarly (correspondingly, the second or
first operator

(
i∂+

j,h + Aj
k

)
in (5.30) should be omitted). It is clear that

s ∧ t Kj1,j2
k1,k2

=
∫

AW j1
k1

(t, ω)AW j2
k2

(s, ω)m(dω) , (5.31)

where the scalar Wiener processes AW j
k (t, ω) are defined in (5.28). Defi-

nitions (4.17), (5.30), and (5.31) of the operator AK = {hdKj1,j2
k1,k2

} imply

that Kj1,j2
k1,k2

= Kj2,j1
k2,k1

and therefore there exists a unitary transformation

Aθ = {θj1,j2
k1,k2

} (i.e., Aθ∗ ≡ {θj2,j1
k2,k1

} = (Aθ)−1) that reduces the operator AK
to diagonal form:

Aθ∗AKAθ = AL, where AL = {Lj1,j2
k1,k2

} = {δj1,j2δk1,k2µ
j1
k1
} . (5.32)

We set
ÃW(t, ω) = Aθ∗AW(t, ω) = {W̃ j

k (t, ω)} . (5.33)

Then calculations analogous to (4.25) and (4.26) show that the scalar Wiener
processes W̃ j

k (t, ω) are independent and therefore, for their differentials, the
following Ito table analogous to (4.36) is true:





dRe W̃ j1
k1

(t)dRe W̃ j2
k2

(t) = dIm W̃ j1
k1

(t)dIm W̃ j2
k2

(t) = µj1
k1

δj1,j2δk1,k2dt

dRe W̃ j
k (t)dt = dImW j

k (t)dt = dRe W j1
k1

(t)dIm W j2
k2

(t) = 0 .

(5.34)
Now we are in a position to prove the following analogue of (4.39).

Lemma 5.3. For scalar Wiener processes AW j
k (t) defined in (5.28) the fol-

lowing relationships hold:

(dRe AW j
k )2 = (dImAW j

k )2 =
∑

(m,`)∈Ĝh

µ`
m|θj`

km|2dt, dReAW j
k dIm AW j

k = 0 .

(5.35)

Proof. By virtue of (5.33),



62 Andrei Fursikov, Max Gunzburger, and Janet Peterson

AW j
k =

∑

(`,m)∈Ĝh

θj,`
k,mW̃ `

m . (5.36)

Therefore, taking into account (5.34) and the fact that the transformation
Aθ = ‖θj,l

k,m‖ is unitary, we obtain

(
dRe AW j

k

)2 =
( ∑

`,m

[
Re θj,`

k,mdRe W̃ `
m − Im θj,`

k,mdIm W̃ `
m

])2

=
∑

`,m

∑

`1,m1

(
Re θj,`

k,mRe θj,`1
k,m1

dRe W̃ `
mdRe W̃ `1

m1

+Im θj,`
k,mIm θj,`1

k,m1
dIm W̃ `

mdIm W̃ `1
m1

)

=
∑

`,m

µ`
m|θj,`

k,m|2 dt .

(5.37)

The other relations in (5.35) are proved in a similar manner. ut
Lemma 5.4. The following equalities hold:





dRe AW j
kdRe AW 0

k = dIm AW j
kdImAW 0

k =
∑

l,m

µ`
mRe

(
θj,`

k,mθ0,`
k,m

)
dt

dRe AW j
kdIm AW 0

k = 0 ,
(5.38)

where j = 1, . . . , d.

Proof. Similar to (5.37), we find

dRe AW j
kdRe AW 0

k =
∑

`,m

µ`
m

(
Re θj,`

k,mRe θ0,`
k,m + Im θj,`

k,mIm θ0,`
k,m

)
dt

=
∑

`,m

µ`
mRe

(
θj,`

k,mθ0,`
k,m

)
dt .

(5.39)

All the other equalities from (5.38) are proved in a similar manner. ut
We will need the following lemma.

Lemma 5.5. Let µ`
m denote the eigenvalues from (5.32). Then µ`

m > 0 and
the following estimates hold:

∑

(`,m)∈Ĝh

µ`
m|θj,`

k,m|2 6
∑

(`,m)∈Ĝh

µ`
m , (5.40)
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∑

(`,m)∈Ĝh

µ`
mRe

(
θj,`

k,mθ0,`
j,m

)
6

∑

(`,m)∈Ĝh

µ`
m . (5.41)

Proof. To show that µ`
m > 0, we have to prove that the operator AK =

{hdKj1,j2
k1,k2

} is positive semi-definite. Let v = {vj
k} ∈ L2(Ĝh). Then, by virtue

of (5.30) and (2.14), we obtain

h2d
∑

(j,k)∈Ĝh

∑

(`,m)∈Ĝh

Kj,`
k,mv`

mvj
k = h2d

∑
kh∈Gh
mh∈Gh

K0,0
k,mv0

mv0
k

+h2d
∑̃

j,k

∑̃

`,m

(
(i∂+

j,h + Aj
k)(i∂+

`,h + A`
m)K0,0

k,m

)
(i∂+

`,h + A`
m)v0

m(i∂+
j,h + Aj

k)v0
k

+h2d
∑̃

j,k

∑

mh∈Gh

(
(i∂+

jh + Aj
k)K0,0

k,mv0
m(i∂+

j,h + Aj
k)v0

k

+h2d
∑

kh∈Gh

∑̃

`,m

(i∂+
`,h + A`

m)K0,0
k,m(i∂+

`,h + A`
m)v0

mv0
k

= h2d
∑

kh∈Gh

∑

mh∈Gh

K0,0
k,m

(
1 + (i∇m + Am)2

)
v0

m

(
1 + (i∇k + Ak)2

)
v0

k

=
∫

G×G

K(x, y)
(
(PA

h )∗v
)
(y)(PA

h )∗v
)
(x) dxdy > 0

(5.42)

because the positive semi-definiteness of the operator K was assumed in (3.5).
To prove (5.40), it is enough to note that since the matrix {θj,`

k,m} is unitary,
we have ∑

(`,m)∈Ĝh

∣∣θj,`
k,m

∣∣2 =
∑

(`,m)∈Ĝh

θj,`
k,m

(
θ`,j

m,k)∗ = 1

and therefore |θj,`
k,m|2 6 1 for each (j, k), (`,m). Thus

∣∣Re
(
θj,`

k,mθ0,`
k,m

)∣∣ 6
∣∣θj,`

k,m

∣∣ ∣∣θ0,`
k,m

∣∣ 6 1

which implies (5.40) and (5.41). ut
Lemma 5.6. The following bound is valid:

∑

(`,m)∈Ĝh

µ`
m 6 C

( ∫

G

K(x, x) dx +
d∑

j=1

∫

G

∂xj ∂yjK(x, y)
∣∣∣
y=x

dx + 1
)

, (5.43)
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where the constant C does not depend on h and K(x, x) is the kernel (3.14).

Proof. By virtue of (4.17) and (5.30), we have
∑

(j,k)∈Ĝh

µj
k = hd

∑

(j,k)∈Ĝh

Kj,j
k,k = I1 + I2 , (5.44)

where
I1 = hd

∑

k

K0,0
k,k, I2 = hd

∑̃

jk

Kj,j
k,k . (5.45)

By virtue of Lemma 4.1, we have

I1 =
∑

jh∈Gh

µj 6 C

∫

G

K(x, x) dx . (5.46)

From (5.30), we have

I2 = hd
∑̃

(j,k)

((
i∂+

j,h + Aj
k

)(
i∂+

j,h + Aj
m

)K0,0
k,m

)∣∣∣
m=k

. (5.47)

Note that, in fact, the summation in (5.47) is performed over (j, k) such that
kh ∈ Gh and (k + ej)h ∈ Gh because, by virtue of (5.23) and (2.15), all other
summands in (5.47) vanish. Therefore, taking into account that K0,0

k,m = Kkm

is defined by (4.17) and after changing variables in the integrals (4.17) in the
appropriate terms connected with i∂+

j,hK0,0
k,m, we obtain

I2 =
∫

G0(h)

(
i∂−j,h(x) + Aj(x)

)(
i∂−j,h(y) + Aj(y)

)K(x, y)
∣∣
y=x

dx + J . (5.48)

Here, ∂−j,h(x)K(x, y) =
(K(x, y)−K(x−ejh, y)

)
/h, ∂−j,h(y)K(x, y) =

(K(x, y)−
K(x, y − ejh)

)
/h, and G0(h) =

∑
kh∈G0

h

Qk, where G0
h = Gh\∂−Gh (see Def-

inition 2.1 in Sect. 2.2), and Qk are the sets are defined in (4.1). The term
J arises because of the summation of some terms connected with K0

k,k with
kh ∈ ∂−Gh. It is easy to see that

|J | 6 C , (5.49)

where C does not depend on h. Using the representation

K(x, y) =
∑

r

λrer(x)er(y),

we obtain from (5.48) and (5.49)
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|I2| 6
∑

r

λr

∫

G0(h)

|(i∇−h + A(x)
)
er(x)|2 dx + |J |

6 C
(
1 +

∑
r

λr

∫

G0(h)

(|∇−h e(x)|2 + |e(x)|2) dx
)

6 C
(
1 +

∑
r

λr

∫

G

(|∇e(x)|2 + |e(x)|2) dx
)

,

(5.50)

where the last inequality estimating the finite difference by the derivative can

be obtained by using the elementary equality u(x+h)−u(x) =
x+h∫
x

u′(y) dy.

The bounds (5.46) and (5.50) imply (5.43). ut

5.5 A priori estimates for ∆hψk

In addition to (5.1) and (5.5), we introduce the notation

‖∆hψ‖2L2,h =
∑

kh∈Gh

|∆hψk|2 , (5.51)

where the values ψk with kh ∈ ∂G+
h (we need these values to define ∆hψk)

are defined with the help of (2.23). We will also need the following estimate.

Theorem 5.7. Let a random process ψ(t) = {ψk} have the stochastic differ-
ential (4.30). Then ψ satisfies the bound

E
(
‖∇+

h ψ(t)‖2L2,h +

t∫

0

‖∆hψ(τ)‖2L2,h dτ
)

6 E(‖∇+
h ψ0‖2L2,h) + C3e

Ct
(
E(‖ψ0‖4L4,h) + 1

)
,

(5.52)

with constants C3 and C independent of h.

Proof. We apply the Ito formula to the function u(ψ) = hd
∑̃
jk

|(i∂+
j,h +Aj

k)ψ|2

to obtain

du(ψ) = hd
∑̃

j,k

(
(i∂+

j,h + Aj
k)dψk, (i∂+

j,h + Aj
k)ψk

)
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+hd
∑̃

j,k

(
(i∂+

j,h + Aj
k)ψk, (i∂+

j,h + Aj
k)dψk

)

+
hd

2

∑̃

j,k

(
(i∂+

j,h + Aj
k)dψk, (i∂+

j,h + Aj
k)dψk

)

= I + I + II ,

(5.53)

where I, I, and II are the first, second and third terms of the right-hand
side of (5.53) respectively. Applying (2.14) and (4.30) and using the notation
(i∇−h + Ak, i∇+

h + Ak) = (i∇h + Ak)2, we obtain

I = hd
∑

k

dψk(i∇+ Ak)2ψk =
{
− hd

∑

k

|(i∇+ Ak)2ψk|2

+hd
∑̃

j,k

|(i∂+
j,h + Aj

k)ψk|2 −
(
(i∂+

j,h + Aj
k)(|ψk|2ψk), (i∂+

j,h + Aj
k)ψk

)}
dt

+hd
∑

k

{
r̂[ψk]dWk(i∇h + Ak)2ψk

}
.

(5.54)
Since I is the complex conjugate to I, we obtain from (5.54) that

I + I = −2hd
∑

kh∈Gh

|(i∇+ Ak)2ψk|2dt +
∑̃

j,k

Cjk(ψk, ∂+
j,hψk)dt

+hd
∑

kh∈Gh

{
r̂[ψk]dWk(i∇h + Ak)2ψk

}
,

(5.55)

where Cjk(ψk, ∂+
j,hψk) admits the bound

|Cjk(ψk, ∂+
j,hψk)| 6 C

(
|ψk|6 + |∂+

j,hψk|2|ψk|2 + |∂+
j,hψk|2 + 1

)
(5.56)

with constant C independent of j, k, h.
Let us consider the term II. Applying (2.14), (4.30), and using the notation

Dkdt for the term with the differential dt in (4.30) and taking into account
(4.36) and (4.25), we have

2II = hd
∑̃

jk

(
(i∂+

jh + Aj
k)(Dkdt + r̂[ψk]dWk)
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(i∂+
jh + Aj

k)(Dkdt + r̂[ψk]dWk)
)

= hd
∑̃

jk

((
i∂+

jh + Aj
k

)(
r̂[ψk]dWk

)(
i∂+

jh + Aj
k

)(
r̂[ψk]dWk

))
.

(5.57)

Using the equality

ak+1bk+1 − akbk = ak+1(bk+1 − bk) + (ak+1 − ak)bk

and the definitions (3.20) and (3.21), we obtain

(i∂+
j,h + Aj

k)(r̂[ψk]dWk)

= r̂[iψk+ej
](i∂+

j,h + Ai
k)dWk + (i∂+

j,hr̂[ψk]−Aj
kr̂[iψk+ej

] + Aj
kr̂[ψk])dWk .

(5.58)
Using (5.58) and the definition (5.28) of the scalar Wiener process AW j

k (t),
we obtain, from (5.57),

2II = hd
∑̃

j,k

∣∣∣r̂[iψk+ej
]dAW j

k +
(
i∂+

j,hr̂[ψk]−Aj
kr̂[iψk+ej

] + Aj
kr̂[ψk]

)
dAW 0

k

∣∣∣
2

= J1 + J2 + J3 ,
(5.59)

where
J1 = hd

∑̃

j,k

r̂[iψk+ej
]dAW j

k r̂[iψk+ej
]dAW j

k , (5.60)

J2 =hd
∑̃

j,k

2Re
{

r̂[iψk+ej
]dAW j

k (i∂+
j,hr̂[ψk]−Aj

kr̂[iψk+ej
] + Aj

kr̂[ψk]
)
dAW 0

k

}
,

(5.61)
and

J3 = hd
∑̃

j,k

∣∣(i∂+
j,hr̂[ψk]−Aj

kr̂[iψk+ej
] + Aj

kr̂[ψk]
)
dAW 0

k

∣∣2 . (5.62)

By virtue of (3.20), (3.21), and (5.35), we obtain from (5.60) that

J1 = hd
∑̃

j,k

(
r2(Im ψk+ej ) + r2(Re ψk+ej )

) ∑

(`,m)∈Ĝh

µ`
m|θj,`

k,m|2dt . (5.63)

Similarly, (5.38) and (5.61) imply
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J2 = 2hd
∑̃

j,k

{
r(Im ψk+ej )dReAW j

k

(− (∂+
j,hr(Im ψk))dImAW 0

k

+ Aj
k(r(Re ψk)− r(Im ψk+ej

))dRe AW 0
k

)
+ r(Re ψk+ej

)dIm AW j
k

·
(
− ∂+

j,hr(Re ψk)dRe AW 0
k + Aj

k(r(Im ψk)− r(Re ψk+ej
))dImAW 0

k

)}

= 2hd
∑̃

j,k

{
Aj

k

(
r(Im ψk+ej

)r(Re ψk)− r2(Im ψk+ej
)

+ r(Re ψk+ej
)r(Im ψk)− r2(Re ψk+ej

)
) ∑

(`,m)∈Ĝh

µ`
mRe (θj,`

k,mθ0,`
k,m

)}
dt .

(5.64)

In addition, by (5.35) and (5.62), we have

J3 = hd
∑̃

j,k

{(− ∂+
j,hr(Im ψk)dIm AW 0

k

+ Aj
k

(
r(Re ψk)− r(Im ψk+ej )

)
dRe AW 0

k

)2

+
(
∂+

j,hr(Re ψk)dRe AW 0
k + Ai

k(r(Im ψk)− r(Re ψk+ej ))dImAW 0
k

)2
}

=hd
∑̃

j,k

{(
∂+

j,hr(Im ψk)
)2 +

(
∂+

j,hr(Re ψk)
)2

+ (Aj
k)2

(
(r(Re ψk)− r(Im ψk+ej ))

2

+ (r(Im ψk)− r(Re ψk+ej ))
2
} ∑

`,m

µ`
m|θ0,`

k,m|2dt . (5.65)

Now relations (5.59), (5.63), (5.64), and (5.65) and Lemmas 5.5 and 5.6 imply
that

II =
∑̃

j,k

djk(ψk, ψk+ej .∂
+
j,hψk)dt , (5.66)

where

|djk(ψk, ψk+ej , ∂
+
j,hψk)| 6 C

(
1 + |ψk|2 + |ψk+ej |2 + |∂+

j,hψk|2
)

(5.67)

with constant C independent of j, k, h.

Relations (5.53), (5.55), and (5.66) give
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d
(
hd

∑̃

j,k

|(i∂+
j,h + Aj

k)ψk|2
)

+ 2hd
∑

kh∈Gh

|(i∇+
h + Ak)2ψk|2

=
∑̃

j,k

(
Cjk(ψk, ∂+

j,hψk) + djk(ψk, ψk+ej , ∂
+
j,hψk)

)
dt

+hd
∑

khGh

{
r̂[ψk]dWk(i∇h + Ak)2ψk

}
.

(5.68)

Writing the differential Ito formula (5.68) in integral form and applying the
mathematical expectation, we obtain

E
(
‖(i∇+

h + A)ψ(t)‖2L2,h + 2

t∫

0

‖(i∇h + A)2ψ(τ)‖2L2,h dτ
)

= E
( t∫

0

hd
∑̃

j,k

{
(Cjk(ψk, ∂+

j,hψk) + djk(ψk, ψk+ej , ∂
+
j,hψk)

}
dτ

)

+E
(‖(i∇+

h + A)ψ0‖2L2,h

)
,

(5.69)

where A = {Aj
k, kh ∈ Gh ∪ ∂G+

h (−j)}. Doing a simple transformation with
the first term on the left-hand side of (5.69), applying the bounds (5.56) and
(5.67) to the right-hand side of (5.69), and then applying to the result the
inequalities (5.6) and (5.13) results in (5.52). ut

6 Existence Theorem for Approximations

The aim of this section is to prove an existence theorem for the stochas-
tic system (4.30), (2.12), and (2.23). First, we recall a well-known existence
theorem for stochastic equations which we will use in our analysis.

6.1 Preliminaries

Recall the existence theorem for stochastic equations proved in [24, pp. 165-
173]. Let W (t) = W (t, ω) be a d1-dimensional real-valued Wiener process on
(Ω,Σ, m), Σt ⊂ Σ be the increasing filtration (see Sect. 4.3) complete with
respect to σ-algebra m-measurable sets Σm and coordinated with W (t), i.e.,
(W (t), Σt) is a Wiener process.

We consider the stochastic equation
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dξ(s) = σ(s, ξ(s))dW (s) + b(s, ξ(s))ds, s > t, and ξ(t) = ξ0(t) , (6.1)

where t > 0 is fixed and ξ0(t) is a Σt-measurable d-dimensional vector. The
integral form of (6.1) is

ξ(s) = ξ0(t) +

s∫

t

σ(r, ξ(r)) dW (r) +

s∫

t

b(r, ξ(r)) dr . (6.2)

By the solution of (6.2) we mean a d-dimensional process ξ(s) = ξ(s, ω)
that is Σs-measurable in ω for all s > t, is continuous in s and defined for
ω ∈ Ω and s ∈ (t,∞), and satisfies (6.2) for all s ∈ [t,∞) almost everywhere.
Additionally, σ(s, x) ∈ L2,loc (in s), b(s, x) ∈ L1,loc (in s), and they are
defined on Ω× (t,∞) for all x ∈ Rd and have values in (d× d1)-matrices and
in Rd correspondingly. We assume that σ and b are continuous on x for all
(s, ω) and, for each T, R ∈ [0,∞) and ω ∈ Ω, the bound

T∫

0

sup
|x|6R

[
‖σ(s, x)‖2 + |b(s, x)|

]
ds < ∞ (6.3)

holds.

Theorem 6.1 (see [24, p. 166]). Let the following conditions hold.

(i) Lipschitz condition: For any R > 0 there exists a function Kr(R) > 0
belonging to L1,loc as a function of (ω, r) such that for all |x|, |y| 6 R,
r > 0, and ω ∈ Ω,

2
(
x− y, b(r, x)− b(r, y)

)
+ ‖σ(r, x)− σ(r, y)‖2 6 Kr(R)|x− y|2 . (6.4)

(ii) Growth condition: For all x ∈ Ed, r > 0, and ω ∈ Ω

2(x, b(r, x)) + ‖σ(r, x)‖2 6 Kr(1)(1 + |x|2) . (6.5)

Then the stochastic equation (6.1) has a solution and any two solutions are
identical.

6.2 Bounded approximations

Theorem 6.1 is not applicable to the problem (4.30), (2.12), and (2.23) be-
cause (4.30) has the term |ψ(t)|2ψ(t) that does not satisfy the growth condi-
tion (6.5). Moreover, (4.30) holds for k ∈ Gh; due to the boundary conditions
(2.23), the function k → ψk(·) should be defined for k ∈ ∂G+

h as well.
The requirement that ψk is defined for kh ∈ ∂G+

h does not bring any
difficulties because it is enough for us to put into (4.30) an expression for ψk
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with kh ∈ ∂G+
h given in (2.23) and after that to solve the Cauchy problem

(4.30) and (2.12).
Temporarily, we modify (4.30) to an equation that satisfies the conditions

of Theorem 6.1. To this end, we introduce the function γN ∈ C∞(0,∞) such
that

γN (t) =





t, t ∈ [0, N ],
increases monotonically, t ∈ (N,N + 1),
N + 1, t > N + 1,

(6.6)

and consider the system

dψk(t) +
{

(i∇h + Ak)2ψk(t)− ψk(t) + γN (|ψk(t)|2)ψk(t)
}

dt

= r̂[ψk(t)]dWk(t)

(6.7)

instead of (4.30). We consider the problem (6.7) and (2.12). In this problem,
the functions ψk(t) and Wk(t) are complex-valued. (Recall that r̂[ψk(t)]Wk(t)
in (6.7) is understood in the sense of (4.31).) If we introduce the real and
imaginary parts of these functions, substitute them into (6.2), and separate
the real and imaginary parts of the resulting equations, we obtain a sys-
tem that satisfies all the conditions of Theorem 6.1. Therefore, the following
theorem holds.

Theorem 6.2. The problem (6.7) and (2.12) has a solution, and any two
solutions with identical initial data (2.12) are identical.

We apply to (6.7) the same arguments that were applied to (4.30) that led
us to the bound (5.6). Then we obtain the following bounds for the solution
ψk(t) ≡ ψN

k (t) of (6.7) and (2.12):

‖ψN (t)‖2L2,h + 2

t∫

0

[
‖(i∇h + A)ψN‖2L2,h

+hd
∑

k

γN

(|ψN
k (s)|2)|ψN

k (s)|2
]
ds

−2

t∫

0

hd
∑

k

Re
(
ψN

k r̂[ψN
k ]dWk

)

=

t∫

0

hd
∑

k


2|ψN

k |2 +
∑

j

|Θkj |2µj |r̂[ψN
k ]|2


 ds + ‖ψ0‖2L2,h .

(6.8)

This is the analogue of (5.9); after some transformations, we obtain the final
inequality
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E‖ψN (t)‖2L2,h + E

t∫

0

(
‖∇+

h ψN‖2L2,h

+hd
∑

k

γN (|ψN
k (τ)|2)|ψN

k (τ)|2
)
dτ 6 C2e

C1t
(
E‖ψ0‖2L2,h + 1

)
.

(6.9)

6.3 Solvability of the discrete stochastic system

Recall (see [26, p. 54]) that a random variable τ = τ(ω), ω ∈ Ω, that takes
values in [0,∞] is called the stopping time (relative to Σt) if {ω : τ(ω) > t} ∈
Σt for every t ∈ (0,∞).

Let M < N . We introduce the (random) Markov moment

τM (ω) =

{
inf{τ > 0 : ‖ψN (τ, ω)‖2L2,h > M} for ω ∈ Ω

∞ if ‖ψN (τ, ω)‖L2,h 6 M ∀ τ > 0 .
(6.10)

Clearly, τM (ω) is the stopping time. For fixed t > 0 we set tM = tM (ω) =
t ∧ τM (ω), which is the stopping time as well.

We substitute t = tM (ω) with M/hd < N into (6.8) and obtain

‖ψN
k (tM ))‖2L2,h + 2

tM∫

0

(
‖(i∇+

h + A)ψN‖2L2,h + ‖ψN‖4L4,h

)
dt

− 2

tM∫

0

∑

k

Re
(
ψN

k r̂[ψN
k ]dWk

)
(6.11)

=

tM∫

0

∑

k

(
2|ψN

k |2 + µk|r̂[ψN
k ]|2) dt + ‖ψ0‖2L2,h .

We note that we have changed the term hd
∑
k

γN (|ψN
k (s)|2)|ψN

k (s)|2 to

‖ψN (s)‖4L2,h because, for s < tM , ‖ψN (s)‖2L2,h 6 M/hd < N and there-
fore for every k, |ψN

k (s)|2 < N . This justifies the aforementioned change.
Therefore, repeating the derivation of (6.9) from (6.8), we find that (6.11)
implies the bound

E‖ψN (tM )‖2L2,h + E
tM∫
0

(
‖∇hψN (s)‖2L2,h + ‖ψN (s)‖4L4,h

)
ds

6 C2e
C1t

(
E‖ψ0‖2L2,h + 1

)
,

(6.12)
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where C1 and C do not depend on N .
Taking into account the definition of tM (ω) and the arguments written

before (6.12), we see that ψN (s) satisfies not only (6.7), but also the equation

ψN
k (tM ) +

tM∫

0

[
(i∇h + Ak)2ψN

k (s)− ψN
k (s) + |ψN

k (s)|2ψN
k (s)

]
ds

=

tM∫

0

rk[ψn(s)]dWN
k (s) + ψ0 .

(6.13)

It is clear that for each N1 satisfying M < N < N1 the vector-valued function
ψN1(s) = ψN1(s, ω) (that evidently exists) satisfies (6.13) as well for almost
all ω ∈ Ω and s ∈ (0, tM (ω)). This implies that for almost all ω ∈ Ω

ψN
k (s, ω) = ψN1

k (s, ω) ∀ kh ∈ Gh for s ∈ (0, tM (ω)) . (6.14)

Indeed, ψN (s), as well as ψN1(s), satisfies (6.13) in which the term
|ψN

k (s)|2ψN
k (s) is changed to γN1

(|ψN
k (s)|2)ψN

k (s). But for this equation,
all solutions are indistinguishable.

The equality (6.14) permits us to define the vector-valued function ψ(s, ω)
as follows:

ψk(s, ω) = ψN
k (s, ω), kh ∈ Gh ∀ N > M/hd, s ∈ (0, tM (ω)) . (6.15)

By virtue of (6.12), the function ψ(s, ω) defined in (6.15) satisfies

E‖ψ(tM )‖2L2,h + E
tM∫
0

(‖∇hψ(s)‖2L2,h + ‖ψ(s)‖4L4,h

)
ds

6 C2e
C1tE

(‖ψ0‖2L2,h + 1
)

(6.16)

and the inequality in (6.16) is true since, by definition, tM 6 t.

Lemma 6.3. For almost all ω ∈ Ω, tM ↗ t as M →∞.

Proof. The definitions of τM and tM imply that for each M1 > M the in-
equalities

τM 6 τM1 , tM 6 tM1 6 t (6.17)

hold. Then, by the monotone convergence theorem, there exists t∞(ω) 6 t
and τ∞(ω) 6 ∞ such that τM (ω) → τ∞(ω) and tM (ω) → t∞(ω) 6 t as
M → ∞ for almost any ω ∈ Ω. Suppose that there exists a set b ⊂ Σ
satisfying m(b) > 0 such that t∞(ω) < t for all ω ∈ b. This means that for
each M > 0, τM (ω) = tM (ω) < t for ω ∈ b and therefore τ∞(ω) = t∞(ω),
ω ∈ b. The definition (6.15) of ψk(s, ω) and (6.8) imply that for almost all
ω ∈ Ω, ‖ψ(s)‖2L2,h is continuous for s ∈ (0, τ∞(ω)). Due to the continuity for
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almost all ω ∈ Ω, τM (ω) < τM+1(ω) < · · · < τM+K(ω) < · · · . Recall that for
ω ∈ b, τM (ω) → τ∞(ω) < t. Hence, by (6.10), we obtain

∫

b

‖ψ(τM (ω), ω)‖2L2,hm(dω) > (M − 1)
∫

b

m(dω) →∞ as M →∞ .

(6.18)
Since for ω ∈ b, τM (ω) = tM (ω), we obtain, by (6.16),

∫

b

‖ψ(τM (ω), ω)‖2L2,hm(dω) 6 E‖ψ(tM )‖2L2,h 6 C1e
Ct‖ψ0‖2L2,h (6.19)

for M →∞. But (6.19) contradicts (6.18) and therefore the proof is complete.
ut

By Lemma 6.3, (6.10), and the fact that tM = t∧ τM for almost all ω ∈ Ω
the function

G(tM , ω) = ‖ψ(tM (ω), ω‖2L2,h +

tM (ω)∫

0

(‖∇+
h ψ(s)‖2L2,h + ‖ψ(s)‖4L4,h

)
ds

increases monotonically as M →∞. By (6.16) and the Beppo Levi theorem,
the function G(t, ω) is well-defined for a nonrandom value t. Hence,

E‖ψ(t)‖2L2,h + E

t∫

0

(‖∇+
h ψ(s)‖2L2,h + ‖ψ(s)‖4L4,h

)
ds 6 C2e

C1t‖ψ‖2L2,h .

(6.20)
Therefore, the function ψk(s, ω) defined in (6.15) can be extended up to a
function defined for every nonrandom t > 0, and this function satisfies (4.32)
and is equivalent to (4.30). Uniqueness of the obtained solution of (4.32)
follows from (6.15) and the uniqueness of ψN

k (s, w). Applying the arguments
of Sects. 5.3 and 5.5 to ψk(s, ω), we find that ψk(s, ω) satisfies the estimates
(5.13) and (5.52).

Thus, we have proved the following theorem.

Theorem 6.4. There exists a continuous Σh,t-adapted random process
{ψ(t, ω)} = {ψk(t, ω), kh ∈ Gh} given for t > 0 and such that (4.32) holds
for all t > 0 with probability one. This process ψ(t, ω) satisfies the inequali-
ties (5.6), (5.13), and (5.52). The process ψ that satisfies the aforementioned
properties is unique.

Definition 6.5. The random process {ψ(t, ω)} = {ψk(t, ω), kh ∈ Gh} that
satisfies all the properties mentioned in Theorem 6.4 is called the strong so-
lution of (4.30), (2.12), and (2.23) or (what is equivalent) the strong solution
of (4.32).
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To prove the solvability of the stochastic problem for the Ginzburg–Landau
equation, we need certain additional bounds for the strong solution of (4.32).
These bounds will be proved in the next section.

7 Smoothness of the Strong Solution with respect to t

We establish two estimates for the solution of the problem (4.30), (2.23), and
(2.12). Specifically, we estimate the mean maximum and the mean modulus
of continuity. In both estimates we follow [44, pp. 352-360].

7.1 Estimate of the mean maximum

In this subsection, we present a result for the mean maximum of the solution
of the problem (4.30) and (2.12).

Proposition 7.1. Let ψ(t) be the strong solution of (4.30) and (2.12). Then

E(‖ψ(t)‖L∞(0,T ;L2,h)) 6 C(T ) < ∞ for any T > 0, (7.1)

where C(T ) does not depend on h.

Proof. We obtain from (5.8) and (5.9) that

‖ψ(t)‖2L2,h 6 ‖ψ0‖2L2,h +

t∫

0

2
(‖ψ‖2L2,h + 1

) ∑

j

µj dτ

+2

t∫

0

∑
Re (ψkr̂[ψk]dWk)

(7.2)

and from this estimate, along with the Gronwall inequality, we obtain

‖ψ(t)‖2L2,h 6 ‖ψ0‖2L2,he
2t

∑
j

µj

+ C

t∫

0

e
2

∑
j

µj(t−τ)(
Re

∑

k

(ψkr̂[ψk]dWk)(τ)

+
∑

j

µjτ
)
µj dτ .

(7.3)

Multiplying both sides of (7.3) by e
−2t

∑
j

µj

and taking the maximum over
t ∈ [0, T ], we obtain
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sup
t∈[0,T ]

(
e
−2t

∑
j

µj‖ψ(t)‖2L2,h

)
6 ‖ψ0‖2L2,h + C2 + sup

t∈[0,T ]

‖M‖ , (7.4)

where M = (Mk(t), kh ∈ Gh), and

Mk(t) = C

t∫

0

e
−2τ

∑
j

µj

Re
(
ψk(τ)r[ψk]

)
dWk(τ) .

The process Mk(t) is a martingale with respect to the flirtation Σt (see [44,
p. 353]). This, due to the Birkholder-Gaudi inequality, implies

E sup
[0,T ]

|Mk(t)| 6 [C(T )]
1
2 ;

see [44, p. 353]. Therefore, taking the mathematical expectation of both sides
of (7.4), we obtain (7.1). ut

Similarly to Proposition 7.1, using (5.56), (5.67), and (5.68) (instead of
(5.8) and (5.9)), one can prove Proposition 7.1’. Let ψ(t) be the strong solu-
tion of (4.29) and (2.12). Then

E‖∇+
h ψ‖L∞(0,T ;L2,h) 6 C(T ) < ∞ for any T > 0 , (7.5)

where C(T ) does not depend on h.

7.2 Estimate of the auxiliary random process

We introduce the seminorm

‖ψ‖Cα
T,h

= sup
06t1<t26T

|t1−t2|61

‖ψ(t1)−ψ(t2)‖L2,h

|t1 − t2|α ∀ T > 0 . (7.6)

Recall that the function r(λ) is defined in (3.19).
Now define

S(λ) =

λ∫

0

dµ

r(µ)
. (7.7)

In accordance with the general definition (3.20) and (3.21), we denote

S[ψk(t)] = S(Re ψk(t)) + iS(Im ψk(t))

Ŝ[ψk]z = S(Re ψk)Re z + iS(Im (ψk))Im z

(7.8)
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for each complex number z. Applying the Ito formula to S[ψ(t)], i.e., applying
the Ito formula to the function S(Re ψk) and to the function S(Im ψk), we
obtain

dS[ψk(t)] = −Ŝ′[ψk(t)]
(
(i∇h + Ak)2ψk(t)− ψk(t) + |ψk|2ψk

)
dt

+Ŝ′[ψk]r̂[ψk]dWk + 1
2 Ŝ′′[ψk](r̂2[ψk][dWk]2) .

(7.9)

Here,

Ŝ′[ψk]r̂[ψk]dWk

= S′(Re ψk)r(Re ψk)dRe Wk + iS′(Im ψk)r(Im ψk)dImWk = dWk

(7.10)
and the last equality holds because of (7.7). Note that the first term on
the right-hand side of (7.9) should be understood in the same sense as was
indicated in the second relation of (7.8). Moreover, by virtue of (4.39) and
(7.7),

Ŝ′′[ψk]r̂[ψk]r̂[ψk](dRe Wk)2 =
1
2
S′′(Re ψk)r2(Re ψk)(dRe Wk)2

+
i

2
S′′(Im ψk)r2(Im ψk)(dIm Wk)2

= −1
2

(
r′(Re ψk) + ir′(Im ψk)

) ∑

jh∈Gh

|Θkj |2µjdt

= −1
2

∑

j

|Θkj |2µjr
′[ψk]dt .

(7.11)

As a result, we obtain from (7.9)–(7.11) and (7.7) that

dS[ψk(t)] =
{
−r̂−1[ψk]

(
(i∇h + Ak)2ψk − ψk + |ψk|2ψk

)

−1
2
r′[ψk]

∑

j

|Θkj |2µj

}
dt + dWk ,

(7.12)

where the equality is understood in the sense of (3.20) and (3.21). Now using
the results from [44], we derive an estimate for ‖S(ψ)‖Cα

T,h
.

Denote Z(t) as
Z(t) = S[ψ(t)]−W(t) . (7.13)

Equalities (7.12) and (7.13) imply
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Żk(t) =
d

dt
Zk(t)

= −
(
r̂−1[ψk]

(
(i∇h + Ak)2ψk − ψk + |ψk|2ψk

)− r′[ψk]
∑

j

|Θkj |2µj

)
.

(7.14)

Lemma 7.2. For any T > 0 the inequality

‖Z‖
C

1
2

T,h

6 C
{
1 +

( T∫

0

(‖∆hψ(t)‖2L2,h + ‖∇+
h ψ(t)‖2L2,h + ‖ψ(t)‖2L2,h

+‖ψ(t)‖6L6,h

)
dt

)1/2}
(7.15)

holds, where C does not depend on h.

Proof. By virtue of (7.14) and (3.19), we have

‖Ż(t)‖2L2,h 6 C1

(‖∆hψ(t)‖2L2,h + ‖∇+
h ψ(t)‖2L2,h + ‖ψ(t)‖2L2,h + ‖ψ‖6L6,h + 1

)

and therefore

‖Ż(t)‖L2,h 6 C
1/2
1

(‖∆hψ(t)‖L2,h + ‖∇+
h ψ(t)‖L2,h

+‖ψ(t)‖L2,h + ‖ψ(t)‖3L6,h + 1
)
.

(7.16)

This inequality implies

‖Z(t2)− Z(t1)‖L2,h 6
t2∫

t1

‖Ż(t)‖L2,hdt

6 C
1/2
1

t2∫

t1

(
‖ψ(t)‖L2,h + ‖∆hψ(t)‖L2,h + ‖∇+

h ψ(t)‖L2,h

+‖ψ‖3L6,h + 1
)
dt

6 C
[( t2∫

t1

[‖∆hψ(t)‖2L2,h + ‖∇+
h ψ(t)‖2L2,h

+‖ψ(t)‖2L2,h + ‖ψ(t)‖6L6,h

]
dt

) 1
2
(t2 − t1)1/2 + (t2 − t1)

]
.

By using the definition (7.6), we obtain the desired result (7.15). ut
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Recall that the Levi modulus is the function ℵ(t) = |t ln t|1/2 and the norm
‖W‖CL,T,h

is defined as

‖W‖CL,T,h
= sup

06t1<t2<T

|t1−t2|<1/e

‖W(t1)−W(t2)‖L2,h

ℵ(t2 − t1)
. (7.17)

Recall that Λh = P ∗hΛ is the distribution of the Wiener process W(t) from
(4.11), where Λ is the distribution of the initial Wiener process (see (3.1)).
The measure Λh is defined on B(Ch), where Ch = C(0,∞;L2,h(Gh)). In [44,
p. 356] the following assertion was proved.

Lemma 7.3. There exist positive constants C1 and C2 independent of h (and
of Λh) such that for any α > 0

Λh
T,α ≡ Λh({W ∈ Ch : ‖W‖CL,T

> C1α}) 6 C2T

√
Trh

α
2−α2/2Trh , (7.18)

where Trh =
∑

jh∈Gh

µj is the trace of the correlation operator K̂ defined in

(4.17) and below (4.18) and corresponding to the Wiener process W(t).

Lemma 7.4. The process S[ψ(t)] with function S defined in (7.7) satisfies
the bound

‖S[ψ]‖2CL,T,h
6 2C1

[
1 +

T∫
0

(
‖∆hψ(t)‖2L2,h + ‖∇+

h ψ(t)‖2L2,h

+‖ψ(t)‖2L2,h + ‖ψ(t)‖6L6,h

)
dt

]
+ 2‖W‖2CL,T,h

,

(7.19)

where C1 does not depend on h.

Proof. The bound (7.19) directly follows from (7.13) and Lemma 7.2 if we

take into account that |t2 − t1|1/2 6 ℵ(t2 − t1) ≡
∣∣(t2 − t1) ln |t2 − t1|

∣∣ 1
2 for

|t2 − t1| < 1
e . ut

Theorem 7.5. Let ψ(t) be the solution of the stochastic problem (4.30),
(2.23), and (2.12). Then the bound

E‖S[ψ]‖2CL,T,h
6 C(T ) , (7.20)

holds, where C(T ) does not depend on h.

Proof. We take the mathematical expectation of both sides of (7.19) and, to
estimate the right-hand side, we use Lemma 7.3 and the bounds (5.6), (5.13),
and (5.52). As a result, we obtain (7.20). ut
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7.3 Estimate of the mean modulus of continuity

We define the norm

‖ψ‖CL(0,T ;L1,h(Gh)) = sup
06t1<t2<T
|t1−t2|<1/e

‖ψ(t1)−ψ(t2)‖L1,h

ℵ(t1 − t2)
, (7.21)

where
‖ψ‖L1,h = hd

∑

kh∈Gh

|ψk| . (7.22)

Note that by virtue of definitions (7.7) and (3.19), the function S(λ) possesses
the inverse function R(S)

R(S(λ)) = λ . (7.23)

Lemma 7.6. There exists a constant C > 0 such that

|λ1 − λ2| 6 C(1 + |λ1|+ |λ2|) |S(λ1)− S(λ2)| ∀ λ1, λ2 ∈ R1 . (7.24)

Proof. Let λ1 > λ2. Then S(λ1) > S(λ2). By virtue of (7.23) and (7.7),
R′(S(λ)) = r(λ) > 0. Therefore, using the Lagrange theorem, we obtain

λ1 − λ2 = R(S(λ1))−R(S(λ2))

6 sup
µ∈[λ2,λ1]

R′(S(µ))|S(λ1)− S(λ2)| 6 R′(S(λ1)) |S(λ1)− S(λ2)|

6 C(1 + |λ1|+ |λ2|) |S(λ1)− S(λ2)| .
(7.25)

ut
Theorem 7.7. Let ψ(t) be the strong solution of the stochastic problem
(4.30), (2.23), and (2.12). Then the following estimate holds:

E‖ψ‖CL(0,T ;L1,h(Gh)) 6 C(T ) . (7.26)

Proof. It is enough to prove the bound

‖ψ‖CL(0,T ;L1,h(Gh)) 6 C

(
1 + sup

06t6T
‖ψ(t)‖2 + ‖S(ψ)‖2CL,T,h

)
(7.27)

because, after taking the mathematical expectation of both sides of (7.27)
and using (7.20) and (7.1), we obtain (7.26). Substituting λi = Re ψk(ti),
i = 1, 2, or λi = Imψk(ti), i = 1, 2, into (7.25) gives

hd
∑

kh∈Gh

|ψk(t1)− ψk(t2)|
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6 C(1 + ‖ψ(t1)‖L2,h + ‖ψ(t2)‖L2,h)‖S[ψ(t1)]− S[ψ(t2)]‖L2,h .

Dividing both parts of this bound by the Levi modulus and taking into ac-
count the definitions (7.17) and (7.21), we obtain

‖ψ‖CL(0,T ;L1,h(Gh)) 6 C(1 + sup
t∈[0,T ]

‖ψ(t)‖L2,h)‖S[ψ(t)]‖CL,T,h
.

This inequality clearly implies (7.27). ut

8 Compactness Theorems

In order to pass to the limit in the stochastic equation (4.30), we need some
compactness theorems which we present in this section.

8.1 On compact sets in L2(G)

For almost all ω ∈ Ω the strong solution ψ(t) of Equation (4.30) belongs to
L2(0, T ;L2,h(Gh)), where L2,h(Gh) = PhL2(G) is the space defined before
(4.8). Let 1 6 p < ∞. Similarly to the space L2,h(Gh), we can introduce
the space Lp,h(Gh) of vector-valued functions ψ = {ψk : kh ∈ Gh} supplied
with the norm

‖ψ‖p
Lp,h(Gh)

= hd
∑

kh∈Gh

|ψk|p . (8.1)

Clearly, Lp,h(Gh) = PhLp(G), where the operator Ph is defined as well as
the operator Ph from (4.9). As in (4.10), one can prove that the operator
Ph : Lp(G) → Lp,h(Gh) is bounded. We define the space

H1
A,h(Gh) = {ψ ∈ L2,h(Gh), ψ is defined on ∂G+

h by (2.23)} (8.2)

and the norm (see (5.5)):

‖ψ‖2H1
A,h

= hd
∑̃
j,k

(|∂+
j,hψk|2 + |ψk|2)

≡ hd
d∑

j=1

∑
kh∈Gh∪∂G+

h (−j)

(|∂+
j,hψk|2 + |ψk|2) .

(8.3)

We can identify the space Lp,h(Gh) (as well as the space (8.2) ) with
subspaces of functions belonging to Lp(G) by the operator (4.14):

Lp,h 3 ψ = {ψk} → ψh(x) =
∑

kh∈Gh

h−dψkXQk
(x) ∈ Lp(G) , (8.4)
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where XQk
(x) is the characteristic function of the set Qk (i.e., XQk

(x) = 1,
for x ∈ Qk, XQk

(x) = 0 for x 6= Qk) and the sets Qk are defined by (4.1)–
(4.5). We denote by L̂p,h(G) the subspace of Lp(G) formed by identifying
(8.4). The following assertion follows from (4.6)–(4.7) and a bound similar to
(4.10).

Proposition 8.1. The spaces Lp,h(Gh) and L̂p,h(G) are isomorphic (so the
norm (8.1) is equivalent to the norm of L̂p,h(G) ⊂ Lp(G)) and the isomor-
phism is defined by (8.4).

In the space L̂2,h(G), the norm (8.3) generates the norm

‖ψh‖2Ĥ1
A,h

=
∫

G




d∑

j=1

|ψh(x + ejh)− ψh(x)|2
h2

+ |ψh(x)|2

 dx . (8.5)

To calculate the finite difference in (8.5), we assume that ψh(x) is defined on⋃
kh∈Gh∪∂G+

h

Qk and, on sets Qk, kh ∈ G+
h , ψh(x) is defined with the help of

(2.23).
More precisely, in order to determine the finite difference quotient (ψh(x+

ejh)− ψh(x))/h, we use the polyhedra

Qk = {x = (x1, . . . , xd) ∈ Rd : xj ∈ [h(kj − 1
2
)), h(kj +

1
2
)), j = 1, . . . , d}

(8.6)
for each kh ∈ Gh ∪ ∂G+

h , defining ψh(x) for x ∈ Qk with kh ∈ ∂G+
h (±m)

by (2.23). Then for kh ∈ ∂G−h (±m) we change the polyhedra (8.6) in the
definition of the quotient (ψh(x+emh)−ψh(x))/h on the appropriate set Qk

from (4.2)–(4.5).
We denote by Ĥ1

A,h(G) = P ∗hH1
A,h(Gh), where P ∗h is the operator (4.14)

and H1
A,h(Gh) is the space (8.2) with the norm given by (8.3). Similar to

Proposition 8.1, the following assertion holds.

Proposition 8.2. The operator (4.14) establishes an isomorphism between
H1

A,h(Gh) and Ĥ1
A,h(G), i.e., the norms (8.3) and (8.5) are equivalent with

constants independent of h.

Proof. One can easily obtain the necessary estimates with the help of the
explanation near (8.6) and the relations (4.6) and (4.7). ut

Below, we assume that h = hn = 2−nh0 → 0 as n → ∞. For each R > 0
we set

BR(Ĥ1
A,h) = {ψ ∈ L̂2,h(G) : ‖ψ‖Ĥ1

A,h
6 R} (8.7)

and
BR(H1) = {ψ ∈ H1(G) : ‖ψ‖1 6 R} . (8.8)
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Lemma 8.3. For each R > 0 the set

ΘR ≡
∞⋃

n=1

BR(Ĥ1
A,hn

) ∪BR(H1) (8.9)

is compact in L2(G) and in L1(G).

Proof. We choose from an arbitrary sequence ψm ∈ ΘR a subsequence con-
verging in L2(G). Two cases are possible: (i) there exists n0 > 0 such that

ψm ∈
n0⋃

n=1
BR(Ĥ1

A,hn
) ∪ BR(H1) for each m; (ii) there exists a subsequence

{m′} of the sequence {m} such that ψm′ ∈ BR(Ĥ1
A,hn

m′
) and nm′ → ∞ as

m′ →∞.
In the first case, we can choose a subsequence {m′} ⊂ {m} such that

(a) ψm′ ∈
n0⋃

n=1
BR(Ĥ1

A,hn
) for all m′ ∈ {m′} or (b) ψm′ ∈ BR(H1) for all

m′ ∈ {m′}. For case (a), we can choose a converging subsequence {ψm′′}
from {ψm′} because

n0⋃
h=1

BR(Ĥ1
A,hn

) is a finite dimensional closed bounded

set. For case (b), we can choose a converging subsequence {ψm′′} because, as
is well known, the embedding H1(G) ⊂ L2(G) is compact.

In the second case, we can choose a subsequence {ψm′′} ⊂ {ψm′} weakly
converging to ψ̃(x) in L2(G) as m′′ →∞. Moreover, by virtue of the defini-
tions (8.7) –(8.9), for each ε there exists δ > 0 and N > 0 such that for all h
satisfying ‖h‖ < δ and for all n > N ,

∫
|ψn(x)− ψn(x− h)|2 < ε . (8.10)

Then, by (8.10), we use standard arguments to choose a subsequence {ψq} ⊂
{ψm} such that ‖ψq− ψ̃‖L2(G) → 0 as q →∞ (see [40, Chapt. 1, Sect. 4]. ut

8.2 Compact sets in the space of time-dependent
functions

Let E0, E, and E1 denote reflexive Banach spaces such that the embeddings
E0 ⊂ E ⊂ E1 are continuous and the embedding E0 ⊂ E is compact. Then
the Dubinsky theorem (see [44, p. 131-132]) can be stated as follows.

Theorem 8.4. Let 1 < q, q1 < ∞, and let M be a bounded set in Lq(0, T ; E0)
consisting of functions u(t) equicontinuous in C(0, T ; E1). Then M is rela-
tively compact in Lq1(0, T ;E) and C(0, T ;E1).

We establish some variants of this theorem which we will need. First, let
us apply this theorem to the following situation. We introduce the space



84 Andrei Fursikov, Max Gunzburger, and Janet Peterson

W = {ψ(t, x) ∈ L2(0, T ;H1(G)) ∩ CL(0, T ; L1(G))} , (8.11)

where

CL(0, T ;L1(G)) =
{

ψ(t, x), (t, x) ∈ (0, T )×G :

‖ψ‖CL,T,1 = sup
06t1<t26T

|t1−t2|<e−1

‖ψ(t1, ·)− ψ(t2, ·)‖L1(G)

ℵ(t2 − t1)

+ sup
06t6T

‖ψ(t, ·)‖L1(G) < ∞
}

,

(8.12)
where again ℵ(t) = |t ln t| 12 for t > 0.

Theorem 8.5. The set

BR(W) = {ψ(t, x) ∈ W : ‖ψ‖W 6 R} (8.13)

is compact in the space L4((0, T )×G) ∩ C(0, T ; L1(G)).

Proof. To apply Theorem 8.4, we take E0 = H1(G), E = L4(G), E1 = L1(G),
and M = BR(W). Clearly, M consists of functions that are equicontinuous
in C(0, T ; E1). ut

Let

Wh =
{
ψ(t, x) ∈ L2(0, T ; Ĥ1

A,h(G)) : ‖ψ‖CL,T,1

= sup
06t1<t2<T

|t1−t2|<e−1

‖ψ(t1, ·)− ψ(t2, ·)‖L1(G)

ℵ(t2 − t1)
+ sup

06t6T
‖ψ(t, ·)‖L1(G) < ∞}

(8.14)
and

BR(Wh) = {ψ ∈ Wh : ‖ψ‖CL,T,1 + ‖ψ‖L2(0,T ;Ĥ1
A,h(G)) 6 R} . (8.15)

Since Wh consists of functions equicontinuous in C(0, T ; L1(G)), the fol-
lowing assertion holds.

Proposition 8.6. The set (8.15) is compact in the space L4((0, T ) × G) ∩
C(0, T ; L1(G)).

The following theorem then holds.

Theorem 8.7. For each R > 0 the set

ΘR =
∞⋃

n=1

BR(Whn) ∪BR(W) (8.16)
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is compact in ZT ≡ L2((0, T )×G) ∩ C(0, T ;L1(G)). Here, hn = h02−n and
BR(Wh) and BR(W) are the sets (8.15) and (8.13) respectively.

Proof. By virtue of Theorem 8.5 and Proposition 8.6, the sets BR(Whn
) and

BR(W) are compact in L4((0, T ) × G). Now, to complete the theorem, we
apply the proof sketched in Lemma 8.3. ut

9 Weak Solution of the Discrete Stochastic Problem

Our aim here is to pass to the limit as h → 0 in the problem (4.30), (2.12), and
(2.23) in order to prove an existence theorem for the boundary value problem
(3.22), (2.2), and (2.3) for the stochastic Ginzburg–Landau equation. For this
purpose, we need the definition of a weak solution of (4.30), (2.12), and (2.23).

9.1 Definition of the weak solution for the discrete
problem

Recall that we suppose that the initial condition from (2.3) is a random
process, i.e., ψ0(x) = ψ0(x, ω) , x ∈ G, ω ∈ Ω, and we suppose that the map
ψ0 : Ω → L2(G) is measurable, i.e., ψ0 : Σ → B(L2(G)) where (Ω,Σ, m) is
the initial probability space. Moreover, we assume that the random value ψ0

and the Wiener process W (t, x, ω) defined in Sect. 3 are independent, i.e., for
each B ∈ B(C(0,∞; L2(G)) and b ∈ B(L2(G)),

m
({ω : W (·, ·, ω) ∈ B, ψ0(·, ω) ∈ b})

= m
({ω : W (·, ·, ω) ∈ B})m({ω : ψ0(·, ω) ∈ b}) .

(9.1)

Now we construct certain projections of ψ0(·, ω) and W (·, ·, ω). Using the
projection Ph : L2(G) → L2,h(Gh) defined in (4.9), we can define the pro-
jection Phψ0(ω) and PhW (t, ω) defined on (Ω,Σ,m) and taking the values
Phψ0(ω) ∈ L2,h(Gh) and PhW (t, ω) ∈ C(0,∞; L̂2,h(G)) respectively. More-
over, using the projection P ∗h : L2,h(Gh) → L̂2,h(G) ⊂ L2(G) defined in
(4.14), we can define the projections P ∗hPhψ((·, ω)), ω ∈ Ω, with values be-
longing to C(0,∞; L̂2,h(G)) ⊂ C(0,∞; L2(G)). So, using the notation

P̂h = P ∗hPh , (9.2)

where Ph is the operator (4.9) and P ∗h is the operator (4.14), we define the
random value

Ω 3 ω → P̂hψ0(·, ω) ∈ L̂2,h(G) ⊂ L2(G) (9.3)
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and the Wiener random process

Ω 3 ω → (P̂hW )(·, ·, ω) ∈ C(0,∞; L̂2,h(G)) ⊂ C(0,∞;L2(G)) . (9.4)

The relationship (9.1) for ψ0(·, ω) and W (·, ·, ω) implies the independence of
P̂h(ψ0(·, ω)) and P̂hW (·, ·, ω).

Note that the increasing filtration Σt corresponding to the Wiener process
W (t, x, ω) corresponds to the Wiener process P̂hW (t, x, ω) as well.

We define the space of functions

Uh = L2,loc(0,∞; Ĥ1
A,h(G)) ∩ CL(0,∞; L1(G)) ∩ L6,loc(0,∞;L6(G)) , (9.5)

where the index L means the Levi modulus |t ln t|1/2 for t ∈ (0, 1/e). It is
clear that Uh is a Frechet space with seminorms

‖ψ‖Uh,T
= ‖ψ‖L2(0,T ;Ĥ1

A,h(G)) + ‖ψ‖CL(0,T ;L1(G)) + ‖ψ‖L6((0,T )×G) . (9.6)

With the aid of the solution ψ(t, ω) of the problem (4.30) and (2.12), we
can define the random process

Ω 3 ω → (P ∗hψ)(·, ·, ω) ≡ ψh(·, ·, ω) ∈ Uh . (9.7)

The space Uh from (9.5) is well connected with the solution ψh but we will
need also in the following a more extensive separable Frechet space for the
solution; we have

Z = L2,loc(0,∞;L2(G)) ∩ C(0,∞;L1(G)) (9.8)

with finite seminorms given by

‖ψ‖ZT ≡ ‖ψ‖L2(0,T ;L2(G)) + ‖ψ‖C(0,T ;L1(G)) , T > 0. (9.9)

We will also use the spaces

ZT = L2(0, T ;L2(G)) ∩ C(0, T ; L1(G)),

Uh,T = L2(0, T ; Ĥ1
A,h(G)) ∩ CL(0, T ; L1(G)) ∩ L6((0, T )×G)

(9.10)

supplied with the norms (9.9) and (9.6) correspondingly.
Recall that B(Z) is a Borel σ-algebra of the space Z and BUh

(Z) = B(Z)∩
Uh. By virtue of Theorem 2.1 from [44, Chapt. 2], BUh

(Z) ⊂ B(Uh).

Definition 9.1. The weak statistical solution of (4.30), (2.12), and (2.23) is
the probability distribution of the random process (9.7), i.e.,

νh(B) = m
({ω : ψh(·, ·, ω) ∈ B}) ∀ B ∈ BUh

(Z) . (9.11)
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9.2 The equation for the weak solution of the discrete
problem

Taking the integral form of the Ito equation (7.12) and applying the operator
P ∗h from (4.14) we obtain

Lh(ψh) ≡ S[ψh(t, x)]− S[ψh,0(·)]

+

t∫

0

{
r̂−1[ψh(τ, x)]

(
(i∇h + P̂hA(x))2ψh(τ, x)− ψh + |ψh|2ψh

)

−1
2
r̂′[ψh]

∑

j,k

|Θkj |2µjXQk
(x)V (Qk)−1

}
dτ = P̂hW (t, x) .

(9.12)

Let γ0 be the restriction operator of functions f(t, ·) at t = 0, i.e., γ0f =
f(0, ·). We consider the operator

Ah ≡ (γ0, Lh) : Uh → L1(Ω)× Z , (9.13)

where Lh is the operator given in (9.12).

Proposition 9.2. The operator (9.13) is continuous.

Proof. The proof of this assertion is obvious because the space Ĥ1
A,h(G) form-

ing the space Uh is finite dimensional. ut
We want to use the operator (9.13) to rewrite the weak solution (9.11)

in some other form. Recall that the full preimage of the set B × B0, where
B ∈ Z, B0 ∈ L1(G), is defined as follows:

A−1
h (B0 ×B) = {ψ ∈ Uh : Ahψ = (γ0ψ,Lhψ) ∈ B0 ×B} . (9.14)

By virtue of Proposition 9.2, A−1
h (B0 × B) ∈ B(Uh). This full preimage is

strictly connected to the solution ψh(t, x) of the problem (9.12). Indeed, we
have

ψh(t, x, ω) = ψh(t, x, ψ0(·, ω),W (τ ∈ (0, t), ·, ω))

= A−1
h (t, x, ψ0(·, ω),W (τ ∈ (0, t), ·, ω)) ,

(9.15)

where, in contrast to (9.14), A−1
h is the inverse (i.e., uniquely valued) operator

of the operator Ah. The domain of the operator (9.15) is the set of initial
conditions and right-hand sides, where the solution of (4.30), (2.12), and
(2.23) exists and is unique and therefore the solution of (9.12) possesses the
same property. This domain is given by

D(A−1
h ) = (P̂hL1(G), P̂hŴ ) , (9.16)
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where Ŵ is the image of the Wiener process defined in Sect. 3:

Ŵ = {W (·, ·, ω), ω ∈ Ω}, W (·, ·, ω) is a Wiener process. (9.17)

Definition (9.17) implies that

Ŵ is a Λ-measurable set . (9.18)

Now for each B0 ∈ B(L1(G)) and B ∈ B(Z), we can write (see [44, p. 343])

(A∗hνh)(B0 ×B) = νh(A−1
h (B0 ×B))

= νh({ψh ∈ Uh : Ahψh ∈ P̂hB0 × P̂hB})

= m
({ω : P̂hψ0(·, ω) ∈ P̂hB0, P̂hW (·, ·, ω) ∈ P̂hB})

= P̂ ∗hµ(B0)× P̂ ∗hΛ(B) = µh(B0)Λh(B) .
(9.19)

The relation

(A∗hνh)(B0 ×B) = µh(B0)Λh(B) ∀ B0 ∈ B(L1(G)), B ∈ B(Z) (9.20)

is the desired equation for the weak statistical solution νh defined in (9.11).

10 Passage to the Limit in a Family of νhn

To take this limit, we need certain additional compactness results which we
present here.

10.1 Compactness of the family of measures νhn

Recall that hn = h02−n. First, we establish some estimates for νhn We denote
by ΓT the restriction operator on the interval (0, T ), i.e.,

ΓT ψ = ψ|(0,T ) . (10.1)

Let ZT = ΓT Z and

νhT (C) = νh(Γ−1
T C) ∀ C ∈ B(UT ) . (10.2)
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Theorem 10.1. Suppose that the distribution µ(dψ0) of the initial condition
ψ0(x, ω) satisfies the inequality

∫ (‖ψ0‖2L2(G) + ‖∇ψ0‖2L2(G) + ‖ψ0‖4L4(G)

)
µ(dψ0) < ∞ . (10.3)

Then the measure νhT satisfies the estimates

∫

ZT

(
‖ψ(t, ·)‖2L2(G) +

t∫

0

(‖∇+
h ψ(t, ·)‖2L2(G) + ‖ψ(t, ·)‖4L4(G))dt

)
νhT (dψ)

6 C1e
CT

(
1 +

∫

L2(G)

‖ψ0‖2µ(dψ0)
)

,

(10.4)∫

ZT

(
‖ψ(t, ·)‖4L4(G) +

t∫
0

‖ψ(t, ·)‖6L6(G))dτ

)
νhT (dψ)

6 C2e
Ct(1 +

∫

L2(G)

‖ψ0‖4µ(dψ0) ,

(10.5)

and ∫

ZT

(
‖ψ‖2L∞((0,T );L2(G)) + ‖ψ‖CL,T,1

)
νhT dt 6 C(T ) , (10.6)

where the constants C1, C2, and C do not depend on h and T and C(T ) does
not depend on h.

Proof. From the usual definition (10.2) and (9.11) of the measure νhT and
Propositions 8.1 and 8.2, we can immediately derive (10.4) from (5.6), (10.5)
from (5.13), and (10.6) from the bounds given in (7.1) and (7.26). ut

Our goal is to prove the weak compactness of the measures νhn . For this
purpose, we use the following well-known theorem which is proved, for ex-
ample, in [19] .

Theorem 10.2 (Prokhorov). A family M of measures defined on the Borel
σ-algebra B(Z) of a separable Banach space Z is weakly compact if

(a) sup{µ(Z) : µ ∈M} < ∞,

(b) for any ε > 0 there exists a compact set K ⊂ Z such that sup{µ(Z\K) :
µ ∈M} < ε.

Lemma 10.3. The set of measures νhnT , n ∈ N, is weakly compact on
ZT = L2((0, T )×G) ∩ C(0, T ;L1(G)).



90 Andrei Fursikov, Max Gunzburger, and Janet Peterson

Proof. We use Theorem 10.2. Since νhnT are probability measures, the con-
dition (a) of the Prokhorov theorem is satisfied. We must check condition
(b) of the theorem. For a compact set K we take the set ΘR introduced in
(8.16). By Theorem 8.7, ΘR is compact in ZT . Note that the measure νhkT

is concentrated in L2(0, T ; L̂2,hk(G)) and therefore

supp νhk
∩ΘR = BR(Whk

) ∩ supp νhkT . (10.7)

Therefore, using (10.7) and the Chebyshev inequality as well as the bounds
(10.4)–(10.6), we obtain

∫

L2(0,T×G)\ΘR

νhkT (dψ) =
∫

L2(0,T ;L̂2,hk (G))\BR(Whk
)

νhkT (dψ)

6 1
R

∫ (
‖ψ‖L2(0,T ;Ĥ1

A,hk
(G) + ‖ψ‖CL,T,1

)
νhk,T (dψ) 6 C

R
,

(10.8)

where C does not depend on k. The inequality (10.8) implies that the measure
νhm satisfies condition (b). Therefore, the assertion of the lemma follows from
Prokhorov’s theorem. ut

10.2 Passage to the limit

In this section, we demonstrate that the set of measures νhn , n ∈ N, is weakly
compact on Z and thus we can choose a subsequence that converges weakly
to ν in Z.

Theorem 10.4. The set of measures νhn , n ∈ N, is weakly compact on Z.

Proof. The proof is similar to the proof given in [44, p. 361]. ut
By virtue of Theorem 10.4, we can choose from the sequence of measures

{νhn} the subsequences {νhj} that converges weakly to ν on Z, i.e.,

νhj → ν as j →∞ weakly on Z. (10.9)

We will show that the measure ν is the weak solution (see Definition 12.1
below) of the stochastic problem (3.22), (2.2), and (2.3).

11 Estimates for the Weak Solution

We first prove an estimate for νh.
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11.1 An estimate for νh

In order to prove the analogue of the estimate given in (5.52), we have to
define the second finite difference ∆hψh(x) for ψh(x) ∈ L̂2,h(G).

Assuming that the lattice function ψ = {ψk} satisfies (2.23), we can then
define the norm

‖ψ‖2H2
A,h(Gh) = hd

∑

kh∈Gh

(|∆hψk|2 + |∇+
h ψk|2 + |ψk|2

)
. (11.1)

We set

H2
A,h(Gh) = {ψ ∈ L2,h(Gh),

ψ satisfies (2.23), supplied with the norm (11.1) } .

(11.2)

We also define the space Ĥ2
A,h(G) along with its norm as

Ĥ2
A,h(G) = P ∗hH2

A,h(Gh) ,

‖ψh‖2Ĥ2
A,h

=
∫

G

(
|∆hψh(x)|2 + |∇+

h ψh(x)|2 + |ψh(x)|2)dx .
(11.3)

Note that in a neighborhood of ∂G, the finite difference |∆hψh(x)|2 is calcu-
lated as was explained near (8.5). More precisely, to calculate the difference
|∆hψh(x)|2, we use the polyhedra Qk from (8.6) and, after these calculations,
we change these polyhedra in a neighborhood of ∂Ω on appropriate polyhe-
dra; see (4.2)–(4.5). The value of ψh(x) on this polyhedra Qk is defined by
(2.23).

The following assertion which is analogous to Propositions 8.1 and 8.2 can
be proved .

Proposition 11.1. The spaces H2
A,h(Gh) and Ĥ2

A,h(G) are isomorphic and
the norms in (11.3) and (11.1) are equivalent.

The following theorem easily results from the estimate (5.52) .

Theorem 11.2. The measure νhT satisfies the estimate

∫

ZT

(
‖∇+

h ψ(t)‖2L2(G) +

t∫

0

‖∆hψ(τ, ·)‖2L2(G) dτ
)
νh,T (dψ)

6 C1e
Ct

(
1 +

∫ (‖∇+
h ψ0‖2L2(G) + ‖ψ0‖4L4(G)

)
µ(dψ0)

)
.

(11.4)
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Recall that hn = 2−nh0. Below we will need modifications of Theo-
rems 10.1 and 11.2, where on the left-hand sides of the inequalities in these
theorems we need to replace ∇+

h and ∆h with ∇+
hm

and ∆hm respectively.
In addition, νh,T (dψ) must be changed to νhn,T (dψ) for n > m. To establish
such estimates, we prove some preliminary lemmas in the next section.

11.2 Preliminary lemmas

In this section, we provide several preliminary results which will be needed
to prove estimates for the measure ν.

Lemma 11.3. Let uk, k = 1, . . . , N , h > 0, be a lattice function. Then

N−n∑

k=1

∣∣∣∣
uk+n − uk

nh

∣∣∣∣
2

6
N∑

k=1

∣∣∣∣
uk+1 − uk

h

∣∣∣∣
2

. (11.5)

Proof. Since (a1 + · · · + aj)2 6 j(a2
1 + · · · + a2

j ) for positive a1, . . . , aj , we
have

N−n∑

k=1

∣∣∣∣
uk+n − uk

nh

∣∣∣∣
2

=
1
n2

N−n∑

k=1

∣∣∣∣∣∣

n∑

j=1

uk+j − uk+j−1

h

∣∣∣∣∣∣

2

6 1
n

N−n∑

k=1

n∑

j=1

∣∣∣∣
uk+j − uk+j−1

h

∣∣∣∣
2

6
N∑

k=1

∣∣∣∣
uk+1 − uk

h

∣∣∣∣
2

,

where to obtain the last inequality we have taken into account that the previ-
ous sum can be represented as the sum of groups of identical summands and
the number of identical summands in each group are not more than n. ut
Lemma 11.4. Let uk, k = 0, . . . , N , h > 0, be a lattice function. Then

N−n∑

k=n

∣∣∣∣
uk+n − 2uk + uk−n

(nh)2

∣∣∣∣
2

6 4
N−1∑

k=1

∣∣∣∣
uk+1 − 2uk + uk−1

h2

∣∣∣∣
2

. (11.6)

Proof. For k = 1, . . . , N−1 we set ∆huk = uk+1−2uk +uk−1. One can prove
that

uk+n − 2uk + uk−n =
n∑

j=1

j∆huk+n−j +
n−1∑

j=1

(n− j)∆huk−j .



Title Suppressed Due to Excessive Length 93

Therefore,

N−n∑

k=n

∣∣∣∣
uk+n − 2uk + uk−n

(nh)2

∣∣∣∣
2

6 2n

(nh)4

N−n∑

k=n

( n∑

j=1

j2 |∆huk+n−j |2 +
n−1∑

j=1

(n− j)2 |∆huk−j |2
)

6 2
nh4

N−n∑

k=n

( n∑

j=1

|∆huk+n−j |2 +
n−1∑

j=1

|∆huk−j |2
)

6 4
N−1∑

k=1

∣∣∣∣
∆huk

h2

∣∣∣∣
2

because the maximal number of elements in each group of identical summands
in the penultimate sum is 2n. ut

For the approximate domain Ghn
∪ ∂G+

hn
we intend to define the first and

second finite difference quotients ∇+
hm

and ∆hm with m < n. For j = 1, . . . , d
denote

Ghn(+j; hm) =
{
k ∈ Zd : khn ∈ Ghn , (k + 2n−mej)hn ∈ Ghn ∪ ∂G+

hn

}
.

Clearly, for each khn ∈ Ghn(+j; hm), the difference quotient ∂+
j,hm

uk =
(uk+2n−mej

− uk)/hm is well defined. In an analogous manner, we denote

Ghn(−j; hm) =
{
k ∈ Zd : khn ∈ Ghn , (k − 2n−mej)hn ∈ Ghn ∪ ∂G+

hn

}
.

Let

Ghn(+; hm) =
d⋂

j=1

Ghn(+j; hm), Ghn(−; hm) =
d⋂

j=1

Ghn(−j;hm) (11.7)

and

Ghn(hm) =
d⋂

j=1

(Ghn(+j; hm) ∩Ghn(−j, hm)) . (11.8)

It is clear that the subsets (11.7) and (11.8) of Ghn∩∂G+
hn

satisfy the following
properties: for all khn ∈ Ghn(+; hm), the operator ∇+

hm
uk is well defined and,

for khn ∈ Ghn(hm), the operator ∆hmuk is well defined.
We are now in a position to prove the following lemma.

Lemma 11.5. For each ψ ∈ L2,hn(Ghn)

hd
n

∑

khn∈Ghn (+;hm)

∣∣∇+
hm

ψk

∣∣2 6 ‖∇+
hn

ψ‖2L2,hn (Ghn ) (11.9)

and
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hd
n

∑

khn∈Ghn (hm)

|∆hmψk|2 6 4‖∆hnψ‖2L2,hn (Ghn ) . (11.10)

Proof. The bound (11.9) is a direct corollary of Lemma 11.3 and the bound
(11.10) follows directly from Lemma 11.4. ut

Denote
G(hm) =

⋃

khn∈Ghn (hm)

Qk , (11.11)

where the sets Qk are defined by (4.1) with h = hn. Then, using the operator
P ∗hn

defined in (4.14), we immediately obtain from Lemma 11.5 the following
assertion.

Lemma 11.6. For each ψ(x) ∈ Ĥ2
A,hn

(G)
∫

G(hm)

∣∣∇+
hm

ψ(x)
∣∣2 dx 6 C

∫

G

∣∣∇+
hn

ψ(x)
∣∣2 dx (11.12)

and ∫

G(hn)

|∆hmψ(x)|2 dx 6 C

∫

G

|∆hnψ(x)|2 dx , (11.13)

Recall that calculation of the functions from (11.12) and (11.13) near the
boundaries of G and G(hm) should be made as was explained near (8.5) and
(11.3) with h = hn. where C does not depend on ψ, n, or m.

At last we are now able to prove the following corollary of Proposition 7.1
and Theorems 10.1 and 11.2.

Theorem 11.7. Let the distribution µ(dψ0) of the initial condition ψ0(x, ω)
satisfy (10.3). Then for each m < n the measures νhn,T (dψ) satisfy the esti-
mates

∫

ZT

( T∫

0

(‖∆hmψ(τ, ·)‖2L2(G(hm)) + ‖∇+
hm

ψ(τ, ·)‖2L2(G(hm))

)
dτ

)
νhnT (dψ)

6 CT

(
1 +

∫

L2(G)

(‖ψ0‖2L2(G) + ‖ψ0‖4L4(G) + ‖∇ψ0‖2L2(G)

)
µ0(dψ0) ,

(11.14)
where the constant CT depends only on T . Moreover,

∫

ZT

sup
t∈(0,T )

‖∇+
hm

ψ(t, ·)‖L2(G(hm))νhn,T
(dψ) 6 C(T ) < ∞ ∀T > 0 , (11.15)

where the constant C(T ) does not depend on hm or hn,T .
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Proof. The theorem follows immediately from Lemma 11.6, Proposition 7.1,
and Theorems 10.1 and 11.2. ut

11.3 Estimates for the measure ν

We are now in a position to prove the main theorem of this section. We set

H1
∆(G) =

{
u(x) ∈ H1(G) : ∆u(x) ∈ L2(G),

‖u‖2H1
∆(G) =

∫

G

(|∆u|2 + |∇u|2 + |u|2)dx < ∞
}

.
(11.16)

Theorem 11.8. Let the distribution µ(dψ0) of the initial condition ψ0 satisfy
(10.3). Then the statistical solution ν constructed in (10.9) is supported on
the space

supp ν ⊂ L2,loc(0,∞; H1
∆(G)) ∩ L6,loc(0,∞; L6(G)) ∩ CL(0,∞; L1(G)) .

(11.17)
Moreover, the following estimates hold. For every T > 0 there exists a con-
stant CT depending only on T such that

∫

UT

( T∫

0

‖∆ψ‖2L2(G) + ‖∇ψ‖2L2(G) + ‖ψ‖6L6(G)dτ
)
νT (dψ)

6 CT

[
1 +

∫

L2(G)

(‖ψ0‖2L2(G) + ‖ψ0‖4L4(G) + ‖∇ψ0‖2L2(G)

)
µ(dψ0)

]

(11.18)∫

UT

(‖ψ‖2L∞(0,T ;L2(G)) + ‖∇ψ‖2L∞(0,T ;L2(G)))νT (dψ) 6 C(T ) < ∞ ∀T > 0

(11.19)
and ∫

ZT

‖ψ‖CL(0,T ;L1(G))ν(dψ) 6 C(T ) < ∞ ∀T > 0 . (11.20)

Proof. Let φR(λ) ∈ C∞(R+), φR(λ) = λ for λ < R, and φR(λ) = R + 1 for
λ > R + 1. Then the bound (11.14) implies the inequality

∫
φR

( T∫

0

(‖∇+
hm

ψ(τ, ·)‖2L2(G(hm)) + ‖∆hmψ(τ, ·)‖2L2(G(hm))
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+‖ψ(τ, ·)‖2L2(G)

)
dτ

)
νhnT (dψ) 6 ĈT

≡ CT (1 +
∫

L2(G)

(‖ψ0‖2L2(G) + ‖ψ0‖4L4(G) + ‖∇ψ0‖2L2(G)

)
µ(dψ0) .

(11.21)
Since the functional under the integral on the left-hand side of (11.21) is

bounded and continuous on the space Z from (9.8), we can pass to the limit
as n →∞ in (11.21). As a result, we obtain

∫
φR

( T∫

0

(‖∇+
hm

φ(τ, ·)‖2L2(G(hm)) + ‖∆hm
ψ(τ, ·)‖2L2(G(hm))

+‖ψ(τ, ·)‖2L2(G)

)
dτ

)
νT (dψ) 6 ĈT .

(11.22)

Using the Beppo Levi theorem, we can pass to the limit in (11.22) as R →∞
to obtain

∫ ( T∫

0

(‖∇+
hm

ψ(τ, ·)‖2L2(G(hm)) + ‖∆hmψ(τ, ·)‖2L2(G(hm))

+‖ψ(τ, ·)‖2L2(G)

)
dτ

)
νT (dψ) 6 ĈT .

(11.23)

It is easy to prove that

‖∆hmu‖L2(G(hm)) → ‖∆u‖L2(G) < ∞

‖∇+
hm

u‖L2(G(hm)) → ‖∇u‖L2(G) < ∞
(11.24)

as hm → 0 if and only if u ∈ H1
∆(G). Passing to the limit in (11.23) as

hm → 0, with the help of the Fatou theorem and taking into account (11.24),
we find that the measure νT (dψ) satisfies the inequality

∫ T∫

0

‖ψ(τ, ·)‖2H1
∆(G)dτ νT (du) 6 ĈT (11.25)

and therefore it is supported on the space L2(0, T ;H1
∆(G)). Since the em-

beddings H1
∆(G) ⊂ H1(G) ⊂ L6(G) are continuous when the dimension of

G = d 6 3, the norm ‖u‖L6 is continuous on H1
∆(G). Therefore, using as the

above function φR(λ), we can pass to the limit as n →∞ in the term of the
inequality (10.5) containing ‖ψ‖6L6(G). As a result, we obtain
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∫ T∫

0

‖ψ(τ, ·)‖6L6(G)dτ νT (dψ) 6 ĈT . (11.26)

The inequality (11.19), as well as the bound (11.20) can be obtained with the
help of the method used in [44, p. 363]. ut

12 The Equation for the Weak Solution of the
Stochastic Ginzburg–Landau Problem

Roughly speaking, the weak solution is a measure satisfying a certain equa-
tion. We begin with the formal derivation of this equation.

12.1 Definition of the weak solution

The stochastic Ginzburg–Landau equation can be written as the Ito differ-
ential equation (3.22) with boundary and initial conditions (2.2) and (2.3)
respectively. We let dW (t, x) denote the white noise corresponding to the
Wiener process defined in Sect. 3.1, ψ0(x) = ψ0(x, ω) ∈ L4(G) ∩H1(G) is a
random initial condition with distribution µ(dψ0), and ψ0(x) and W (t, x) are
independent. Let S(λ) be the function given in (7.7). Applying formally the
Ito formula to the function S(ψ(t, x)) and writing the resulting Ito differential
in integral form, we obtain

L(ψ) ≡ S[ψ(t, x)]− S[ψ0(x)]

+

t∫

0

(
r̂−1[ψ(τ, x)]

{
(i∇+ A(x))2ψ(τ, x)− ψ(τ, x) + |ψ|2ψ(τ, x)

}

+
1
2
r̂′[ψ]K11(x, x)

)
dτ = W (t, x) ,

(12.1)
where K11(x, x) is defined in (3.14).

We introduce the spaces

UT = L2(0, T ; H2
A(G))∩CL(0, T ; L1(G))∩L6((0, T )×G), T > 0 , (12.2)

and

U = L2,loc(0,∞; H2
A(G)) ∩ CL(0,∞;L1(G)) ∩ L6,loc(0,∞; L6(G)) (12.3)
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with the norm for space (12.2)

‖ψ‖U,T = ‖ψ‖L2(0,T ;H2
A(G)) + ‖ψ‖CL(0,T :L1(G)) (12.4)

and with the topology for the space (12.3) defined by the seminorms (12.4)
with arbitrary T > 0.

Similarly, we consider the continuous operator

A = (γ0, L) : U → L1(G)× Z . (12.5)

Repeating formally the derivation of the equation for the weak statistical
solution of the approximation for the Ginzburg–Landau equation, we obtain
the following analogue of (9.20):

(A∗ν)(B0 ×B) = µ(B0)Λ(B) ∀ B0 ∈ B(L1(G)), B ∈ B(Z) . (12.6)

Definition 12.1. The probability measure ν on B(U) is called the weak
statistical solution of the stochastic Ginzburg–Landau equation (3.22) if it
is concentrated on U , satisfies the inequalities (11.18), (11.19), and (11.20),
and satisfies (12.6), where A is the operator from (12.5) and (12.1).

12.2 The first steps of the proof for ν to satisfy (12.6)

We will show that the measure ν defined in (10.9) satisfies (12.6). Since the
other properties in Definition 12.1 are already proven for ν, this gives that
ν is a weak statistical solution of the stochastic Ginzburg–Landau equation.
We can show that (12.6) is equivalent to the equality

∫
η(γ0ψ)φ(L(ψ))ν(dψ) =

∫
η(ψ0)µ(dψ0)

∫
φ(W )Λ(dW ) (12.7)

for all η ∈ Cb(L2(G)) and φ ∈ Cb(C(0,∞; L1(G)) (recall that Cb(H) is the
space of bounded, continuous functions on the Banach space H) in the same
way as the analogous assertion was proved in [44, p. 364].

We already proved that there exists a strong stochastic solution of the
problem (9.12). Therefore, (9.12) implies (9.20) and (9.20) implies that

E(η(γ0ψh)φ(Lh(ψh)) =
∫

η(P̂hψ0)µ(dψ0)
∫

φ(P̂hW )Λ(dW ) , (12.8)

where P̂h is the operator defined in (9.2). Performing a change of variables
on the left-hand side of (12.8), we obtain

∫
η(γ0P̂hψ)φ(Lh(P̂hψ)νh(dψ)
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=
∫

η(P̂hψ0)µ(dψ0)
∫

φ(P̂hW )Λ(dW ) . (12.9)

We derive (12.7) by passing to the limit in (12.9) as h = hj → 0.
Since for each ψ0 ∈ L2(G) and W ∈ C(0,∞; L1(G)) we have P̂hψ0 → ψ0

as h → 0 in L2(G) and P̂hW → W as h → 0 in C(0,∞;L1(G)), we have the
following formulas:

∫
η(P̂hψ0)µ(dψ0) →

∫
η(ψ0)µ(dψ0)

∫
φ(P̂hW )Λ(dW ) →

∫
φ(W )Λ(dW )

(12.10)

as h → 0.
We now pass to the limit on the left-hand side of (12.9). By virtue of the

arguments in [44, p. 364], it is enough to prove (12.7) only for cylindrical
functionals φ, i.e., for φ that actually depend only on a finite number of
arguments and is constant with respect an infinite part of the arguments.
But each such functional φ(u) can be approximated by a finite sum of the
form

φ(u) ≈
∑

k

ei[u,vk],

where

[u, vk] =

∞∫

0

∫

G

uvkdxdt.

Consequently, we can modify φ(Lh(P̂hψ)) in (12.9) using ei[Lh(P̂hψ),v]. We
can now write

∫
η(γ0P̂hψ)φ(Lh(P̂hψ))νh(dψ) ;

∫
η(γ0P̂hψ)ei[Lh(P̂hψ),v]νh(dψ) . (12.11)

We pass to the limit as h → 0 on the right-hand side of (12.11).
Taking v ∈ L2(0,∞; H2(G)), v(t, x) = 0 for t > tv, where H2(G) is the

usual Sobolev space, we can rewrite (9.12) as follows:

[Lh(ψ), v] = f1,h(ψ)+ f2,h(ψ)+ f3,h(ψ) with P̂hψ changed on ψ , (12.12)

where

f1,h(ψ) =

∞∫

0

∫

G

{
S(ψ(t, x)− S(γ0P̂hψ(·, x))



100 Andrei Fursikov, Max Gunzburger, and Janet Peterson

+

t∫

0

(
r̂−1[ψ(τ, x)]|ψ|2ψ(τ, x)− ψ(τ, x)

)
dτ

}
v(t, x) dxdt , (12.13)

f2,h(ψ) =
1
2

∞∫

0

∫

G

t∫

0

r′[ψ(τ, x)]

( ∑

kh,jh∈Gh

XQj
(x)V (Qk)−1|Θjk|2µk

)
dτ v(t, x) dxdt ,

(12.14)

and

f3,h(ψ) =

∞∫

0

∫

G

t∫

0

r̂−1[ψ(τ, x)]
(
(i∇h + P̂hA(x))2ψ(τ, x)

)
v(t, x) dτdxdt ,

(12.15)

where recall that r̂−1[ψ(τ, x)]z, z ∈ C, is understood in the meaning of (3.20)
and (3.21). First of all, we rewrite f3,h(ψ) by summing by parts. We suppose
that each v(x) ∈ H2(G) is extended onto G(ε) = {x ∈ Rd : ρ(x,G) =
infy∈G |x − y| < ε}, where ε > 0 is fixed, by a fixed extension operator
E : H2(G) → H2(G(ε)) and we denote this extension Ev(x) by v(x). Thus,
for small enough h, the difference quotients ∂+

hj
v(x) = 1

h (v(x + ejh)− v(x)),
j = 1, . . . , d, are well defined for almost all x ∈ G.

Lemma 12.2. The expression (12.15) is equivalent to

f3,h(ψ)

=

∞∫

0

∫

G

t∫

0

{
r̂−1[ψ(τ, x)]

(
(∇+

h − iP̂hA(x)
)
ψ(τ, x))∇+

h v(t, x)

+r̂−1[ψ(τ, x)]
(
(i∇+

h + P̂hA(x))ψ(τ, x)
)
P̂hA(x)v(t, x)

+
d∑

j=1

(
∂−hj

r̂−1[ψ(τ, x)]
)

(
∇+

h − iP̂hA(x− hej)ψ(τ, x− hej)
)
v(t, x)

}
dτdxdt

(12.16)

for each ψ(τ, x) = P̂hψ(τ, x) ∈ L2(0,∞; Ĥ2
A,h(G) with the space Ĥ2

A,h(G)
defined in (11.3), v(t, x) ∈ L2(0,∞; H2(G(ε)), and v(t, x) = 0 for t > t0.

Proof. We denote
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φ(τ, x) = (∇+
h − iP̂hA(x))ψ(τ, x)

≡ {∂+
hj
− iP̂hAj(x))ψ(τ, x), j = 1, . . . , d} = {φj(τ, x), j = 1, . . . , d}

and rewrite (12.15) as

f3,h(ψ) = −
∞∫

0

∫

G

t∫

0

r̂−1[ψ(τ, x)]

( d∑

j=1

(∂−hj
− iP̂hAj(x))φj(τ, x)

)
v(t, x) dτdxdt .

(12.17)

Taking into account the identity

f(x)∂−hj
g(x) = ∂−hj

(f(x)g(x))− (∂−hj
f(x))g(x− hej)

and summing by parts, we obtain

−
d∑

j=1

∞∫

0

∫

G

t∫

0

r̂−1[ψ(τ, x)](∂−hj
φj(τ, x))v(t, x) dτdxdt

= −
d∑

j=1

∞∫

0

∫

G

t∫

0

{
∂−hj

(r̂−1[ψ(τ, x)](φj(τ, x)))v(t, x)

−(∂−hj
r̂−1[ψ(τ, x)])(φj(x− hej))v(t, x)

}
dτdxdt

= −
d∑

j=1

∞∫

0

∫

G

t∫

0

{
r̂−1[ψ(τ, x)](φj(τ, x))∂+

hj
v(t, x)

+(∂−hj
r̂−1[ψ(τ, x)])(φj(x− hej))v(t, x) dτdxdt .

(12.18)

Note that the term with the integral over ∂G is equal to zero because ψ(τ, x) ∈
Ĥ2

A,h(G) and by virtue of Lemma 2.3. The relations (12.17) and (12.18) imply
(12.16). ut

Now we have to pass to the limit as h → 0 in the integral
∫

η(γ0ψ)ei[Lh(ψ)v]νh(dψ) =
∫

η(γ0ψ)ei(f1(ψ)+f2,h(ψ)+f3,h(ψ))νh(dψ) .

(12.19)
To do this, we first have to study f2,h(ψ) and f3,h(ψ).
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12.3 Investigation of f2,h(ψ)

For f2,h(ψ) we prove the following result.

Lemma 12.3. The following relation holds:
∑

kh,jk∈Gh

XQj
(x)|Θjk|2µk

=
∑

r

KrrXQr (x) → K(x, x) as h → 0 a.e. x ∈ G ,
(12.20)

where K(x, y) = 2(K11(x, y)− iK12(x, y)) is the correlation function (3.14) of
the Wiener process W (t, x) and K(x, x) = 2K11(x, x).

Proof. Recall that the matrix Θ`j from (4.19) is unitary, i.e.,
∑

k

ΘmkΘik = δmi and
∑

k

ΘkmΘki = δmi . (12.21)

We can rewrite (4.19) as follows:
∑

lr

ΘljKlrΘrk = δjkµk . (12.22)

Multiplying both parts of (12.22) by Θmj , summing over j, and using (12.21),
we obtain ∑

r

KmrΘrk = Θmkµk . (12.23)

Multiplying both sides of (12.23) by Θjk, summing over k, and using (12.21),
we obtain

Kmj =
∑

k

ΘmkΘjkµk . (12.24)

Multiplying both sides of (12.24) by XQm(x)XQj (y) and summing on m, j
such that mh ∈ Gh and jh ∈ Gh, we obtain

∑

m,j

KmjXQm(x)XQj (y) =
∑

k

µk

∑

m,j

ΘmkΘjkXQm(x)XQj (y) . (12.25)

Setting y = x in (12.25) and using (4.17), we obtain
∑

k

µk

∑
m

|Θmk|2XQm(x) =
∑
m

KmmXQm(x)

=
∑
m

XQm(x)V −2(Qm)
∫

Qm

∫

Qm

K(x, y) dxdy .

(12.26)
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Clearly, the right-hand side of (12.26) tends to 2K11(x, x) for almost all x ∈ G
as h → 0. ut

12.4 Subspaces of piecewise linear functions

The investigation of f3,h(ψ) is more difficult. First, we introduce the space
of piecewise linear functions on G. For kh ∈ Gh we consider the piecewise
linear function

εk(x) =





1, x = kh,

0, x 6∈ cube with tops (k ± ej)h, j = 1, . . . , d,

piecewise linear otherwise.
(12.27)

We define PLh(G) as the linear space of functions generated by the basis
{εk(x), kh ∈ Gh} and restricted to G. If this space is supplied with the norm
of L2(G), we use the notation PLh(G) as well. If PLh(G) is supplied with
the norm

‖u‖2PL1
h

= ‖∇+
h u‖2L2(G) + ‖u‖2L2(G) ,

we denote this space as PL1
h(G). If it is supplied with the norm

‖u‖2PL2,h = ‖∆hu‖2L2(G) + ‖∇+
h u‖2L2(G) + ‖u‖2L2(G) ,

then we denote this space as PL2
h(G). (For the calculation of ∇+

h u and ∆hu
in these norms the functions εk(x) with kh ∈ ∂G+

h and with coefficients from
(2.23) should also be used.)

Theorem 12.4. There exist constants C1 and C2, independent of h, such
that for every u ∈ PL1

h(G)

C1‖∂ju‖2L2(G) 6 ‖∂+
j,hu‖2L2(G) 6 C2‖∂ju‖2L2(G), j = 1, . . . , d . (12.28)

Proof. The estimates are established with the help of direct calculations. ut
Note that the second estimate in (12.28) holds for each u ∈ H1(G), where,

in the definition of ∂+
j,hu, a certain extension operator Eδ : H1(G) → H1(G(δ)

is used, where G(δ) is a neighborhood of G with dist(∂G, ∂G(δ)) = δ with
δ > 0 is fixed.

Theorem 12.5. There exists a topological isomorphism

Rh : L̂2,h(G) → PLh(G) . (12.29)

Moreover, the following estimates for the operator Rh hold:
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‖Rhu‖PL1
h(G) 6 C1‖u‖Ĥ1

A,h(G) 6 C2‖Rhu‖PL1
h(G) (12.30)

‖Rhu‖PL2
h(G) 6 C1‖u‖Ĥ2

A,h(G) 6 C2‖Rhu‖PL2
h(G) . (12.31)

Proof. The isomorphism Rh is established as follows. For each u(x) ∈ L̂2,h(G)
we take

Ru(kh) = u(kh) ∀ kh ∈ Gh ∪ ∂G+
h . (12.32)

(For calculating u(kh) for kh ∈ ∂G+
h we use the boundary conditions (2.23).)

Since in both the spaces L̂2,h(G) and PLh(G) the values of the points kh ∈
Gh ∪ ∂G+

h define the function uniquely for each x ∈ G, (12.32) establishes
the isomorphism. The estimates (12.30) and (12.31) are proved by direct
calculations. ut

12.5 The measures ν̂hn and their weak compactness

We need the following analogue of the compactness lemma given in Lemma 8.3.

Lemma 12.6. For each R > 0 the set

ΘR =
∞⋃

n=1

BR(PL2
hn

(G)) ∪BR(H2
A(G)) (12.33)

is compact in H1(G) if BR(H) = {x ∈ H : ‖x‖H 6 R} for each Hilbert
space H.

Proof. Similarly to Lemma 8.3, it suffices to choose from the sequence uh ∈
BR(PL2

hn
) a subsequence convergent in H1(G). Clearly, we can choose a

subsequence um → û weakly in H1(G) because, by virtue of (12.30) and
(12.31), un ∈ BR(PL2

hn
) ⊂ BR(H1(G)). The following bound holds:

∫

G

∣∣∂−jh∂`hψ(x)
∣∣2dx 6 C

∫

G

∣∣∂−j,h∂+
`hψ(x)

∣∣2dx 6 C1‖ψ‖PL2
h(G) , (12.34)

where C and C1 do not depend on h. Indeed, the first inequality follows
clearly from (12.28) and the second is a corollary of the discrete analogue of
the elliptic theory. Recall that by the definition of ‖ψ‖PL2

h(G), the boundary
condition for ψ is fixed by (2.23). Since the right-hand side of (12.34) with
ψ = un is bounded by C1R, (12.34) implies that for each ε > 0 there exists
δ > 0 such that for h < δ
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∫
|(∇um(x− ejh)−∇um(x)

)2
dx < ε.

By this inequality we can choose a subsequence {uk} ⊂ {um} strongly con-
verging in H1(G). ut

Using Lemma 12.6 analogously to Theorem 8.7, we can prove the following
theorem.

Theorem 12.7. For each R > 0 the set

Θ̂R =
∞⋃

n=1

BR(Wh,T ) ∪BR(WT ) (12.35)

is compact in L2(0, T ; H1(G)) ∩ L4(0, T : L4(G)) ∩ C(0, T ;L1(G)), where

Wh,T = L2(0, T ;PL2
hn

(G)) ∩ CL(0, T ; L1(Ω)),

WT = L2(0, T ;H1
∆(G)) ∩ CL(0, T ; L1(Ω)) ∩ L6(0, T : L6(G))

(12.36)

and where H1
∆(G) is the space defined in (11.16).

Clearly, the isomorphism (12.29) generates the isomorphism

Rh : L2(0, T ; Ĥ1
A,h(G)) → L2(0, T ; PL1

h(G)) . (12.37)

Using (12.37) and the weak solution νhn(dψ) defined in (9.11), we can define
the following measure ν̂h,T on L2(0, T ;PL1

h(G)):

ν̂hT (B) = νhT (R−1
h B) ∀ B ∈ B(L2(0, T ;PL1

h(G))) . (12.38)

The definition (12.38), the estimates (10.4) and (10.6) for νhT , and the in-
equalities (11.14) and (12.31) imply the following inequality for the measures
ν̂hnT :

∫ ( T∫

0

‖ψ(t, ·)‖2PL2
h(G)dt + ‖ψ‖CL(0,T ;L1(G))

)
ν̂hnT 6 CT (12.39)

with CT independent of h.
Using this estimate, the compactness result in Theorem 12.7, and the

Prokhorov theorem (see Theorem 10.2), by following the proof of Lemma 10.3,
we obtain the following result.

Theorem 12.8. The measures ν̂hnT (ω) are weakly compact on L2(0, T ; H1(G)).
Moreover,

ν̂hk,T → νT as k →∞ weakly on L2(0, T ; H1(G)) , (12.40)
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where hk is a subsequence of the sequence hj in (10.9), νT = Γ ∗T ν, where νT

is the measure (12.40), ν is the measure (10.9), and ΓT is the operator (10.1).

Proof. It was already explained that ν̂hk,T → ν̂T weakly on L2(0, T ; H1(G)),
where ν̂T is a certain measure. To prove Γ ∗T ν = ν̂T , we have to take into
account the fact that

RhP̂hu → u as h → 0 ∀ u ∈ L2(G) . (12.41)

Indeed, by virtue of (12.38),
∫

f(u)ν̂h,T (du) =
∫

f(RhP̂hv)νh,T (du)

if f(u) is continuous on L2
(
(0, T )×G

)
. Passing to the limit as h → 0, with

the help of (12.41), we obtain ν̂T = νT = Γ ∗T ν. ut

12.6 The final steps for passage to the limit

Now we are in a position to pass to the limit in (12.19). Let Nh = R−1
h be

the operator inverse to (12.29). The equality (12.38) can be rewritten as

νhT (B) = ν̂h,T (N−1
h B) ∀ B ∈ B(L2(0, T ; L2(G)) (12.42)

and using this, we can rewrite (12.19) in the form
∫

η(γ0ψ)ei[Lh(ψ),v]νh(dψ) =
∫

η(γ0Nhu)ei[Lh(Nhu),v]ν̂h(du) . (12.43)

The most difficult term for passing to the limit in (12.19) as h → 0 is the
term f3,h(Nhu) from (12.16). In that integral, u(τ, x) ∈ L2(0, T ;PL1

h(G)).
But as follows from the lemma formulated below, the operator Nh can be
extended from PL1

h(G) to H1(G).

Lemma 12.9. The operator Nh can be extended from PL1
h(G) to H1(G).

Moreover, for each u ∈ H1(G)

‖∇+
h u−∇u‖L2(G) → 0 as h → 0 . (12.44)

Proof. In addition to the basis {εk(x), kh ∈ Gh∪∂G+
h }, we introduce in PLh

an associated basis {ε∗k(x), kh ∈ Gh ∪ ∂G+
h } that is defined by the condition

∫

G(δ)

εj(x)ε∗k(x) dx = δkj , (12.45)
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where δkj is the Kronecker symbol and G(δ) = {x ∈ Rd : ρ(x,G) =
infy∈G |x− y| < δ} is a neighborhood of G containing the set

⋃
kh∈Gh∪∂G+

h

Qk

with Qk defined in (4.1)-(4.5) and (8.6). To construct {ε∗k(x)}, we look for
these functions in the form

ε∗k(x) =
∑

jh∈Gh∪∂G+
h

αkjεj(x) , (12.46)

where αkj is the solution of the system of linear algebraic equations obtained
after substitution (12.46) into (12.45). By the definition of the operator Nh,

Nhf(x) =
∑

jh∈Gh∪∂G+
h

fjXQj
(x), where f(x) =

∑

kh∈Gh∪∂G+
h

fkεk(x) ∈ PLh

and XQj
(x) is the characteristic function of the set Qj . The extension of this

operator on H1(G(δ)) is defined as follows:

Nhf(x) =
∑

kh∈Gh∪∂G+
h

XQj (x)
∫

G(δ)

f(x)ε∗j (x) dx . (12.47)

The relation (12.44) is verified by direction calculations. ut
Using Lemma 12.9, it is easy to prove the following result.

Lemma 12.10. (a) For each sufficiently small h the functional f3,h(Nhu)
defined in (12.16) is continuous in u ∈ L2,loc(0,∞;H1(G)).

(b) For each u ∈ L2,loc(0,∞; H1(G))

f3,h(Nhu) →h→0

∞∫

0

∫

G

t∫

0

{
r̂−1[u(τ, x)]

(
(∇− iA(x))u(τ, x)

)∇v(t, x)

−r̂−1[u(τ, x)]
(
(i∇+ A(x))u(τ, x)

)
A(x)v(t, x)

+
d∑

j=1

(
∂j r̂−1[u(τ, x)]

)(
(∇− iA(x))u(τ, x))v(t, x)

}
dτdxdt .

(12.48)

Lemmas 12.3 and 12.10 imply the following assertion.

Lemma 12.11. (a) For each sufficiently small h the functional [Lh(Nhu), v]
is continuous in u ∈ L2,loc(0,∞; H1(G)) ∩ L4,loc(0,∞;L4(G)).

(b) For each u ∈ L2,loc(0,∞; H1(G)) ∩ L4,loc(0,∞; L4(G))

[Lh(Nhu), v] → [Lw(u), v] as h → 0 , (12.49)
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where

[Lw(u), v] =

∞∫

0

∫

G

{(
S(u(t, x)− S(γ0u(·, x))

+

t∫

0

r̂−1[u(τ, x)](|u|2u(τ, x)− u(τ, x)) dτ
}
v(t, x)

+

t∫

0

1
2
r′[u(τ, x)] dτK(x, x)v(t, x)

+

t∫

0

{
r̂−1[u(τ, x)]

(
(∇− iA(x))u(τ, x)

)∇v(t, x)

+r̂−1[u(τ, x)]
(
(i∇+ A(x))u(τ, x)

)
A(x)v(t, x)

+
d∑

j=1

(
∂j r̂−1[u(τ, x)]

)(
(∇− iA(x))u(τ, x)

)
v(t, x)

}
dτ

}
dxdt

(12.50)
and where the index w in [Lw(u), v] means that (12.50) is the weak form of
the operator L.

Now we are in a position to prove the main lemma.

Lemma 12.12. The following relation holds:
∫

η(γ0ψ)ei[Lh(ψ),v]νh(dψ) →h→0

∫
η(γ0ψ)ei[Lw(ψ),v[ν(dψ) , (12.51)

where ν(dψ) is the measure from (10.9) and [Lw(ψ, v] is defined in (12.50).

Proof. By virtue of (12.42), it is sufficient to prove
∫

η(γ0Nhu)ei[Lh(Nhu),v]ν̂h(du) →h→0

∫
η(γ0u)ei[Lw(u),v]ν(du) . (12.52)

Theorem 12.8 and the continuity on L2,loc(0,∞; H1(G)) ∩C(0,∞; L1(G))∩
L4,loc(0,∞; L4(G)) of the functional u → ei[Lw(u),v]γ0(u) imply

∫
η(γ0u)ei[Lw(u),v]ν̂h(du) →

∫
η(γ0, u)eiLw(u),v]ν(du), h → 0 . (12.53)

By virtue of Theorem 12.7, for each R, the set Θ̂R defined in (12.35) is
compact in L2(0, T ;H1(G)) ∩ L4((0, T ) × G) ∩ C(0, T ;L1(G)), where T is
chosen in such a way that v(t, x) ≡ 0 for t > T . Thus, by Lemma 12.11, for
each R > 0,

γ0(Nhu)ei[Lh(Nhu),v] → γ0(u)ei[Lw(u),v] as h → 0 (12.54)
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uniformly over u ∈ Θ̂R. In addition, for every ε > 0 there exists R > 0 such
that ∫

QR

∣∣γ0(Nhu)ei[Lh(Nhu),v]
∣∣ν̂h(du) < ε ∀ h , (12.55)

where Qk = L2(0, T ;H1(G))\Θ̂R. The relations (12.53)–(12.55) imply (12.52).
ut

Thus, we obtain from (12.9)–(12.11) and (12.51) the equality
∫

η(γ0ψ)ei[Lw(ψ),v]ν(dψ) =
∫

η(ψ0)µ(dψ0)
∫

ei[W,v]Λ(dW ) (12.56)

for each v(t, x) ∈ L2(0,∞; H1(G)), v(t, x) ≡ 0 for t > tv. Now we are in a
position to prove (12.7).

12.7 Proof of the equality (12.7)

By virtue of Theorem 11.8, the statistical solution ν(dψ) (more precisely, its
restriction νT (dψ) on the time interval (0, T )) is supported on the space WT

defined in (12.36).

Theorem 12.13. The weak statistical solution ν(dψ) satisfies Equation (12.7)
for each η ∈ Cb(L2(G)) and φ ∈ Cb(0,∞; L2(G)).

Proof. The main step of the proof is to show that, besides (12.56), the weak
statistical solution ν(dψ) satisfies the equality

∫
η(γ0ψ)ei[L(ψ),v]ν(dψ) =

∫
η(ψ0)µ(dψ0)

∫
ei[w,v]Λ(dW ) (12.57)

for each v(t, x) ∈ L2(0,∞; H1(G)) with v(t, x) = 0 for t > tv, where L(ψ)
is the strong form of the operator L defined in (12.1). Recall that H1

0 (G) =
{u(x) ∈ H1(G) : u|∂G = 0}; we must prove that

[Lw(ψ), v] = [L(ψ), v] ∀ v ∈ L2(0,∞; H1
0 (G)), v = 0 for t > tv. (12.58)

By virtue of definitions (12.1) and (12.50) of L(ψ) and [Lw(ψ), v], to prove
(12.58) we have to establish the equality

∞∫

0

∫

G

t∫

0

r̂−1[ψ(τ, x)]
(
(i +∇A(x))2ψ(τ, x) dτ v(t, x) dxdt
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=

∞∫

0

∫

G

t∫

0

{
r̂−1[ψ(τ, x)]

(
(∇− iA(x))ψ(τ, x)∇v(t, x)

+r̂−1[ψ(τ, x)]
(
i∇+ A(x))ψ(τ, x)

)
A(x)v(t, x)

+
d∑

j=1

(
∂j r̂−1[ψ(τ, x)]

(
(∂j − iA(x))ψ(τ, x)

)
v(t, x)

}
dτdxdt .

(12.59)

To prove this equality, one has to integrate by parts in the first term on
the right-hand side and take into account that v|∂G = 0. This integration
by parts is well justified because ν(dψ) = νtv

(dψ) is supported on Wtv
and

therefore, in (12.58), ψ ∈ Wtv
.

Consequently, (12.56) with v ∈ L2(0,∞; H1
0 (G)) and (12.58) imply (12.57).

Since both parts of equality (12.57) are continuous functionals with respect
to v ∈ L2((0, T ) ×G) with v = 0 for t > T for arbitrary T > 0, (12.57) can
be extended by continuity of v ∈ L2((0, T ) × G) ( v = 0 for t > T ) for each
T > 0. Now (12.7) follows from (12.57) for each cylindrical η and φ and, after
that, for arbitrary η ∈ Cb(L2(G)) and φ ∈ Cb(0,∞; L2(G)). ut

13 Certain Properties of the Weak Statistical Solution ν

In this section, we show that the statistical solution ν(dψ) is supported on
solutions ψ of Equation (12.1) and these solutions ψ satisfy the boundary
condition (2.2) on ∂G.

13.1 Boundary conditions

The following easy assertion is true.

Lemma 13.1. Let H1
∆(G) and H2

A(G) denote the spaces defined in (11.16)
and (2.5) respectively. Then

H2
A(G) = {ψ ∈ H1

∆(G) : (i∇+ A)ψ · n|∂G = 0} ≡ H̃ , (13.1)

where n is the unit outer normal to ∂G and the last identity is the definition
of H̃.

Proof. It is enough to prove the inclusion H̃ ⊂ H2
A(G) because the inverse

inclusion is evident. If ψ ∈ H̃, then
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∆ψ = f ∈ L2(G), (i∇+ A)ψ · n|∂G = 0 . (13.2)

This boundary value problem is elliptic because its boundary condition sat-
isfies the Lopatinsky condition. That is why the inequality

‖ψ‖H2(G) 6 C‖f‖L2(G) = C‖∆ψ‖L2(G)

holds, where C does not depend on ψ. This inequality implies H̃ ⊂ H2
A(G).

ut
Recall that the space UT is defined in (12.2).

Theorem 13.2. For each T > 0 the restriction νT (dψ) of the statistical so-
lution ν(dψ) on the time interval (0, T ) is supported on the space UT .

Proof. Since νT (dψ) is supported on the space WT defined in (12.36), we have
to prove, by virtue of Lemma 13.1, that there exists a νT (dψ)-measurable set
F ⊂ WT such that νT (F) = 1 and (i∇+A)ψ·n|∂G = 0 for each ψ ∈ F . Taking
η ≡ 1 in (12.56), we differentiate this equality twice on v ∈ L2(0,∞;H1(G))
such that v(t, x) ≡ 0 for t > T . As a result, we obtain

∫
[Lw(ψ)u]2ei[Lw(ψ),v]νT (dψ) =

∫
[W,u]2ei[w,v]ΛT (dW ) , (13.3)

where u ∈ L2(0, T ;H1(G)) is arbitrary. We take v ≡ 0 in (13.3) and
then integrate by parts on the left-hand side of this equality as we did
in (12.59). This integration by parts is well-justified because the inclu-
sion u ∈ L2(0, T ; H1(G)) implies that u|∂G ∈ L2(0, T ; H1/2(∂G)) and, as
is well-known (see [17, 31]), the inclusion ψ ∈ L2(0, T ; H1

∆(G)) implies
(i∇+ A)ψ · n|∂G ∈ L2(0, T : H−1/2(∂G)).

Since u|∂G 6= 0, in contrast to (12.58), after integration by parts we obtain

∫ ( T∫

0

∫

∂G

t∫

0

r̂−1[ψ(τ, x)](∇− iA(x))ψ(τ, x)) · n u(t, x) dτdxdt

+[L(ψ), u]
)2

νT (du) =
∫

[W,u]2ΛT (dW ) .

(13.4)

Instead of u(t, x)in (13.4), we now take the sequence un(t, x) that satisfies
the properties:

a. un(t, x) → 0 in L2((0, T )×G);
b. for each n, un(t, x)|∂G = ∂tv(t, x), where v(t, x) ∈ H1

0 (0, T ;H1/2(∂G)
is fixed.

Passing to the limit in (13.4) as n → ∞ and after that integrating by parts
on the left-hand side of the resulting equality, we obtain
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∫ ( T∫

0

∫

∂G

r−1[ψ(t, x)]
(
(∇− iA(x))ψ(t, x) · n)

v(t, x) dxdt
)2

νT (du) = 0 .

(13.5)
Now we choose a countable dense set {vn} in L2(0, T ; H1/2(G)) and, for each
n, put vn in (13.5). As a result, for each n we obtain the measurable set
Fn ⊂ WT such that

νT (Fn) = 1 ,

T∫

0

∫

∂G

r−1[ψ(t, x)]
(
(∇− iA)ψ(t, x) · n)

vn(t, x) dxdt = 0 ∀ ψ ∈ Fn .

(13.6)

We take F =
⋂
n
Fn. Clearly, νT (F) = 1 and

r̂−1[ψ(t, x)]
(
(∇− iA(x))ψ(t, x) · n)|(0,T )×∂G = 0 ∀ ψ ∈ F . (13.7)

Since r−1(Re ψ(t, x)) > 0 and r−1(Imψ(t, x)) > 0 for all (t, x) ∈ (0, T ) × G,
(13.7) implies

νT (F) = 1, (i∇+ A)ψ(t, x) · n|(0,T )×∂G = 0 ∀ ψ ∈ F .

These equalities complete the proof of the theorem. ut

13.2 Solvability for almost all data

Recall that the initial measure µ is supported on the space H1(G) and the
Wiener measure Λ is supported on the set Ŵ defined in (9.17).

Theorem 13.3. (a) For µ×Λ-almost all data (ψ0,W ) there exists a solution
ψ ∈ U of the problem (12.1).

(b) The weak statistical solution ν is supported on solutions of the problem
(12.1) and (2.2).

Proof. Since U defined in (12.3) is a separable Frechet space, by the Riesz
theorem (see [19]), for any N > 0 there exists a compact set KN ⊂ U such
that

ν(KN ) > 1− 1
N

. (13.8)

The continuity of the operator (12.5) implies that AKN is compact in L1(G)×
Z and therefore AKN ∈ B(L1(G)× Z). We set
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FN = AKN ∩ {H1(G)× Ŵ}, F =
∞⋃

N=1

FN . (13.9)

Since H1(G) ∈ B(L1(G)) (see [44, Theorem 2.1]) and the set Ŵ is Λ-
measurable, each set from (13.9) is µ× Λ-measurable. By virtue of (12.6),

ν(A−1(H1(G)× Ŵ )) = µ(H1(G)) · Λ(Ŵ ) = 1 . (13.10)

Thus, taking into account (13.8)-(13.10), we obtain

µ× Λ(F ) = ν(A−1F ) > ν(A−1(H1(G)× Ŵ ) ∩
∞⋃

N=1

KN )

= ν(
∞⋃

N=1

KN ) > lim
N→∞

ν(KN ) = 1 .

(13.11)

Directly from the definition A−1F = {ψ ∈ U : Aψ ∈ F}, we obtain

F ∈ AU . (13.12)

The relations (13.11) and (13.12) prove statement (a) of the theorem. We set

K =
( ∞⋃

N=1

KN

) ∩ A−1(H1(G)× Ŵ ) . (13.13)

The relations (13.8), (13.10), and (13.13) imply ν(K) = 1, and the relations
(13.9) and (13.12) imply that AK = F . The last two relations prove statement
(b) of the theorem. ut

14 Uniqueness of the Weak Statistical Solution

The main step in proving the uniqueness of a weak statistical solution for the
stochastic Ginzburg–Landau problem is a proof of uniqueness for (12.1) with
fixed (non-stochastic) data (ψ0(x),W (t, x)).

14.1 Reduction of uniqueness for statistical solution ν
to uniqueness of the solution for (12.1)

Let F and K be the sets (13.9) and (13.13) respectively. In Theorem 13.3,
we proved that the set F is µ× Λ-measurable, K is ν-measurable,
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(µ× Λ)(F ) = 1, ν(K) = 1, and AK = F , (14.1)

where A is the operator (12.5), ν is a weak statistical solution, µ is the initial
measure, and Λ is the Wiener measure.

Lemma 14.1. If, for each initial datum (ψ0, W ) ∈ F , an individual solution
ψ of the problem (12.1) and (2.2) is unique in K, then the statistical solution ν
of the stochastic Ginzburg–Landau problem (3.22), (2.2), and (2.3) is unique.

Proof. In Theorem 13.3, we proved that each weak statistical solution ν cor-
responding to the given initial measure µ and the Wiener measure Λ is sup-
ported on the set K defined in (13.13). Since for each datum (ψ0,W ) ∈ F ,
the solution ψ of (12.1) and (2.2) is unique in K, the full preimage

A−1F = {ψ ∈ K : Aψ ∈ F} (14.2)

consists of the unique element ψ ∈ K for each given datum (ψ0,W ) ∈ F .
Therefore, a weak statistical solution ν(dψ) is defined uniquely by the formula

ν(B) = ν(B ∩K) = µ(γ0B)Λ(LB) ∀ B ∈ B(U) . (14.3)

ut

14.2 Proof of the uniqueness of the solution of (12.1)
and (2.2): the first step

Suppose that for a given datum (ψ0,W ) ∈ F there exist two solutions
ψi(t, x) ∈ K, i = 1, 2, of the problem (12.1) and (2.2). Then

L(ψ1)− L(ψ2) = 0, (ψ1 − ψ2)|t=0 = 0 , (14.4)

where L is the operator defined in (12.1). Denote

σ(t, x) = S[ψ1(t, x)]− S[ψ2(t, x)] . (14.5)

Since ψi ∈ K ⊂ U , i = 1, 2, where U is the space (12.3), the relations
(12.1) and (14.4) imply that for each T > 0, σ(t, x) ∈ H1(0, T ; L2(G)), i.e.,
σ is differentiable in t. Thus, we can differentiate both parts of (14.4) with
respect to t. Doing this, we obtain by (12.1):

∂tσ(t, x) + r̂−1[ψ1]{(i∇+ A)2ψ1 − ψ1 + |ψ1|2ψ1}

−r̂−1[ψ2]{(i∇+ A)2ψ2 − ψ2 + |ψ2|2ψ2)}

+(r′[ψ1]− r′[ψ2])K11(x, x) = 0 .

(14.6)
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Multiplying (14.6) by σ(t, x) and integrating over G, we obtain

1
2
∂t‖σ(t, ·)‖2L2(G) + T1 + T2 + T3 + T4 = 0 , (14.7)

where

T1 =
∫

G

(
r̂−1[ψ1]{(i∇+ A)2ψ1} − r̂−1[ψ2]{(i∇+ A)2ψ2}

)
σ dx , (14.8)

T2 = −
∫

G

(
r̂−1[ψ1]ψ1 − r̂−1[ψ2]ψ2

)
σ dx , (14.9)

T3 =
∫

G

(
r′[ψ1]− r′[ψ2]

)
{K11(x, x)}σ dx , (14.10)

and

T4 =
∫

G

(
r̂−1[ψ1]{|ψ1|2ψ1} − r̂−1[ψ2]{|ψ2|2ψ2}

)
σ dx . (14.11)

Taking into account

∇xS[ψ(t, x)] = r̂−1[ψ(t, x)]∇xψ(t, x) (14.12)

and performing a transformation analogous to the one in (12.59), we obtain

T1 =
∫

G

|∇xσ(t, x)|2 dx + T5 + T6 + T7 + T8 + T9 , (14.13)

where

T5 =
∫

G

(
r̂−1[ψ2]{iAψ2} − r̂−1[ψ1]{iAψ1}

)
· ∇σ dx , (14.14)

T6 =
∫

G

(
r̂−1[ψ1]{i∇ψ1} − r̂−1[ψ2]{i∇ψ2} ·A(x)σ dx , (14.15)

T7 =
∫

G

(
r̂−1[ψ1]{Aψ1} − r̂−1[ψ2]{A(x)ψ2} ·A(x)σ dx , (14.16)

T8 =
∫

G

( d∑

j=1

∂̂jr−1[ψ1]{∂jψ1} −
d∑

j=1

∂̂jr−1[ψ2]{∂jψ2}
)
σ dx , (14.17)

and
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T9 =
∫

G

( d∑

j=1

∂̂jr−1[ψ1]{iAjψ1} −
d∑

j=1

∂̂jr−1[ψ2]{iAjψ2}
)
σ dx . (14.18)

We estimate these terms in the following three subsections.

14.3 Estimation of the terms T2 to T5, T7, and T9

We begin with a generalization of the bound (7.25). Let r(λ), S(λ), and R(λ)
be the functions (3.19), (7.7), and (7.23) respectively. Since by (7.23) we have
λ = R(S(λ)), we obtain

1 = R′(S(λ))S′(λ) =
R′(S(λ))

r(λ)
⇒ R′(S(λ)) = r(λ) , (14.19)

where we have used (7.7). Therefore, for a real-valued function f(λ) ∈
C1(R1), we obtain, by the Lagrange theorem and (14.19),

f(λ2)− f(λ1) = f(R(S2))− f(R(S1)) 6 sup
λ∈[λ1,λ2]

|f ′(λ)r(λ)| |S2 − S1| ,
(14.20)

where we have used the notation Si = S(λi), i = 1, 2. For f(λ) = λ/r(λ) the
function f ′(λ)r(λ) is bounded and therefore, by (14.20), (3.20), and (3.21),
the term (14.9) admits the bound

|T2| 6 C

∫

G

|σ(t, x)|2 dx . (14.21)

Since A(x) ∈ C2(G), we obtain in an analogous manner that

|T7| 6 C

∫

G

|σ(t, x)|2 dx (14.22)

and
|T3| 6 C

∫
|K11(x, x)||σ(t, x)|2 dx . (14.23)

We impose on the correlation function K11(x, x) the following additional con-
dition:4

4 Note that when dimG = 2, condition (14.24) follows from condition (3.17). Indeed, using

the well-known representation K(x, y) =
∞∑

j=1
λjej(x)ej(y) of the trace class kernel, one can

easily derive from (3.17) that K(x, x) ∈ W 1
1 (G) ⊂ L2(G) (the last enclosure follows from

Sobolev embedding theorem).
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K11(x, x) ∈ Lp(G) with p > 1 if dim G = 2 and

with p > 3
2 if dim G = 3.

(14.24)

Suppose that d = dim G = 2. Using the Sobolev embedding theorem
(Hs(G) ⊂ Lq(G) for s > d( 1

2 − 1
q )), the interpolation inequality ‖u‖Hs 6

C‖u‖1−s
L2 ‖u‖s

H1 for 0 < s < 1, and the notation 1
q = 1 − 1

p , we obtain from
(14.23) that

|T3| 6 C‖K11‖Lp‖σ‖2L2q 6 C‖K11‖Lp‖σ‖2
H1−1/q

6 C‖K11‖Lp‖σ‖2/q
L2 ‖σ‖2−2/q

H1 6 ε‖σ‖2H1 + Cε‖K11‖q
Lp‖σ‖2L2 .

(14.25)

The proof of (14.25) in the case d = dim G = 3 is absolutely the same. Do-
ing elementary algebraic transformations and using (14.20) and the Sobolev
embedding theorem (C(G) ⊂ H2(G) for d 6 3), we obtain

|T4| 6
∫ (∣∣r̂−1[ψ1]ψ1 − r̂−1[ψ2]ψ2

∣∣ |ψ1|2

+
∣∣r̂−1[ψ2]ψ2

∣∣(|ψ1|2 − |ψ2|2)
)
|σ| dx

6 C

∫ (|ψ1|2|σ|2 + (|ψ1|2 + |ψ2|2)|σ|2
)

dx

6 C
(
1 + ‖ψ1‖2H2 + ‖ψ2‖2H2

) ∫ |σ|2 dx

(14.26)

if d = dim G 6 3.
After elementary transformations, we obtain by (14.20) and the Sobolev

embedding theorem

|T5| 6 C

∫

G

(∣∣∣∣
Im ψ2

r(Re ψ2)
− Im ψ1

r(Re ψ1)

∣∣∣∣

+
∣∣∣∣

Re ψ2

r(Im ψ2)
− Re ψ1

r(Im ψ1)

∣∣∣∣
)
|A · ∇σ| dx

6 C

∫

G

(
|Imψ2 − Im ψ1|

r(Re ψ2)
+ |Imψ1|

∣∣∣∣
1

r(Re ψ1)
− 1

r(Re ψ2)

∣∣∣∣

+
|Re ψ2 − Re ψ1|

r(Im ψ1)
+ |Reψ1|

∣∣∣∣
1

r(Im ψ1)
− 1

r(Imψ2)

∣∣∣∣
)
|∇σ| dx
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6 C

∫

G

(1 + |ψ1|+ |ψ2|)(|S(Re ψ1)− S(Re (ψ2)|

+|S(Im ψ1)− S(Im (ψ2)|
)
|∇σ| dx

6 C(1 + ‖ψ1‖H2(G) + ‖ψ2‖H2(G))
∫
|σ| |∇σ| dx

6 ε‖∇σ‖2L2(G) + Cε(1 + ‖ψ1‖H2(G) + ‖ψ2‖H2(G))
∫
|σ|2 dx .

(14.27)

To bound T9, we first do some simple transformations using (14.12) to obtain

T9 = −
∫

G

{(r′(Re ψ1)
r(Re ψ1)

(∇S(Re ψ1) ·A
)
Im ψ1

−r′(Re ψ2)
r(Re ψ2)

(∇S(Re ψ2) ·A
)
Im ψ2

)

−i
r′(Im ψ1)
r(Im ψ1)

(∇S(Im ψ1) ·A
)
Re ψ1

−i
r′(Im ψ2)
r(Im ψ2)

(∇S(Im ψ2) ·A
)
Re ψ2

)}
σ dx

so that

T9 = −
∫

G

({(r′(Re ψ1)
r(Re ψ1)

∇Re σ ·A Im ψ1 +∇S(Re ψ2)·

A
[(r′(Re ψ1)

r(Re ψ1)
− r′(Re ψ2)

r(Re ψ2)

)
Imψ1+

r′(Re ψ2)
r(Re ψ2)

(Im ψ1 − Imψ2)
]}

−i
{r′(Im ψ1)

r(Im ψ1)
∇Im σ ·A Re ψ1

+∇S(Im ψ)·A
[(r′(Im ψ1)

r(Im ψ1)
− r′(Im ψ2)

r(Im ψ2)

)
Re ψ1

+
r′(Im ψ2)
r(Im ψ2)

(Re ψ1 − Re ψ2)
]})

σ dx .

(14.28)
A simple bound of the right-hand side of (14.28) and the use of (14.20) gives
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|T9| 6 C

∫

G

|∇σ| |ψ1| |σ|+ |∇ψ2| (1 + |ψ1|+ |ψ2|) |σ|2 dx . (14.29)

Using the same tools as in (14.25), we have (when dim G 6 3)
∫

(1 + |ψ1|+ |ψ2|)|∇ψ2| |σ|2 dx

6 C
(
1 + ‖ψ1‖L6 + ‖ψ2‖L6

)‖∇ψ2‖L3‖σ‖2L4

6 C
(
1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)‖∇ψ2‖H1/2‖σ‖2H3/4

6 C
(
1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)‖∇ψ2‖1/2
L2 ‖ψ2‖1/2

H2 ‖σ‖1/2
L2 ‖σ‖3/2

H1

6 ε‖∇σ‖2L2

+Cε

(
1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)4‖∇ψ2‖2L2‖ψ2‖2H2‖σ‖2L2 .

(14.30)

Using (14.29) and (14.30), we obtain

|T9| 6 ε‖∇σ‖2L2 + Cε

(
1 + ‖∇ψ1‖L2 + ‖∇ψ2‖L2

)4‖∇ψ2‖2L2‖ψ2‖2H2‖σ‖2L2 .
(14.31)

14.4 Estimation of T6 and T8

Using (14.12), we obtain

T6 =
∫

G

(( ∇Imψ2

r(Re ψ2)
− ∇Im ψ1

r(Re ψ1)

)

+i

( ∇Re ψ1

r(Im ψ1)
− ∇Re ψ2

r(Im ψ2)

))
·Aσ dx

so that

T6 =
∫

G

{(r(Im ψ2)
r(Re ψ2)

∇S(Im ψ2)− r(Im ψ1)
r(Re ψ1)

∇S(Im ψ1)
)
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−i
(r(Re ψ2)

r(Im ψ2)
∇S(Re ψ2)− r(Re ψ1)

r(Im ψ1)
∇S(Re ψ1)

)}
·Aσ dx

=
∫

G

{(−r(Im ψ2)
r(Re ψ2)

∇Im σ +
(r(Im ψ2)

r(Re ψ2)
− r(Im ψ1)

r(Re ψ1)

)
∇S(Im ψ1)

)

−i
(−r(Re ψ2)

r(Im ψ2)
∇Re σ

+
(r(Re ψ2)

r(Im ψ2)
− r(Re ψ1)

r(Im ψ1)

)
∇S(Re ψ1)

)
·Aσ dx .

(14.32)

Estimating with the help of (14.20), we obtain the bound

|T6| 6
∫

G

{
(1 + |ψ2|)|∇σ|+ |r(Im ψ2)r(Re ψ1)

−r(Re ψ2)r(Im ψ1)| |∇ψ1|
}|σ| dx

6
∫

G

{
(1 + |ψ2|)|∇σ|+

(
|r(Im ψ2)− r(Im ψ1)|r(Re ψ1)

+r(Im (ψ1)|r(Re ψ1)− r(Re (ψ2)|
)
|∇ψ1|

}|σ| dx

6 C

∫

G

(1 + |ψ2|)|∇σ| |σ|+ (1 + |ψ1|2 + |ψ2|2)|∇ψ1| |σ|2 dx .

(14.33)

We assume now that d = dimG 6 2. Then
∫

(1 + |ψ1|2 + |ψ2|2)|∇ψ1| |σ|2 dx

6 C
(
1 + ‖ψ1‖2L12 + ‖ψ2‖2L12

)‖∇ψ1‖L3‖σ‖2L4

6 C
(
1 + ‖ψ1‖2H1 + ‖ψ2‖2H1

)‖ψ1‖H4/3‖σ‖2H1/2

6 C
(
1 + ‖ψ1‖2H1 + ‖ψ2‖2H1

)‖ψ1‖2/3
H1 ‖ψ1‖1/3

H2 ‖σ‖L2(‖∇σ‖L2 + ‖σ‖L2)

6 ε‖∇σ‖2L2 + Cε

(
1 + ‖ψ1‖H1 + ‖ψ2‖H1

)16/3‖ψ1‖2/3
H2 ‖σ‖2L2 .

(14.34)
Now (14.33) and (14.34) imply
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|T6| 6 ε‖∇σ‖2L2

+Cε

{(
1 + ‖ψ1‖H1 + ‖ψ2‖H1

)16/3‖ψ2‖H2)2/3
}
‖σ‖2L2 .

(14.35)

Finally we estimate the term T8. By virtue of (3.20), (3.21), and (14.5)
and through the use of the notation [∇S]2 = |∇Re S|2 + i|∇Im S|2, we can
write

T8 =
∫

G

(
r̂′[ψ1][∇S[ψ1]]2 − r̂′[ψ2][∇S[ψ2]]2

)
σ dx

=
∫

G

(
̂(r′[ψ1]− r′[ψ2][∇S[ψ1]]2+r̂′[ψ2]([∇S[ψ1]]2 − [∇S[ψ2]]2)

)
σ dx .

(14.36)
Bounding (14.36) with the help of (14.20) and (14.5), we obtain

|T8| 6
∫

G

(
|σ|2|∇ψ1|2 + |∇σ| |σ|(|∇ψ1|+ |∇ψ2|)

)
dx . (14.37)

Assume that d =dim G 6 2. Then
∫

G

|σ|2|∇ψ1|2 dx 6 ‖σ‖2L4‖∇ψ1‖2L4 6 ‖σ‖2H1/2‖∇ψ1‖2H1/2

6 ‖σ‖L2‖σ‖H1‖∇ψ1‖L2‖ψ1‖H2

6 ε(‖∇σ‖2L2 + ‖σ‖2L2) + Cε‖σ‖2L2‖∇ψ1‖2L2‖ψ1‖2H2

and
∫

G

|∇σ| |σ|(|∇ψ1|+ |∇ψ2|) dx 6 ‖σ‖L6‖∇σ‖L2(‖∇ψ1‖L3 + ‖∇ψ2‖L3)

6 ‖σ‖H2/3‖∇σ‖L2

(‖∇ψ1‖H1/3 + ‖∇ψ2‖H1/3

)

6
(
‖σ‖1/3

L2 ‖∇σ‖5/3
L2 + ‖∇σ‖L2‖σ‖L2

)

(
‖∇ψ1‖2/3

L2 ‖ψ1‖1/3
H2 + ‖∇ψ2‖2/3

L2 ‖ψ2‖1/3
H2

)

6 ε‖∇σ‖2L2 + Cε‖σ‖2L2

(
‖∇ψ1‖4L2‖ψ1‖2H2 + ‖∇ψ2‖4L2‖ψ2‖2H2 + 1

)
.

The last two inequalities and (14.37) imply
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|T8| 6 ε‖∇σ‖2L2 + Cε‖σ‖2L2

(
‖∇ψ1‖4L2‖ψ1‖2H2 + ‖∇ψ2‖4L2‖ψ2‖2H2 + 1

)
.

(14.38)

Remark 14.1. We estimated all the terms except T6 and T8 under the as-
sumption that d = dim G 6 3. We cannot estimate the terms T6 and T8

under this assumption. We are forced to assume that d = dim G 6 2 when
we bound T6 and T8.

14.5 Uniqueness theorems

We are now in a position to prove a uniqueness theorem for individual solu-
tions of the problem (12.1) and (2.2).

Theorem 14.2. Let d = dim G = 2, and let the correlation function
K11(x, x) for the Wiener measure Λ belong to Lp(G) with a certain p > 1.5

Then for each datum (ψ0,W ) ∈ F a solution ψ ∈ K of the problem (12.1)
and (2.2) is unique. (Here F and K are the sets defined in (13.9) and (13.13)
respectively.)

Proof. Assume that, for a datum (ψ0,W ) ∈ F there exist two solutions ψ1

and ψ2. Then for the function σ defined in (14.5) the following estimate is
derived from (14.7) and (14.13):

1
2
∂t‖σ(t, ·)‖2L2 +

∫

G

|∇xσ(t, x)|2 dx 6 |T2|+ · · ·+ |T9| . (14.39)

Using the estimates (14.21), (14.22), (14.25)–(14.27), (14.31), (14.35), and
(14.38), we obtain

∂t‖σ(t, ·)‖2L2 + ‖∇σ(t, ·)‖2L2 6 ε
(‖∇σ(t, ·)‖2L2 + ‖σ‖2L2

)

+
(
Cε + C

(
1 + ‖ψ1‖2H2 + ‖ψ2‖2H2

)(
1 + ‖∇ψ1‖6L2 + ‖∇ψ2‖6L2

))‖σ‖2L2 .

(14.40)

By virtue of (11.18) and (11.19), for each T > 0 the following inclusions
hold:

ψ1 ∈ L∞(0, T ; L2(G)), ∇ψi ∈ L∞(0, T ;L2(G)), ∆ψi ∈ L2(0, T ; L2(G))
(14.41)

for i = 1, 2. Since the ψi satisfy the boundary condition (2.2), we have, by
virtue of the estimates for the solution of the elliptic boundary value problem,

5 The last condition follows from the assumptions (3.16) and (3.17).
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‖ψi‖2H2(G) 6 C
(‖∆ψi‖2L2(G) + ‖∇ψi‖2L2(G) + ‖ψi‖2L2(G)

)
for i = 1, 2 .

(14.42)
The bounds (14.41) and (14.42) imply that for each T > 0 the following
estimate for the expression from the right-hand side of (14.40) holds:

T∫

0

(
Cε+C

(
1+‖ψ1‖2H2+‖ψ2‖2H2

)
(1+‖∇ψ1‖6L2+‖∇ψ2‖6L2

))
dt < ∞ . (14.43)

Therefore, moving the term ε‖∇σ‖2L2 from the right-hand side of (14.40) to
the left-hand side and applying to the result the Gronwall inequality, we find
that σ(t, x) ≡ 0. ut

Lemma 14.1 and Theorem 14.2 imply the following result.

Theorem 14.3. Let the assumptions of Theorem 14.2 hold. Then the weak
statistical solution ν of the Ginzburg–Landau equation (3.22) is uniquely de-
fined by the initial measure µ and the Wiener measure Λ.

We consider now the case of additive white noise when d = dim G = 3.

Theorem 14.4. Let d = dim G = 3 and r(λ) ≡ ρ1, and let K11(x, x) ∈
Lp(G) with p > 3

2 , where K11(x, y) is the correlation f unction for the Wiener
measure Λ. Then for each datum (ψ0,W ) ∈ F a solution ψ ∈ K of the
problem (12.1) and (2.2) is unique. (Here, F and K are the sets defined in
(13.9) and (13.13) respectively.)

Proof. Taking into account the proof of Theorem 14.2, it is enough to es-
tablish the bound (14.40) that follows from (14.39) and the estimates for
|Tj |, j = 2, . . . , 9. Recall that, except for j = 6 and 8, estimates for all |Tj |
were obtained for d = dim G 6 3. So we have to estimate |T6| and |T8|. Since
r(λ) ≡ constant, the equality ∂jr

−1 ≡ 0 holds and therefore, by (14.17),
T8 = 0. By virtue of (14.5), (14.12), and (14.15), we obtain for r(λ) ≡ ρ1:

|T6| =
∣∣∣
∫

G

i∇σ ·A(x)σ dx
∣∣∣ 6 ε‖∇σ‖2L2(G) + Cε‖σ‖2L2(G) .

This complete the proof of estimate (14.40) and the proof of the theorem. ut
Lemma 14.1 and Theorem 14.4 imply the following result.

Theorem 14.5. Let the assumptions of Theorem 14.4 hold. Then the weak
statistical solution ν of the Ginzburg–Landau equation (3.22) is uniquely de-
fined by the initial measure µ and the Wiener measure Λ.
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15 The Strong Statistical Solution of the Stochastic
Ginzburg–Landau Equation

Here, we construct the strong statistical solution, prove its uniqueness, and
show that it satisfies not only Equation (12.1), but the problem (3.22), (2.2),
and (2.3) as well.

15.1 Existence and uniqueness of a strong statistical
solution

Recall that, in Sect. 3, an abstract probability space (Ω, Σ,m(dω)), a ran-
dom Wiener process W : Ω → C(0,∞; L2(G)), and a random initial condition
ψ0 : Ω → L1(G) were introduced such that ψ0(t, ω) and W (t, x, ω) are inde-
pendent. In addition, the Wiener measure Λ(dW ) is a probability distribution
of W (t, x, ω) and µ(dψ0) is a probability distribution of the initial condition
ψ0(t, ω). Above, we proved the existence of a weak statistical solution ν(Γ ),
Γ ∈ B(U), that satisfies (12.6) with the operator A defined in (12.1) and
(12.5). Based on this existence theorem, we proved in Theorem 13.3 that
there exists an µ× Λ-measurable set F , defined in (13.9), such that for each
datum (ψ0,W ) ∈ F there exists a solution ψ ∈ K of (12.1) (the set K is
defined in (13.13)). Moreover, in Theorem 14.2, we proved that this solution
ψ is unique in K. This means that the operator

A−1 ≡ (L, γ0)−1 : F → K , (15.1)

where L is defined in (12.1), is uniquely defined. We introduce the set

Ω0 = {ω ∈ Ω : (ψ0(·, ω); W (·, ·, ω) ∈ F} . (15.2)

Since, by (13.11), µ× Λ(F ) = 1 we obtain

m(Ω0) = 1 . (15.3)

We define the random function

ψ(t, x, ω) =

{
(L, γ0)−1

(
ψ0(·, ω),W (·, ·, ω)(t, x), ω ∈ Ω0,

0, ω ∈ Ω \Ω0 .
(15.4)

Analogous to the approach in [44, Chapt. 10, Proposition 4.3], one can
prove the measurability of the map

ψ : (Ω, Σ) → (U ,B(U)) . (15.5)
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The relations (15.4) and (12.6) imply that the weak statistical solution ν(dψ)
is a probability distribution of the random map (15.4). By definition, the
random map (15.4) satisfies (12.1) for m-almost all ω ∈ Ω. Theorem 14.2
implies that the solution (15.4) and (15.5) is defined uniquely by the random
datum (ψ0(·, ω),W (·, ·, ω)).

Note that the assumption (10.3) on the initial measure µ(dψ0) implies that
the initial random value ψ0(t, ω) satisfies

∫ (
‖ψ0‖2L2(G) + ‖∇ψ0‖L2(G) + ‖ψ0‖4L4(G)

)
m(dω) < ∞ . (15.6)

Moreover, Theorem 11.8, (2.5), and (13.1) imply that the following inequali-
ties hold:

∫

UT

(
‖ψ‖2L∞(0,T ;H1(G)) +

T∫

0

(‖ψ‖2H2(G) + ‖ψ‖6L6(G)

)
dt

)
m(dω)

6 CT

(
1 +

∫ (‖ψ0‖2H1(G) + ‖ψ0‖4L4(G)

))
m(dω)

(15.7)

and
∫

UT

‖ψ‖CL(0,T ;L1(G))m(dω) 6 CT

(
1 +

∫(‖ψ0‖2H1(G)+‖ψ0‖4L4(G)

)
m(dω)

)
.

(15.8)
Thus, we have proved the following result.

Theorem 15.1. Assume that the random initial value ψ0(x, ω) and the
Wiener process W (t, x, ω) are independent and ψ0 satisfies (15.6). Then the
definition (15.2) and (15.4) of the strong statistical solution ψ(t, x, ω) is cor-
rect. ψ(x, ω) satisfies (12.1) for m-almost all ω and, by virtue of this equation,
ψ is defined uniquely by the datum (ψ0(·, ω), W (·, ·, ω)). Moreover, ψ satisfies
the bounds (15.7) and (15.8).

15.2 On one family of scalar Wiener processes

In order to complete our investigation, we have to prove that the random
process (15.4) satisfies the stochastic Ginzburg–Landau equation (3.22) or
(what is equivalent) (3.24). To do this, we have to provide some preliminary
results.

Since the function K(x, y) from (3.14) is the kernel of the correlation
operator for the complex Wiener process W (t, x, ω) and this operator is
self-adjoint non-negative and of trace-class one, the set of all eigenfunctions
{ej(x), j = 1, 2, . . .} of this operator composes an orthonormal basis in the
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complex space L2(G). Moreover, if λ1 > λ2 > · · · > λk > · · · > 0 are the
corresponding eigenvalues, then the following identity holds:

K(x, y) =
∞∑

j=1

λjej(x)ej(y) . (15.9)

We introduce the following family of scalar (complex-valued) Wiener pro-
cesses:

Wj(t, ω) =
∫

G

W (t, x, ω)ej(x) dx for j = 1, 2, . . .. (15.10)

Then, evidently,

W (t, x, ω) =
∞∑

j=1

Wj(t, ω)ej(x) . (15.11)

Recall that for each random function f(ω) the following notation is used:

Ef =
∫

Ω

f(ω)m(dω) . (15.12)

Lemma 15.2. For the Wiener processes (15.10) the following identities hold:

EWj(t)Wm(s) = 0 ∀ j, m ∈ N (15.13)

and
EWj(t)Wm(s) = t ∧ s λmδjm , (15.14)

where δjm is the Kronecker delta symbol.

Proof. To prove (15.13), we substitute (15.11) into (3.11), multiply the re-
sulting inequality by ej(x)em(y), and integrate with respect to x and y. To
prove (15.14), we substitute (15.11) into (3.14) and repeat the steps indicated
above. ut

As is well-known, (15.13) and (15.14) are equivalent to the independence
of Wj(t) and Wm(s) for each j and m and to Wj(t) and Wm(s) for j 6= m.

Consider now the question of the independence of Re Wj(t) and Im Wm(s)
that are defined by

Wj(t) = Re Wj(t) + iIm Wj(t) . (15.15)

Lemma 15.3. For the Wiener processes Re Wj(t) and ImWm(s) the follow-
ing identities hold:

E Re Wj(t)Re Wm(s) = E Im Wj(t)Im Wn(s) =
1
2
t ∧ s δjmλm (15.16)
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and
E Re Wj(t)Im Wm(s) = 0 . (15.17)

Proof. Substitution of (15.15) into (15.13) and (15.14) gives

E Re Wj(t)Re Wm(s)− E ImWj(t)Im Wm(s)

+iE Re Wj(t)Im Wm(s) + iE ImWj(t)Re Wm(s) = 0
(15.18)

and

E Re Wj(t)Re Wm(s) + E Im Wj(t)Im Wm(s)

−iE ReWj(t)Im Wm(s) + iE Im Wj(t)Re Wm(s) = λj t ∧ s δjm ,
(15.19)

respectively. In fact, (15.18) and (15.13) are four linear algebraic equations in
terms of four unknown quantities. Solving these equations, we obtain (15.16)
and (15.17). ut

15.3 Equation for a strong statistical solution

We are now in a position to prove that the strong statistical solution ψ(t, x),
constructed in Sect. 15.1, satisfies the Ginzburg–Landau equation (3.22) or,
what is equivalent, (3.24). Here, we understand the Ito integral in (3.24) using
the decomposition (15.11):

ψ(t, x) +

t∫

0

(
(i∇+ A)2ψ(s, x)− ψ(s, x) + |ψ(s, x)|2ψ(s, x)

)
ds

=
∞∑

j=1

t∫

0

r̂[ψ(s, x)]{ej(x)dWj(t)}
)

+ ψ0(x) .

(15.20)

The integral on ds in (15.20) is understood as a Bochner integral for a function
with values in L2(G). To explain the meaning of the stochastic integral in
(15.20), we first write, using (3.20) and (3.21), the identity

t∫

0

r̂[ψ(s, x)]
{
ej(x) dWj(t)

}
= Re ej(x)

t∫

0

r(Re ψ(s, x)) dRe Wj(s)

− Im ej(x)

t∫

0

r(Re ψ(s, x) dIm Wj(s)
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+i
{
Re ej(s)

t∫

0

r(Im ψ(s, x)) dIm Wj(s)

+Im ej(s)

t∫

0

r(Im ψ(s, x)) dRe Wj(s)
}

.

(15.21)

The stochastic integrals on the right-hand side of (15.21) are understood in
the usual classical sense (see, for example, [26]) for each fixed x ∈ G because
ψ(s, x) ∈ L2(0, T ; H2(G)) ⊂ L2(0, T ; C(G)).

Multiplying both parts of (15.21) by an arbitrary v(x, ω) ∈ L2(G × Ω),
integrating on x over G, squaring, applying Doob’s inequality (see [26, p.
174], and taking into account (15.16), we obtain, for each T > 0,

E sup
t∈[0,T ]

∣∣∣∣∣∣

∫

G

v(x)

t∫

0

r̂[ψ(s, x)]
{
ej(x)dWj(s)

}
dx

∣∣∣∣∣∣

2

= E sup
t∈[0,T ]

∣∣∣∣∣∣

t∫

0

∫

G

v(x)r̂[ψ(s, x)]
{
ej(x)dxdWj(s)

}
∣∣∣∣∣∣

2

6 CλjE

T∫

0

(∫

G

|v(x)| |ej(x)| |r[ψ(s, x)]| dx
)2

ds

6 CλjE‖v‖2L2

(
1 + E‖ψ‖2L2(0,T ;H2(G))

)
,

(15.22)

where C does not depend on j. Since
∑
j

λj 6 C, the inequality (15.22)

proves that the series on the right-hand side of (15.20) converges weakly in
L2(G×Ω). Thus, all terms in (15.20) are well-defined.

Theorem 15.4. Let the conditions of Theorem 15.1 be fulfilled. Then the
random process ψ(t, x, ω) defined in (15.4) satisfies Equation (15.20).

Proof. We apply the Ito formula (see [26, Chapt. 6, Sect. 5]) 6 to the stochas-
tic integral S[ψ(t, x)] that is defined by (12.1). Note that, by (15.11), the
stochastic integral from (12.1) can be rewritten as follows

6 In [26], the Ito formula has been proved for a finite-dimensional vector-valued Wiener
process W(t) = (Wj(t)), j = 1, . . . , n. In order to extend this proof to a stochastic integral
with an infinite-dimensional vector-valued Wiener processes as in (15.20), it is enough to
apply the arguments that were used above to explain the meaning of the stochastic integral
in (15.20).
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dS[ψ(t, x)] + r̂−1[ψ(t, x)]
{
(i∇+ A)2ψ(t, x)− ψ(t, x) + |ψ|2ψ(t, x)

}

+
1
2
r̂′[ψ]K11(x, x) =

∞∑

j=1

ej(x)dWj(t) .

(15.23)
By virtue of (15.16) and (15.17), for the calculation of dWj(t)dWm(t) in the
Ito formula, we can use the identities

dRe WjdReWm = dIm WjdIm Wm =
1
2
λjδjmdt (15.24)

and

dRe WjdImWm = dRe Wjdt = dImWmdt = 0 ∀ m, j . (15.25)

Recall that the functions r(λ), S(λ), and R(λ) are defined in (3.19), (7.7),
and (7.23) respectively. We apply Ito’s formula to the functional

∫
G

R[S(t, x)] ·
v(x) dx, where v(x) ∈ L2(G). We have

d

∫
R[S[ψ(t, x)]] · v(x) dx =

∫
R̂′[S[ψ]]{dS} · v(x) dx

+
1
2
R̂′′[S[ψ]]{dS, dS}v(x) dx .

(15.26)

By (7.7) and (7.23), R′(S(λ)) = r(λ). Using this and (15.23), we obtain

∫
R̂′[S[ψ]]{dS} · v(x) dx =

∫
r̂[ψ]{dS} · v dx

= −
∫

G

r̂[ψ]
{
r̂−1[ψ]

(
(i∇+ A)2ψ(t, x)− ψ + |ψ|2ψ)

+
1
2
r′[ψ]K11(x, x)

} · v(x) dxdt +
∞∑

j=1

∫
r̂[ψ]{ej(x)dWj(t)}

= −
∫

G

(
(i∇+ A)2ψ(t, x)− ψ + |ψ|2ψ

+
1
2
r̂[ψ]{r′[ψ]}K11(x, x)

)
v(x) dt +

∞∑

j=1

∫
r̂[ψ]{ej(x)dWj(t)} .

(15.27)

This term can be rewritten by using (3.20) and (3.21) as
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∫
R′[S[ψ]]{dS}v(x) dx =

∫
r̂[ψ]{dS}v dx

=
∫ (

r(Re ψ)dRe S + ir(Im ψ)dImS
)
v dx .

(15.28)

By virtue of (15.23)–(15.25) and (15.28), we can rewrite the second term on
the right-hand side of (15.26) as

1
2

∫
R̂′′[S[ψ]]{dS, dS}v(x) dx

=
1
2

∫ (
∂Re Sr

(
R(Re S)

)
dRe SdRe S + i∂Im Sr

(
R(Im S)

)
dImS dImS

)
v dx

=
1
2

∫ (
r′(Re ψ)r(Re ψ)dRe W dRe W

+ir′(Im ψ)r(Im ψ)dImW dImW
)
v dx

=
1
2

∫ (
r′(Re ψ)r(Re ψ)

∑

j

(
dReWjRe ej − dImWJ Im ej

)

·
( ∑

m

(
dReWmRe em − dIm WmIm em

))

+ir′(Im ψ)r(Im ψ)
( ∑

j

dIm WjRe ej + dRe WjIm ej

)

·
( ∑

m

dIm WmRe em + dRe WmIm em

))
v(x) dx

=
1
2

∫ (
r′(Re ψ)r(Re ψ)

1
2

∑

j

λj |ej(x)|2

+ir′(Im ψ)r(Im ψ)
1
2

∑

j

λj |ej(x)|2
)
v(x) dxdt ≡ T .

(15.29)
By (15.9) and (3.14),

∑
j

λj |ej(x)|2 = 2K11(x, x) and therefore the right-

hand side of (15.29) is equal to the expression

T =
∫

r̂′[ψ]{r[ψ]K11(x, x)}v(x) dxdt . (15.30)
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Taking into account that, on the left-hand side of (15.26), R[S[ψ(t, x)]] =
ψ(t, x), we obtain from (15.26), (15.27), (15.29), and (15.30) the final formula

d

∫

G

ψ(t, x)v(x) dx +
∫

G

(
(i∇+ A)2ψ(t, x)− ψ + |ψ|2ψ)

v(x) dx

=
∞∑

j=1

∫
r̂[ψ]{ej(x)dWj(t)}v dx .

(15.31)

This equality holds for each v(x) ∈ L2(G). Clearly, this equality is equiva-
lent to

dψ(t, x) +
{
(i∇+ A)2ψ(t, x)− ψ(t, x) + |ψ(t, x)|2ψ(t, x)

}
dt

= r̂[ψ]
{ ∞∑

j=1

ej(x)dWj(t)
} (15.32)

and (15.32) is equivalent to (15.20). ut
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