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A FINITE ELEMENT, MULTIRESOLUTION VISCOSITY METHOD
FOR HYPERBOLIC CONSERVATION LAWS∗

MARCUS CALHOUN-LOPEZ† AND MAX D. GUNZBURGER‡

Abstract. It is well known that the classic Galerkin finite element method is unstable when
applied to hyperbolic conservation laws such as the Euler equations for compressible flow. It is
also well known that naively adding artificial diffusion to the equations stabilizes the method but
sacrifices too much accuracy to be of any practical use. An elegant approach, referred to as spectral
viscosity methods, has been developed for spectral methods in which one adds diffusion only to the
high-frequency modes of the solution, the result being that stabilization is effected without sacrificing
accuracy. We extend this idea into the finite element framework by using hierarchical finite element
functions as a multifrequency basis. The result is a new finite element method for solving hyperbolic
conservation laws in which artificial diffusion can be applied selectively only to the high-frequency
modes of the approximation. As for spectral viscosity methods, this results in stability without
compromising accuracy. In the context of a one-dimensional scalar hyperbolic conservation law, we
prove the convergence of approximate solutions, obtained using the new method, to the entropy
solution of the conservation law. To illustrate the method, the results of a computational experiment
for a one-dimensional hyperbolic conservation law are provided.
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1. Introduction. We consider a new finite element method, based on hierarchi-
cal basis functions and a scale-dependent artificial viscosity, for hyperbolic conserva-
tion laws. With respect to a given triangulation of a domain, standard nodal basis
functions are all of the same scale; i.e., their support is roughly equal. In contrast,
hierarchical basis functions can be clustered into groups such that basis functions
within a particular group are of a different scale from those of the other groups. The
multiscale nature of the hierarchical basis functions allows for the selective addition of
viscosity only at the smallest scales, very much in the spirit of spectral viscosity meth-
ods. It is hoped that such flexibility will be sufficient for stabilizing discrete Galerkin
finite element approximations while, at the same time, results in more accurate ap-
proximations with respect to both convergence rates in regions where the solution is
smooth and the sharpness of the resolution of discontinuities in the solution.

This paper is a first step at verifying that finite element methods based on hi-
erarchical basis functions and a scale-dependent artificial viscosity do indeed fulfill
the promise mentioned in the previous paragraph. We provide some background
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material and then describe the new method. We then analyze it for the case of a
one-dimensional, periodic, scalar hyperbolic conservation law, showing that, under
appropriate hypotheses, the approximate solution converges to the entropy solution
of the conservation law. We then provide a simple example of the use of the method.
Several issues concerning the efficient implementation of the new method as well as
the results of more extensive computational testing are provided in [3, 4].

1.1. Hyperbolic conservation laws. Let Ω ⊆ R
d be a bounded domain. A

general system of conservation laws has the form

∂q

∂t
+

d∑
j=1

∂

∂xj
fj (q) = 0 in Ω × (0,∞) and q (·, 0) = g in Ω(1.1)

along with appropriate boundary conditions. Here, q : Ω × [0,∞) → R
p denotes

the vector-valued conserved variable, fj : R
p → R

p, j = 1, . . . , d, denote the d flux
functions, and g : Ω → R

p denotes the given initial data. For q̃ ∈ R
p, let Aj (q̃) :

R
p → R

p×p denote the p× p Jacobian matrix of fj , i.e., Aj (q̃) =
∂fj
∂q (q̃). The system

(1.1) is hyperbolic if, for all solutions q, any linear combination of {Aj (q)}dj=1 has real

eigenvalues with eigenvectors that span R
p. The system (1.1) is strictly hyperbolic if

the eigenvalues are distinct. See, e.g., [8, 10] for details.
The system (1.1) does not, in general, have a classical solution because of the

spontaneous formation of discontinuities. Instead, one must look for a solution q ∈
L∞ (Ω × (0,∞) ; Rp) which satisfies (1.1) in the distributional sense:∫ ∞

0

∫
Ω

[
q·∂φ

∂t
+

d∑
j=1

fj (q) · ∂φ

∂xj

]
dΩ dt +

∫
Ω

g·φ (·, 0) dΩ = 0(1.2)

for all test functions φ ∈ C∞
0 (Ω × [0,∞) ; Rp). It is clear that for a smooth enough

solution, (1.1) and (1.2) are equivalent.
In the presence of discontinuities, solutions of the system (1.1) or of the weak for-

mulation (1.2) are not uniquely determined. Additional conditions must be imposed
to determine the unique, physically relevant solution. The second law of thermody-
namics tells us that the entropy of the system should not decrease; satisfying this
requirement suffices to allow one to obtain the unique, physically relevant entropy
solution.

Let Φ, {Ψj}dj=1 : R
p → R be smooth functions; for (1.1), Φ is an entropy with

entropy fluxes {Ψj}dj=1 if Φ is convex and ∇qΦT ∂fj
∂q = ∇qΨj in R

p for 1 ≤ j ≤ d. A

simple calculation states that if q is a smooth solution to (1.1), then Φ (q) satisfies a
scalar conservation law with flux Ψ (q):

∂

∂t
Φ (q) +

d∑
j=1

∂

∂xj
Ψj (q) = 0 in R

d × (0,∞) .(1.3)

In some instances, Φ can be interpreted as the negative of the physical entropy, so
(1.3) says that if u is a smooth solution, then Φ ◦ q satisfies a conservation law with

flux functions {Ψj ◦ q}dj=1.
For solutions with discontinuities, we impose the entropy condition on q that

requires the physical entropy to be nondecreasing:

∂

∂t
Φ (q) +

d∑
j=1

∂

∂xj
Ψj (q) ≤ 0(1.4)
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for every entropy function Φ with entropy fluxes {Ψ}dj=1; (1.4) is an inequality in the
distributional sense:

∫ ∞

0

∫
Ω

[
Φ (q)

∂φ

∂t
+

d∑
j=1

Ψj (q)
∂φ

∂xj

]
dΩ dt ≥ 0 ∀φ ∈ C∞

0 (Ω × (0,∞)) , φ ≥ 0.

(1.5)

In (1.1), viscous effects are ignored. For the class of phenomena that are modeled
with hyperbolic conservation laws, viscous effects are generally small, but they are
present and play a role when sharp gradients (such as shocks) of the solution are
present. An alternate and equivalent means of characterizing the unique, physically
relevant solution of (1.1) is to let q = limε→0 qε a.e., where qε : Ω × [0,∞) → R

p is
the solution of the perturbed equation

∂qε

∂t
+

d∑
j=1

∂

∂xj
fj (qε) − εΔqε = 0 in Ω × (0,∞) and qε (·, 0) = g in Ω(1.6)

along with boundary conditions. In other words, the entropy solution is the limit of
the viscous solution as the viscosity goes to zero.

1.2. Numerical methods for hyperbolic conservation laws. Direct dis-
cretizations of (1.1) lead to unstable approximations. The most obvious stabilization
approach is to instead discretize the perturbed system (1.6) but, as is well known,
this leads to severe smearing of discontinuities and to low accuracy even in regions in
which the solution is smooth. Of course, there have been many methods proposed for
determining improved stabilized approximation solutions of hyperbolic conservation
laws; see, e.g., [6, 10,13,17,18,24,27].

Finite difference (FD) methods are the oldest of the numerical methods, so many
variations have been developed. Many successful strategies for solving hyperbolic con-
servation laws were originally developed in the FD framework then adapted to other
methods. However, FD schemes tend to have difficulties with complex geometries,
satisfying prescribed boundary conditions, and rigorous analyses. In fluid dynam-
ics, complex geometries are common, and, as shown in [6], poor approximation of
boundary conditions can severely affect a numerical method.

Finite volume (FV) methods inherently capture many of the important aspects
of conservation laws; FV methods are locally conservative. Information is propagated
along the characteristic curves, at least approximately. FV methods use unstructured
grids, so they can handle complex geometries. High-order schemes, however, are
difficult to attain.

Finite element (FE) methods are well suited to handle complex geometries and
prescribed boundary conditions. Formally high-order schemes can be defined by sim-
ply increasing the degree of the approximating polynomials used. The price paid is a
large increase in the number of unknowns. In discontinuous Galerkin (DG) methods
(see, e.g., [6]), no continuity restrictions are placed on the approximating solution,
which results in several advantages. DG methods are easy to parallelize; adaptive
strategies are relatively easy to implement; and the mass matrix is block diagonal,
so explicit time-stepping schemes are possible. The lack of continuity of solutions,
however, is also the cause of the biggest drawback of DG methods: The number of
unknowns is drastically increased compared to, say, nodal finite element methods and
other types of methods. The shock capturing streamline diffusion method adds a
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diffusion term to the conservation law, but unlike (1.6), diffusion is added in different
amounts in the direction of the characteristic curves (streamline diffusion) and its nor-
mal direction (crosswind diffusion). Streamline diffusion is added everywhere, while
crosswind diffusion is added only near discontinuities. To determine characteristic
curves, space-time elements must be used, which increases the number of unknowns
and results in an implicit time scheme. See [13,14,23].

Spectral methods, including the spectral viscosity (SV) method, provide another
class of methods. Since incorporating the ideas from the SV method into the FE
framework is the subject of this paper, we discuss SV methods in a little more detail
in section 1.2.1.

The distinctions between the various methods are not always sharp. Some FV
and FE schemes can be written into an equivalent FD formulation. As noted in [6],
some FV methods can be considered to be special types of DG methods. Furthermore,
there are other methods, e.g., kinetic methods [22], for hyperbolic conservation laws
that do not fall within the classes just mentioned.

1.2.1. Spectral viscosity methods. In [24], SV methods were introduced as
a scheme to obtain approximate solutions of the periodic Burgers equation using
Fourier spectral basis functions. The theory was further refined and extended in a
series of papers [5, 9, 12, 19, 20, 25, 26]. Of particular importance to us are [12, 19], in
which Legendre polynomials are used. The variational formulation of the Legendre
SV method is closest to our FE formulation.

We present the most basic SV method, which uses Fourier spectral basis functions.
Using standard notation from Fourier spectral methods, we define

uN = PNu (x, t) , PNu =
∑

|k|≤N

ûk (t) eikπx, ûk (t) =
1

2

∫ +1

−1

u (x, t) e−ikπx dΩ.

We seek uN such that

∂uN

∂t
+

∂

∂x

(
PN

uN
2

2

)
= ε

∂

∂x

(
QN

∂uN

∂x

)
.

QN denotes the spectral viscosity operator defined as a convolution with the viscosity
kernel, QN (x), so that

QN
∂uN

∂x
= QN (x) ∗ ∂uN (x, t)

∂x
and QN (x) =

∑
|k|≤N

Q̂ke
ikπx.

We choose 0 ≤ Q̂k ≤ 1 and Q̂k = 0 for small |k|. It is easy to see the effect of QN

if we write the diffusion term in Fourier space:

ε
∂

∂x

(
QN

∂uN

∂x

)
= −ε

∑
|k|≤N

(
k2 π2 Q̂k ûk e

ikπx
)
.

Since Q̂k = 0 for all but large |k|, QN dampens or eliminates the low frequency modes
of uN in the diffusion term. So, we see that the SV diffusion term is a compromise be-
tween not adding diffusion, which leads to instability, and adding full diffusion, which
limits the convergence rate and smears out discontinuities in the solution. Ideally,
one would like to add diffusion only in the vicinity of a discontinuity. However, the
global nature of the basis functions does not allow for an adaptive viscosity kernel.
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The SV solution uN does not converge to the exact solution u at the optimal rate
because of the poor convergence of PNu. PNu is limited to first-order convergence in
smooth regions and has O (1) Gibbs oscillations near a discontinuity. Post-processing
uN recovers spectral convergence. The post-processing scheme can be enhanced by
knowing the locations of discontinuities, as in [9]. Because of the global nature of
spectral basis functions, this edge detection task is not trivial.

1.3. Hierarchical finite element basis functions. The usual (nodal) basis
functions used in FE methods all have the same frequency. In order to have multi-
frequency basis functions, we use hierarchical basis functions. In the elliptic partial
differential equation setting, an early analysis of hierarchical basis functions, especially
in one dimension, is given in [31]. For two dimensions, see [29]. A good overview of
hierarchical basis functions can be found in [30].

First consider a polygonal domain Ω. Let T0 be a coarse grid approximation of
Ω. The nth-level triangulation Tn is obtained by subdividing the elements of Tn−1.
Let SN be the space of continuous functions which are polynomials of degree p on the
elements of TN . Let NN ⊆ Ω be the nodes of the elements of TN . The nodal basis
functions of SN are defined by φi ∈ SN such that φi (xj) = δij for all xj ∈ NN . It is
well known that SN = span {φi}i. The use of nodal bases leads to many nice numerical
properties, such as sparse matrices and the local assembly of matrices. However, we
cannot use the nodal bases for our purposes because, as we noted earlier, the elements
of {φi}i all have the same frequency.

Let Nn denote the nodes of the nth-level triangulation, Tn, Sn denote the corre-
sponding finite element space, and Bn denote the nodal basis of Sn. The hierarchical
basis functions are defined by

ψn,i ∈ Bn such that ψn,i (xj) = 0 ∀xj ∈ Nn−1.

For 0 ≤ n ≤ N , {ψn,i}n,i ⊆ SN is a linearly independent set with the same dimension

as SN , so SN = span {ψn,i}n,i. See Figure 1 for a comparison of the nodal and
hierarchical bases for linear elements in one dimension. As can be seen from the
figure, ψn,i is a low frequency function for small n and a high frequency function for
large n.

The strategy just outlined works for polynomials of any degree. For example,
the first column of Figure 2 consists of quadratic hierarchical basis functions. An
alternate strategy is to use linear hierarchical basis functions for n < N , as in the
second column of Figure 2.

In order to determine Tn+1 from Tn, we must decide, for a given T ∈ Tn, how many
subelements to divide T into. For linear and quadratic rectangular-type elements in
R

d, the natural choice is 2d subelements. For cubic elements, the natural choice is
3d since the vertices of an element will then be a subset of the vertices of its parent.
Here, we limit our attention to linear and quadratic basis functions.

For domains with curved boundaries, the situation is more complicated. Let
Ω be our potentially complicated domain. One strategy is to use the hierarchical
decomposition of some polygonal domain Ω′ such that Ω ⊆ Ω′, as in [15]. Another
strategy is to try and impose a hierarchical structure on an unstructured mesh, as
in [1]. The hierarchical structure could also be imposed on the mapping of Ω to a
polygonal domain.

Several important properties of hierarchical finite element basis functions and
several issues that arise in efficient implementations of finite element methods based
on these kinds of bases are discussed in [3, 4].
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Linear Hierarchical Basis Functions
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Fig. 1. Hierarchical (left) and nodal (right) linear basis functions spanning the same nine-
dimensional finite element space.

2. Finite element multiresolution viscosity method. Assume we have a
hierarchical sequence of partitions {Tn}Nn=0 of the open bounded set Ω ⊆ R

d. Let
SN be the space of continuous vector-valued functions whose components are in SN .
We seek an approximate solution to the hyperbolic conservation law (1.1). The finite
element multiresolution viscosity method is defined as follows: seek qN ∈ SN such
that

d

dt

∫
Ω

qN · v dΩ +

d∑
j=1

∫
Ω

∂

∂xj
fj
(
qN

)
· v dΩ

+εN

p∑
i=1

d∑
j,k=1

∫
Ω

∂

∂xj

(
Qj,k

N qNi

) ∂vi
∂xk

dΩ

−εN

p∑
i=1

d∑
j,k=1

∫
∂Ω

∂

∂xj

(
Qj,k

N qNi

)
vi n̂k ds = 0 ∀v ∈ SN ,

(2.1)

where n̂ is the unit normal to the boundary ∂Ω of Ω. As in the SV method, Qj,k
N is

chosen to dampen or eliminate the low frequency modes of a function:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Qj,k

N : SN → SN ,

N∑
n=0

∑
i

βn,i ψn,i �→
N∑

n=0

∑
i

Qj,k
N ;n,i βn,i ψn,i,

0 ≤ Qj,k
N ;n,i ≤ 1, and Qj,k

N ;n,i =

{
0 for small n (n near 0),

1 for large n (n near N).

(2.2)



1994 MARCUS CALHOUN-LOPEZ AND MAX D. GUNZBURGER

Quadratic Hierarchical Basis Functions
level 0: 3 functions
level 1: 2 function 
level 2: 4 functions
level 3: 8 functions

1 0. 5 0 0.5 1
0

0.5

1
 

0,0
 

0,2
 

0,1

1 0. 5 0 0.5 1
0

0.5

1
 

1,0
 

1,1

1 0. 5 0 0.5 1
0

0.5

1
 

2,0
 

2,1
 

2,2
 

2,3

1 0. 5 0 0.5 1
0

0.5

1
 

3,0
 

3,1
 

3,2
 

3,3
 

3,4
 

3,5
 

3,6
 

3,7

1 0. 5 0 0.5 1
0

0.5

1
 

3,0
 

3,1
 

3,2
 

3,3
 

3,4
 

3,5
 

3,6
 

3,7

Alternate
Quadratic Hierarchical Basis Functions

1 0. 5 0 0.5 1
0

0.5

1
 

0,0
 

0,2
 

0,1

1 0. 5 0 0.5 1
0

0.5

1
 

1,0
 

1,1

1 0. 5 0 0.5 1
0

0.5

1
 

2,0
 

2,1
 

2,2
 

2,3

Fig. 2. Two sets (left and right) of quadratic hierarchical basis functions spanning the same
17-dimensional, quadratic finite element space.

To account for boundary conditions imposed along with (1.1), a subspace of SN might
need to be used (for essential boundary conditions) or the boundary integral in (2.1)
might be reduced to one over part of ∂Ω (for natural boundary conditions).

Equation (2.1) is a weak formulation of the modified system

∂q

∂t
+

d∑
j=1

∂

∂xj
fj (q) − εN

d∑
j,k=1

∂2

∂xj∂xk

(
Qj,k

N q
)

= 0,(2.3)

where [Qj,k
N q]i = Qj,k

N qi for 1 ≤ i ≤ p. The dependence of Qj,k
N on both j and k allows

for the flexibility of introducing directional bias in the diffusion which can result
in reduced crosswind diffusion. As in the streamline diffusion method, this would
probably require the use of entropy variables. Here, we simplify our formulation by
using an isotropic diffusion term, QN , such that

Qj,k
N ;n,i = QN ;n,i δj,k.

Then, (2.1) and (2.3), respectively, reduce to

d

dt

∫
Ω

q · v dΩ +

d∑
j=1

∫
Ω

∂

∂xj
fj (q) · v dΩ + εN

∫
Ω

∇ (QNq) : ∇v dΩ

−εN

∫
∂Ω

∂

∂n
(QNq) · v ds = 0 ∀v ∈ SN

(2.4)
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and

∂q

∂t
+

d∑
j=1

∂

∂xj
fj (q) − εNΔ (QNq) = 0.

After choosing a time discretization technique, (2.4) is equivalent to a nonlinear
system of equations that may be solved, e.g., by Newton’s method. The relevant
Jacobian matrix has the form JH = J̃H + KHQ, where J̃H is the Jacobian of the
time dependent and flux terms, KH is the Laplacian stiffness matrix, and Q is a
diagonal matrix whose nonzero elements are

{
QN ;n,i

}
. For ease of presentation, we

have ignored the boundary term. Note that for an explicit time integration method,
the Jacobian matrix reduces to the mass matrix.

The solution of the discrete equations resulting from our hierarchical finite element
discretization may be implemented using matrices arising from the corresponding
nodal basis. See [3, 4] for details. Here, we merely observe that the Jacobian matrix

JH and residual vector 	RH may be expressed, respectively, in terms of their nodal
basis counterparts JD and 	RD through the relations JH = ST (J̃DS + KDSQ) and
	RH = ST 	RD, where S is the change of basis matrix such that 	XD = S 	XH . The
determination of (JH)−1 	RH = (J̃DS + KDSQ)−1 	RD by an iterative solver then

requires the calculation of the matrix-vector multiplication (J̃DS + KDSQ) 	X and

possibly (J̃DS + KDSQ)T 	X that only involve the nodal matrices J̃D and KD and

the transfer matrix S. Compared to KD and J̃D, S is not sparse, so one does not
want to explicitly construct S. So, making the iterative linear solvers efficient requires
being able to calculate S 	X and ST 	X quickly. Algorithms for this purpose can be found
in [3, 4].

2.1. Advantages of hierarchical bases. We use hierarchical bases (instead of
nodal bases) because of their multifrequency property. Nodal bases, however, have
important computational advantages such as producing matrices that are much more
sparse and that can be locally assembled. However, as just discussed, one can retain
most of the advantages of the nodal bases. One assembles and stores all of the system
matrices as nodal basis matrices and uses the transfer matrix S in an iterative linear
solver; S does not even have to be stored.

In the SV method, there is only one function, with global support, at a given
frequency. In the hierarchical FE formulation, there are many functions, with local
support, at a given frequency. Compared to SV methods, the hierarchical FE for-
mulation offers two advantages: Diffusion can be added locally, and edge detection is
trivial. For large values of n, the hierarchical basis function ψn,i has local support,

so Qj,k
N ;n,i only has a local effect. One can therefore add more diffusion near a discon-

tinuity and less or no diffusion in smooth regions. This should improve the accuracy
of the method. As we are about to see, the size of |βn,i| (where βn,i is the coefficient
of ψn,i in the hierarchical basis expansion of a function; see (2.2)) can be used to
determine if the support of ψn,i resides in a smooth region or is near a discontinuity.

2.1.1. Edge detection. Using hierarchical bases, edge detection is a trivial
task. Near a discontinuity, the high frequency hierarchical coefficients are of order
one. In smooth regions, they shrink exponentially. Figure 3 illustrates a hierarchical
decomposition of a piecewise smooth function containing a discontinuity. One can
easily determine the location of discontinuities by looking at the magnitude of the
coefficients of the high frequency basis functions.
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Fig. 3. Hierarchical decomposition of a piecewise smooth function with a discontinuity.
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Fig. 4. Determination of a linear hierarchical coefficient from function values.

Edge detection for piecewise linear polynomials. Let us examine the behavior of
the hierarchical coefficients for linear hierarchical basis functions. As one can see in
Figure 4, βk+1,j can be calculated from the value of the function u at xk+1,j and at
the node points of the parent cell. For a uniform partition, the cell size at level k is
Δxk = |Ω| 2−k. Thus, xk+1,j − xk,i = xk,i+1 − xk+1,j = Δxk+1 and

βk+1,j =
u (xk+1,j) − u (xk,i)

2
− u (xk,i+1) − u (xk+1,j)

2
.(2.5)

Let Tk,i = (xk,i, xk,i+1).
Assume that u is discontinuous and has a discontinuity in Tk,i. Then, at least

one of the two terms in (2.5) will have a relatively large value so that |βk+1,j | will be
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of the same order as the jump of u, independent of k.
Now, assume that u is continuously differentiable, i.e., u ∈ C1(Tk,i). Then, since

(2.5) can be written as

βk+1,j =
|Ω|
4

2−k

(
u (xk+1,j) − u (xk,i)

xk+1,j − xk,i
− u (xk,i+1) − u (xk+1,j)

xk,i+1 − xk+1,j

)
,

the mean value theorem yields that

βk+1,j =
|Ω|
4

2−k [u′ (x̃1) − u′ (x̃2)](2.6)

for some x̃1, x̃2 ∈ Tk,i. Therefore, βk+1,j is of order 2−k, i.e.,

|βk+1,j | ≤ |Ω| ‖u′‖L∞(Tk,i)
2−k−1

so that it decays exponentially with k.
If u is twice continuously differentiable, i.e., u ∈ C2(Tk,i), the mean value theorem

applied to (2.6) yields that

βk+1,j = −|Ω|
4

2−k (x̃2 − x̃1) u′′ (x̃)

for some x̃ ∈ Tk,i. Therefore, βk+1,j is of order 4−k, i.e.,

|βk+1,j | ≤
|Ω|
4

|x̃2 − x̃1| |u′′ (x̃)| 2−k ≤ |Ω|2 ‖u′′‖L∞(Tk,i)
4−k−1

so that it again decays exponentially with k.
Similar results can be obtained for quadratic hierarchical basis function; see [3,4].

3. Convergence to entropy solutions for one-dimensional scalar con-
servation laws. In this section, we prove that the solution of the hierarchical finite
element discretization introduced in section 2 converges to the entropy solution of
the one-dimensional, periodic Burgers equation. We will make use of the method of
compensated compactness; in particular, we will use the div-curl lemma [7,21,28] and
Murat’s lemma [7,13,19,21,28]. The broad outlines of the proof follow that of [24].

3.1. The periodic, one-dimensional Burgers equation. Let Ω = (a, b) be
an open bounded interval and let ΩT = (a, b) × (0, T ) for some finite time interval
(0, T ). We seek a finite element (FE) approximation to u (x, t), the entropy solution
of the periodic hyperbolic conservation law:

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 in ΩT ,(3.1)

u (a, t) = u (b, t) in (0, T ), and u (x, 0) = g in (a, b),(3.2)

along with the entropy condition

∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3

)
≤ 0 in ΩT ,(3.3)

where (3.1) and (3.3) hold in the distributional sense. We will assume the g ∈ H1 (a, b)
and that g is space-periodic. The entropy solution of Burgers’ equation can be found
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using (3.3) instead of the more general entropy condition (1.4). This greatly simplifies
our analysis since we now require an entropy-type inequality for one entropy/entropy

flux pair, (u
2

2 , u3

3 ), instead of all of them. A weak form of the problem (3.1) is given
by ∫

ΩT

(
ϕ
∂u

∂t
+ ϕ

∂

∂x

(u2

2

))
dx dt = 0 ∀ϕ ∈ C∞

0 (ΩT ).(3.4)

Correspondingly, (3.3) can be expressed in the weak form∫
ΩT

(
ϕ
∂

∂t

(u2

2

)
+ ϕ

∂

∂x

(u3

3

))
dx dt ≤ 0 ∀ϕ ∈ C∞

0 (ΩT ), ϕ ≥ 0.(3.5)

3.1.1. The hierarchical finite element discretization. To formulate the FE
approximation, we need some notation. Let T0 = (a, b); TN is obtained by subdivid-
ing the elements of TN−1 into M distinct elements. Let |b− a|hN be the maximal
diameter of the elements of TN . Since we assume that the partition is quasi-uniform,
there exists a positive constant ν such that M−N ≤ hN ≤ νM−N for all N .

Let {ψk,i}k,i be a hierarchical basis of SN
p . Let us define QN : SN

p → SN
p as a

damping operator QNuN =
∑

k,i (Qk,i βk,i ψk,i) for u =
∑

k,i (βk,i ψk,i) ∈ SN
p , where

0 ≤ Qk,i ≤ 1 and Qk,i = 1 for k > mH . Thus, QN dampens (or eliminates) the
low frequencies of a function while keeping the high frequencies above the level mH .
Occasionally, when the level of a basis function is unimportant, we will switch to
the less cumbersome notation {ψi}i and {Qi}i for the basis functions and damping
coefficients, respectively.

We will also use the following convention: C will denote any positive constant
which depends on known quantities and is independent of any indexing variables.

Let gN ∈ SN
p be the interpolant of g. The hierarchical finite element approxima-

tion of (3.1)–(3.2) is given by the following: seek uN (x, t) with uN (·, 0) = gN such
that, for all v ∈ SN

p ,∫ b

a

[
∂uN

∂t
+

∂

∂x

(
uN

2

2

)]
v dx + εN

∫ b

a

[
∂

∂x
(QNuN )

∂v

∂x

]
dx = 0.(3.6)

3.2. Convergence theorem. We prove the following convergence results for
hierarchical finite element approximations of the entropy solution of (3.1) and (3.2).

Theorem 3.1. Let {uN}∞N=0 denote a sequence of hierarchical finite element
approximations determined by (3.6). Assume that ‖uN‖L∞(ΩT ) ≤ C and assume that

εN , hN → 0 as N → ∞,(3.7)
εN
hN

≥ C,(3.8)

√
εN

∥∥∥∥ ∂

∂x
[(I −QN ) vN ]

∥∥∥∥
L2(a,b)

≤ C ‖vN‖L2(a,b) for vN ∈
{
uN ,

∂uN

∂t

}
,(3.9) ∥∥∥∥ d

dx
(QNgN )

∥∥∥∥
L2(U)

≤ C

∥∥∥∥dgNdx
∥∥∥∥
L2(U)

.(3.10)

Then, there exists a subsequence of {uN}∞N=0 that converges strongly in L2(ΩT ) to a
solution u ∈ L2(ΩT ) of (3.1) and (3.2). Further, assume that

εN
hN

→ ∞ as N → ∞ and(3.11)



A MULTIVISCOSITY FEM FOR HYPERBOLIC PDEs 1999

√
εN

∥∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥∥
L2(a,b)

→ 0 as N → ∞.(3.12)

Then the subsequence of {uN}∞N converges strongly in L2(ΩT ) to the entropy solution
of (3.1) and (3.2), i.e., to the solution of (3.1)–(3.3).

For the moment, we assume that (3.7)–(3.12) hold, and we prove, in sections 3.3
to 3.7, the theorem. Subsequently, in section 3.8, we will show that these conditions
are satisfied in our context.

3.3. Existence of the finite element approximation. The discrete FE equa-
tions (3.6) are equivalent to the following: seek 	α : (0, T ) → R

s, where s = dimSN
p ,

such that

	̇α + M−1 	F (	α) + M−1 KQ	α = 	0,(3.13)

where M is the mass matrix, K is the stiffness matrix, Q is a diagonal matrix whose

elements are {Qi}, and 	F is the flux term: [	F (	α)]i =
∫ b

a
ψi

1
2

∂
∂x

(∑
j αj ψj

)2
dx =

	αTAi	α, where Ai is the symmetric matrix (Ai)j,k = 1
2

∫ b

a
ψi

∂
∂x (ψj ψk) dx. Evidently,

the diffusion term is globally Lipschitz continuous. We now show that the flux term
is locally Lipschitz continuous. For all 	α, 	β ∈ R

s and all i,∣∣∣[	F (	β) − 	F (	α)
]
i

∣∣∣ =
∣∣	βT Ai

	β − 	αT Ai 	α
∣∣ =

∣∣(	β + 	α)T Ai (	β − 	α)
∣∣

≤ ‖	β + 	α‖2‖Ai‖2‖	β − 	α‖2 ≤
√
s‖	β + 	α‖2‖Ai‖2‖	β − 	α‖∞

so that ‖	F (	β)− 	F (	α)‖∞ ≤
√
s‖	β + 	α‖2 max1≤i≤s ‖Ai‖2‖	β − 	α‖∞. Since ‖Ai‖2 and s

are independent of 	α and 	β, the flux term is locally Lipschitz continuous for any T .
Lipschitz continuity together with |	α (t)| < ∞, by (3.15) and (3.17), yields that

there exists a unique 	C1 [0, T ] solution of (3.13) or, equivalently, of (3.6).

3.4. Estimates for uN . In (3.6), choose v = uN ; then∫ b

a

[
∂

∂t

(
uN

2

2

)
+

∂

∂x

(
uN

3

3

)]
dx + εN

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx = 0.

Since uN is periodic,
∫ b

a
∂
∂x

(
uN

3

3

)
dx = 0 so that

1

2

d

dt
‖uN‖2

L2(a,b) + εN

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx = 0.(3.14)

3.4.1. H1 (ΩT ) estimates for uN for linear polynomials. The elements
of the piecewise linear hierarchical basis are orthogonal with respect to the H1 (a, b)
seminorm. As a result,∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx =

∑
i

∑
j

Qiβiβj

∫ b

a

ψ′
iψ

′
j dx

=
∑
i

Qiβ
2
i

∫ b

a

(ψ′
i)

2
dx ≥

∑
i

Q2
iβ

2
i

∫ b

a

(ψ′
i)

2
dx

=
∑
i

∑
j

QiQjβiβj

∫ b

a

ψ′
iψ

′
j dx =

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
.
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Integrating (3.14) over time, we obtain

C ‖g‖2
L2(a,b) ≥ ‖gN‖2

L2(a,b) = ‖uN (·, t)‖2
L2(a,b) + 2εN

∫ t

0

∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx dt

≥ ‖uN (·, t)‖2
L2(a,b) + 2εN

∫ t

0

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥2

L2(a,b)

dt

so that

‖uN‖L2(ΩT ) ≤ C
√
T ‖g‖L2(a,b) ,

√
εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

≤ C ‖g‖L2(a,b) .(3.15)

3.4.2. H1 (ΩT ) estimates for uN for quadratic polynomials. The quadratic
hierarchical basis functions are not orthogonal, but we can still obtain an estimate
similar to (3.15). We now have that∫ b

a

∂

∂x
(QNuN )

∂uN

∂x
dx =

∫ b

a

∂

∂x
(QNuN )

∂

∂x
(QNuN ) dx

+

∫ b

a

∂

∂x
(QNuN )

∂

∂x
[(I −QN )uN ] dx

≥
∫ b

a

∣∣∣∣ ∂∂x (QNuN )

∣∣∣∣2 dx

−1

2

∫ b

a

∣∣∣∣ ∂∂x (QNuN )

∣∣∣∣2 dx− 1

2

∫ b

a

∣∣∣∣ ∂∂x [(I −QN )uN ]

∣∣∣∣2 dx

=
1

2

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
− 1

2

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥2

L2(a,b)

≥ 1

2

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
− C

2 εN
‖uN‖2

L2(a,b) .

Substituting this result into (3.14), we obtain

d

dt
‖uN‖2

L2(a,b) ≤ C ‖uN‖2
L2(a,b) − εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥2

L2(a,b)
.(3.16)

We require a nonstandard formulation of the differential form of Gronwall’s in-
equality. A proof is given in [8].

Lemma 3.2. Let η (t) be an absolutely continuous function on [0, T ] such that for
a.e. t ∈ [0, T ], η′ (t) ≤ φ (t) η (t)+ψ (t), where φ (t) and ψ (t) are summable functions

on [0, T ]. Then, η (t) ≤ e
∫ t
0
φ(r) dr[η (0) +

∫ t

0
e−

∫ s
0
φ(r) drψ (s) ds] ∀ t ∈ [0, T ].

Let us now assume that φ = C is a positive constant, and ψ ≤ 0 is never positive.
We then have

η (t) ≤ eCt

[
η (0) +

∫ t

0

e−Csψ (s) ds

]
≤ eCt

[
η (0) +

∫ t

0

e−Ctψ (s) ds

]
= eCt η (0) +

∫ t

0

ψ (s) ds.

Using this result with (3.16), we obtain

‖uN‖2
L2(a,b) ≤ eCt ‖gN‖2

L2(a,b) − εN

∫ t

0

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥2

L2(a,b)

ds.
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Since ‖gN‖L2(a,b) ≤ C ‖g‖L2(a,b),

‖uN‖2
L2(a,b) + εN

∫ t

0

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥2

L2(a,b)

ds ≤ CeCt ‖g‖2
L2(a,b) .

Therefore, we have that⎧⎪⎨⎪⎩
‖uN‖L2(ΩT ) ≤ C

√
eCT − 1 ‖g‖L2(a,b),

√
εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

≤ C
√
eCT ‖g‖L2(a,b) .

(3.17)

3.5. Strong convergence of {uN}. Let vN = (uN
2

2 , uN ) and wN = (uN
2

2 ,−uN
3

3 )
so that

divvN =
∂uN

∂t
+

∂

∂x

(
uN

2

2

)
and curlwN =

∂

∂t

(
uN

2

2

)
+

∂

∂x

(
uN

3

3

)
.

3.5.1. L2 (ΩT ) bound on {div vN}. In (3.6), choose v = ∂uN

∂t ; then∫ b

a

∣∣∣∣∂uN

∂t

∣∣∣∣2 dx +

∫ b

a

∂

∂x

(
u2
N

2

)
∂uN

∂t
dx = − εN

∫ b

a

∂

∂x
(QNuN )

∂2uN

∂x∂t
dx

=− εN

∫ b

a

∂

∂x
(QNuN )

∂2

∂x∂t
(QNuN ) dx

−εN

∫ b

a

∂

∂x
(QNuN )

∂2

∂x∂t
[(I −QN )uN ] dx

=− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx− εN

∫ b

a

∂

∂x
(QNuN )

∂2

∂x∂t
[(I −QN )uN ] dx

≤− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx

+εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(a,b)

∥∥∥ ∂2

∂x∂t
[(I −QN )uN ]

∥∥∥
L2(a,b)

≤− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx + C

√
εN

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥
L2(a,b)

∥∥∥∂uN

∂t

∥∥∥
L2(a,b)

≤− εN
2

∫ b

a

∂

∂t

{[
∂

∂x
(QNuN )

]2
}

dx + C
∥∥∥∂uN

∂t

∥∥∥
L2(a,b)

≤− εN
2

∫ b

a

∂

∂t

{[ ∂

∂x
(QNuN )

]2}
dx + C2 +

1

4

∥∥∥∂uN

∂t

∥∥∥2

L2(a,b)
.

Rearranging terms in the last expression, we obtain

3

4

∥∥∥∥∂uN

∂t

∥∥∥∥2

L2(a,b)

+
εN
2

d

dt

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥2

L2(a,b)

− C ≤ −
∫ b

a

∂

∂x

(
u2
N

2

)
∂uN

∂t
dx

≤
∥∥∥ ∂

∂x

(
u2
N

2

)∥∥∥
L2(a,b)

∥∥∥∂uN

∂t

∥∥∥
L2(a,b)

≤
∥∥∥ ∂

∂x

(
u2
N

2

)∥∥∥2

L2(a,b)
+

1

4

∥∥∥∂uN

∂t

∥∥∥2

L2(a,b)
.

Rearranging terms again, we obtain∥∥∥∥∂uN

∂t

∥∥∥∥2

L2(a,b)

≤ C − εN
d

dt

∥∥∥∥ ∂

∂x
(QNuN )

∥∥∥∥2

L2(a,b)

+ 2

∥∥∥∥ ∂

∂x

(
u2
N

2

)∥∥∥∥2

L2(a,b)

.
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Integrating over time, we obtain∥∥∥∥∂uN

∂t

∥∥∥∥2

L2(ΩT )

≤ C + 2

∫
ΩT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣2 dx dt

− εN

∥∥∥∥ ∂

∂x
(QNuN (·, T ))

∥∥∥∥2

L2(a,b)

+ εN

∥∥∥∥ d

dx
(QNgN )

∥∥∥∥2

L2(a,b)

(3.18)

≤ C + 2

∫
UT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣2 dx dt + εN

∥∥∥∥ d

dx
(QNgN )

∥∥∥∥2

L2(a,b)

(3.19)

≤ C + 2

∫
UT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣2 dx dt + C εN

∥∥∥∥dgNdx
∥∥∥∥2

L2(a,b)

(3.20)

≤ C + 2

∫
UT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣2 dx dt + C εN

∥∥∥∥dgdx
∥∥∥∥2

L2(a,b)

.(3.21)

Now, ∫
ΩT

∣∣∣∣ ∂∂x
(
u2
N

2

)∣∣∣∣2 dx dt =

∫
ΩT

|uN |2
∣∣∣∣∂uN

∂x

∣∣∣∣2 dx dt

≤ ‖uN‖2
L∞(ΩT )

∥∥∥∥∂uN

∂x

∥∥∥∥2

L2(ΩT )

≤ C

εN
.

(3.22)

Combining the last two results, we obtain εN‖∂uN

∂t ‖2
L2(a,b) ≤ C

(
1 + εN + εN

2
)

so that

√
εN

∥∥∥∥∂uN

∂t

∥∥∥∥
L2(ΩT )

≤ C.(3.23)

Combining (3.22) and (3.23), we obtain

√
εN

∥∥∥div vN

∥∥∥
L2(ΩT )

=
√
εN

∥∥∥∂uN

∂t
+

∂

∂x

(
uN

2

2

)∥∥∥
L2(ΩT )

≤ √
εN

∥∥∥∂uN

∂t

∥∥∥
L2(ΩT )

+
√
εN

∥∥∥ ∂

∂x

(
uN

2

2

)∥∥∥
L2(ΩT )

≤ C.

3.5.2. {div vN} lies in a compact subset of H−1 (ΩT ). Let ϕ̃ ∈ H1
0 (ΩT ).

For all t ∈ (0, T ), let ϕ̃N (·, t) ∈ SN
p ∩H1

0 (a, b) be the H1 (a, b) projection of ϕ̃ so that∫ b

a

∂ϕ̃N (·, t)
∂x

∂v

∂x
dx =

∫ b

a

∂ϕ̃ (·, t)
∂x

∂v

∂x
dx ∀ v ∈ SN

p ∩H1
0 (a, b) .

We need the H1(a, b) projection into SN
p of an arbitrary ϕ̃ ∈ H1

0 (ΩT ) in order to use
our FE formulation:∫

ΩT

(div vN ) ϕ̃ dx dt =

∫
ΩT

(div vN ) ϕ̃N dx dt +

∫
ΩT

(div vN ) (ϕ̃− ϕ̃N ) dx dt

= −εN

∫
ΩT

∂

∂x
(QNuN )

∂ϕ̃N

∂x
dx dt +

∫
ΩT

(div vN ) (ϕ̃− ϕ̃N ) dx dt

= −εN

∫
ΩT

∂

∂x
(QNuN )

∂ϕ̃

∂x
dx dt +

∫
ΩT

(div vN ) (ϕ̃− ϕ̃N ) dx dt
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≤ εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

+ ‖div vN‖L2(ΩT ) ‖ϕ̃− ϕ̃N‖L2(ΩT )

≤ εN

∥∥∥ ∂

∂x
(QNuN )

∥∥∥
L2(ΩT )

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

+ C hN ‖div vN‖L2(ΩT )

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

≤ C

(√
εN +

hN√
εN

) ∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

= C
√
εN

(
1 +

hN

εN

) ∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

.

From (3.8), we have that hN

εN
≤ C so that∫

ΩT

(divvN ) ϕ̃ dx dt ≤ C
√
εN

∥∥∥∂ϕ̃
∂x

∥∥∥
L2(ΩT )

.(3.24)

Let ϕ̃ ∈ H1
0 (ΩT ) with ‖ϕ̃‖H1(ΩT ) ≤ 1. Then, from (3.24), we have that

‖div vN‖H−1(ΩT ) ≤ C
√
εN → 0 as N → ∞

so that {divvN} lies in a compact subset of H−1 (ΩT ).

3.5.3. {curl wN} lies in a compact subset of H−1 (ΩT ). Let ϕ ∈ C∞
0 (ΩT )

be a test function. Since uN ϕ ∈ H1
0 (ΩT ), we can choose ϕ̃ = uNϕ in (3.24). Then,∫

ΩT

(curl wN )ϕdx dt =

∫
ΩT

(div vN )uN ϕdx dt

≤ C
√
εN

∥∥∥ ∂

∂x
(uNϕ)

∥∥∥
L2(ΩT )

= C
√
εN

∥∥∥uN
∂ϕ

∂x
+ ϕ

∂uN

∂x

∥∥∥
L2(ΩT )

≤ C
√
εN

(∥∥∥uN
∂ϕ

∂x

∥∥∥
L2(ΩT )

+
∥∥∥ϕ∂uN

∂x

∥∥∥
L2(ΩT )

)
≤ C

√
εN

(
‖uN‖L∞(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+ ‖ϕ‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

)
≤ C

(√
εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+ ‖ϕ‖L∞(ΩT )

)
.

Using a variational form of Murat’s lemma [13, 19] gives, from the last result, that
{curlwN} lies in a compact subset of H−1 (ΩT ).

3.5.4. Strong convergence in L2 (ΩT ) of a subsequence of {uN}. Since
‖uN‖L∞(ΩT ) ≤ C, there exists a subsequence {uNk

} of {uN} such that for 1 ≤ p ≤ 4,

{up
Nk

} converges weakly in L2(ΩT ). Let u(p) ∈ L2(ΩT ) be the weak limit of up
Nk

.
Then, vNk

and wNk
converge weakly:

vNk
⇀

(
u(2)

2
, u(1)

)
=: v and wNk

⇀

(
u(2)

2
,−u(3)

3

)
=: w.

By the div-curl lemma [7,21,28], we have

lim
k→∞

∫
ΩT

(vNk
· wNk

)ϕdx dt =

∫
ΩT

(v · w)ϕdx dt ∀ϕ ∈ C∞
0 (ΩT ) .(3.25)

For all ϕ ∈ C∞
0 (ΩT ),

lim
k→∞

∫
ΩT

(vNk
· wNk

)ϕdx dt = lim
k→∞

∫
ΩT

(
uNk

4

4
− uNk

4

3

)
ϕdx dt

= lim
k→∞

∫
ΩT

−uNk
4

12
ϕdx dt =

∫
ΩT

−u(4)

12
ϕdx dt.

(3.26)
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For the right-hand side of (3.25) we have∫
ΩT

(v·w)ϕdx dt =

∫
ΩT

(
1

4

(
u(2)

)2

− 1

3
u(1) u(3)

)
ϕdx dt.(3.27)

Combining (3.25)–(3.27) yields that

u(4) = 4u(1) u(3) − 3
(
u(2)

)2

a.e.,

which can be used to show that uNk
converges strongly to u(1) in L2 (ΩT ). First, we

have(
uNk

− u(1)
)4

= uNk

4 − 4uNk

3 u(1) + 6uNk

2
(
u(1)

)2

− 4uNk

(
u(1)

)3

+
(
u(1)

)4

.

Taking the weak limit of both sides of the last equation, we have that

w − limk→∞

(
uNk

− u(1)
)4

= u(4) − 4u(3) u(1) + 6u(2)
(
u(1)

)2

− 4
(
u(1)

)4

+
(
u(1)

)4

= 4u(1) u(3) − 3
(
u(2)

)2

− 4u(3) u(1) + 6u(2)
(
u(1)

)2

− 4
(
u(1)

)4

+
(
u(1)

)4

= −3
(
u(2)

)2

+ 6u(2)
(
u(1)

)2

− 3
(
u(1)

)4

= −3

[
u(2) −

(
u(1)

)2
]2

≤ 0.

Then

0 ≤ lim
k→∞

∫
ΩT

(
uNk

− u(1)
)4

dx dt =

∫
ΩT

−3

[
u(2) −

(
u(1)

)2
]2

dx dt ≤ 0.

We now have u(2) =
(
u(1)

)2

a.e., which gives us∥∥∥u(1)
∥∥∥2

L2(ΩT )
=

∫
ΩT

u(2) dx dt = lim
k→∞

∫
ΩT

uNk

2 dx dt = lim
k→∞

‖uNk
‖2
L2(ΩT ) .

Therefore, u := u(1) is the strong limit of uNk
in L2 (ΩT ).

3.6. Convergence to a solution of the hyperbolic conservation law. We
now show that u is a solution of the conservation law (3.4). For all test functions
ϕ ∈ C∞

0 (ΩT ),∫
ΩT

[
∂u

∂t
ϕ +

∂

∂x

(
u2

2

)
ϕ

]
dx dt = −

∫
ΩT

[
u
∂ϕ

∂t
+

u2

2

∂ϕ

∂x

]
dx dt

= −
∫

ΩT

[
u(1)

∂ϕ

∂t
+

u(2)

2

∂ϕ

∂x

]
dx dt = − lim

k→∞

∫
ΩT

[
uNk

∂ϕ

∂t
+

u2
Nk

2

∂ϕ

∂x

]
dx dt

= lim
k→∞

∫
ΩT

[
∂uNk

∂t
ϕ +

∂

∂x

(
u2
Nk

2

)
ϕ

]
dx dt = lim

k→∞

∫
ΩT

(div vNk
)ϕdx dt.

The right-hand side of last expression vanishes since

0 ≤
∣∣∣∣∫

ΩT

(div vNk
)ϕdx dt

∣∣∣∣ ≤ ‖div vNk
‖H−1(ΩT ) ‖ϕ‖H1(ΩT )

≤ C
√
εN ‖ϕ‖H1(ΩT ) → 0 as k → ∞

so that u is a solution of (3.4).
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3.7. Convergence to the entropy solution. We showed in sections 3.5 and 3.6
that {uNk

} converges strongly to a solution u of the conservation law. We now show
that, if the strengthened requirements (3.11) and (3.12) are satisfied, then u is the
physically relevant entropy solution.

Let ϕ ∈ C∞
0 (ΩT ); then

∣∣∣∣∫
ΩT

(
u3 − uNk

3
)
ϕdx dt

∣∣∣∣ =

∣∣∣∣∫
ΩT

(u− uNk
)
(
u2 + uuNk

+ uNk

2
)
ϕdx dt

∣∣∣∣
≤ ‖u− uNk

‖L2(ΩT )

∥∥(u2 + uuNk
+ uNk

2
)
ϕ
∥∥
L2(ΩT )

≤ ‖ϕ‖L∞(ΩT ) ‖u− uNk
‖L2(ΩT )

∥∥u2 + uuNk
+ uNk

2
∥∥
L2(ΩT )

≤ ‖ϕ‖L∞(ΩT ) ‖u− uNk
‖L2(ΩT )

(∥∥u2
∥∥
L2(ΩT )

+ ‖uuNk
‖L2(ΩT ) +

∥∥uNk

2
∥∥
L2(ΩT )

)
≤ ‖ϕ‖L∞(ΩT ) ‖u− uNk

‖L2(ΩT )(
‖u‖2

L4(ΩT ) + ‖uNk
‖L∞(ΩT ) ‖u‖L2(ΩT ) + ‖uNk

‖2
L∞(ΩT )

√
|ΩT |

)
.

Since {uN} is uniformly bounded, we have that ‖uNk
‖L∞(ΩT ) ≤ C. Also, u is in

L4(ΩT ) since u2 = u(2) ∈ L2(ΩT ). Then, since limk→∞ ‖u−uNk
‖L2(ΩT ) = 0, we have

that

lim
k→∞

∫
ΩT

(uNk
)3 ϕdx dt =

∫
ΩT

u3ϕdx dt.

Now, let ϕ ∈ C∞
0 (ΩT ) with ϕ ≥ 0; then,

∫
ΩT

[
∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3

)]
ϕdx dt = −

∫
ΩT

(
u2

2

∂ϕ

∂t
+

u3

3

∂ϕ

∂x

)
dx dt

= − lim
k→∞

∫
ΩT

(
uNk

2

2

∂ϕ

∂t
+

uNk
3

3

∂ϕ

∂x

)
dx dt

= lim
k→∞

∫
ΩT

[
∂

∂t

(
uNk

2

2

)
+

∂

∂x

(
uNk

3

3

)]
ϕdx dt

= lim
k→∞

∫
ΩT

(curl wNk
) ϕdx dt = lim

k→∞

∫
ΩT

(div vNk
) uNk

ϕdx dt.

(3.28)

Let zN = uN ϕ. For all t ∈ (0, T ), let zhN (·, t) ∈ SN
p ∩H1

0 (a, b) be the H1 (a, b)

projection of zN so that, for all v ∈ SN
p ∩H1

0 (a, b) ,

∫ b

a

∂zhN (·, t)
∂x

∂v

∂x
dx =

∫ b

a

∂zN (·, t)
∂x

∂v

∂x
dx.
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We then show that, as k → ∞, the right-hand side of (3.28) is nonpositive:∫
ΩT

(div uN ) uN ϕdx dt =

∫
ΩT

(div uN ) zN dx dt

=

∫
ΩT

(div uN ) zhN dx dt +

∫
ΩT

(div uNk
)
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂zhN
∂x

∂

∂x
(QNuN ) dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂zN
∂x

∂

∂x
(QNuN ) dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂zN
∂x

∂uN

∂x
dx dt + εN

∫
ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt

+

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

∂

∂x
(uN ϕ)

∂uN

∂x
dx dt

+εN

∫
ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

= −εN

∫
ΩT

ϕ

∣∣∣∣∂uN

∂x

∣∣∣∣2 dx dt− εN

∫
ΩT

uN
∂ϕ

∂x

∂uN

∂x
dx dt

+εN

∫
ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt +

∫
ΩT

(div uN )
(
zN − zhN

)
dx dt.

(3.29)

For the second term on the right-hand side of (3.29), we have that∣∣∣∣−εN

∫
ΩT

uN
∂ϕ

∂x

∂uN

∂x
dx dt

∣∣∣∣ ≤ εN ‖uN‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

≤ C
√
εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

→ 0 as N → ∞.

For the third term on the right-hand side of (3.29), we have that∣∣∣∣εN ∫
ΩT

∂zN
∂x

∂

∂x
[(I −QN )uN ] dx dt

∣∣∣∣ ≤ εN

∥∥∥∂zN
∂x

∥∥∥
L2(ΩT )

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )

= εN

∥∥∥ ∂

∂x
(uN ϕ)

∥∥∥
L2(ΩT )

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )

≤ εN

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )(

‖ϕ‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

+ ‖uN‖L∞(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

)
≤ C

√
εN

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(ΩT )

(
‖ϕ‖L∞(ΩT ) +

√
εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

)
→ 0 as N → ∞.

For the fourth term on the right-hand side of (3.29), we have that∣∣∣∣∫
ΩT

(div uN )
(
zN − zhN

)
dx dt

∣∣∣∣ ≤ ‖div uN‖L2(ΩT )

∥∥zN − zhN
∥∥
L2(ΩT )

≤ C hN ‖div uN‖L2(ΩT )

∥∥∥∂zN
∂x

∥∥∥
L2(ΩT )

≤ C
hN√
εN

∥∥∥∂zN
∂x

∥∥∥
L2(ΩT )
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= C
hN√
εN

∥∥∥ ∂

∂x
(uN ϕ)

∥∥∥
L2(ΩT )

≤ C
hN√
εN

(
‖uN‖L∞(ΩT )

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+ ‖ϕ‖L∞(ΩT )

∥∥∥∂uN

∂x

∥∥∥
L2(ΩT )

)
≤ C

( hN√
εN

∥∥∥∂ϕ
∂x

∥∥∥
L2(ΩT )

+
hN

εN
‖ϕ‖L∞(ΩT )

)
→ 0 as N → ∞.

Thus, we have shown that the second, third, and fourth terms on the right-hand side
of (3.29) vanish as N → ∞. Since the first term is clearly nonpositive, we have that∫

ΩT

[
∂

∂t

(
u2

2

)
+

∂

∂x

(
u3

3

)]
ϕdx dt = lim inf

k→∞

∫
ΩT

(div uNk
) uNk

ϕdx dt ≤ 0

so that the u is the entropy solution of (3.4). This completes the proof of Theorem
3.1.

3.8. Verifying the hypotheses of Theorem 3.1. In the hierarchical finite
element formulation (3.6), we have to choose εN , m, and the form of QN for k ≤ m.
Let 0 < δ ≤ θ ≤ 1. We then choose

εN = C hN
θ, mH ≤ δ N

2
, and Qk,i =

{
0, k ≤ mH ,

1, k > mH .

It is then evident that εN , hN → 0 as N → ∞ so (3.7) holds. Since 0 < θ ≤ 1,
εN
hN

= C hN
θ−1 ≥ C so that (3.8) also holds.

Let v ∈ SN
p ; (I −QN ) is simply an interpolation operator on a coarse grid so that

‖(I −QN ) v‖L2(a,b) ≤ C ‖v‖L2(a,b) .

QN retains the high frequencies of a function, so (I −QN ) eliminates them: Qk,i =
1 ⇒ 1 − Qk,i = 0 for k > mH so that (I −QN ) v ∈ SmH

p . Using a standard inverse
estimate, ∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(a,b)

≤ C (hmH
)
−1 ‖(I −QN ) v‖L2(a,b)

≤ CMmH ‖(I −QN ) v‖L2(a,b) ≤ CM
N δ
2 ‖(I −QN ) v‖L2(a,b)

≤ C

(
ν

hN

) δ
2

‖(I −QN ) v‖L2(a,b) ≤ C

(
ν

hN

) δ
2

‖v‖L2(a,b)

= C
√
νδ hN

− δ
2 ‖v‖L2(a,b)

and

√
εN

∥∥∥ ∂

∂x
[(I −QN )uN ]

∥∥∥
L2(a,b)

≤ C
√
νδ

√
εN
hδ
N

‖v‖L2(a,b)

= C

√
hN

θ−δ ‖v‖L2(a,b) .

(3.30)

Since δ ≤ θ, we have that hN
θ−δ ≤ C; therefore, (3.9) is satisfied.

Since (I −QN ) is an interpolation operator on a coarse grid, for all v ∈ SN
p ,∥∥∥ d

dx
(QNv)

∥∥∥
L2(a,b)

=
∥∥∥dv
dx

− d

dx
[(I −QN ) v]

∥∥∥
L2(a,b)

≤ C
∥∥∥dv
dx

∥∥∥
L2(a,b)

.
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Therefore, (3.10) is satisfied. This completes the verification of the hypotheses (3.7)–
(3.10) of Theorem 3.1 that are used to prove the convergence of the hierarchical finite
element approximations.

To verify the hypotheses (3.11) and (3.12) of Theorem 3.1 that are used to prove
the convergence of the hierarchical finite element approximations to the entropy so-
lution, we must choose 0 < θ < 1. In this case, εN

hN
= C hN

θ−1 → ∞ as N → ∞ so

that (3.11) holds. Since now δ < θ so that hN
θ−δ → 0 as N → ∞, (3.30) implies that

(3.12) holds.

4. A simple computational illustration. We consider the simple periodic
problem for the Burgers equation in one dimension:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 on (−1,+1) × (0, T )

u (−1, t) = u (+1, t) for all t ∈ (0, T )

u (x, 0) = 1 +
1

2
sin (πx) .

(4.1)

A means for establishing the exact solution of this problem is given in [8, 16]. All
of our numerical results were generated using the finite element library deal.II [2].
More extensive computational experimentations are provided in [3, 4].

In (2.1), the values of several parameters must be chosen. We set εN = hN and
add diffusion only to the finest level: QN ;n,ı = 0 for n < N . Neither of these choices
satisfies the requirements of Theorem 3.1 for convergence to the entropy solution.
Even with the smaller diffusion term, however, our numerical experiments indicate
that the approximations still converge to the correct solution.

After spatial discretization is effected using linear hierarchical finite element func-
tions, the resulting system of ordinary differential equations is integrated using a third-
order, strong, stability-preserving Runge–Kutta method found in [11], with time step
Δt that satisfies the CFL condition Δt/hN supu ≤ 0.2.

The exact and discrete solutions of (4.1) are given in Figure 5. Because we are
approximating a discontinuous solution with continuous piecewise polynomials, we
see Gibbs oscillations near the discontinuity; see Figure 5. A simple post-processing
strategy to remove the oscillations is to set the coefficients of the hierarchical expansion
to zero around the discontinuity. The question then becomes how to determine the
location of the discontinuity. Let βn+1,ı be a high frequency hierarchical coefficient in
the discrete solution. Let βn,j be the parent hierarchical coefficient, so the support of
ψn+1,ı is a subset of ψn,j. If the solution is continuously differentiable in the region of
the support of ψn,j, then βn,j/βn+1,ı ≈ 2. Thus, our simple post-processing strategy
is as follows: For the highest four frequencies, if a hierarchical coefficient is larger
than half the value of its parent, then it is set to zero. Our simple post-processing
strategy only affects the region around a discontinuity, but it has the disadvantage
of smoothing across the discontinuity. See Figure 6. We note that post-processing
strategies must also be applied in the spectral viscosity method in order to reduce the
size of the Gibbs oscillations.

In Table 1, we use the L1 norm to measure errors in the approximate solution.
Near a discontinuity, we are limited to how well a piecewise polynomial can approx-
imate a solution. We are more interested in the convergence rates in the smooth
regions. We therefore exclude a region of length 0.2 around the discontinuity in our
error calculations. We see that away from the discontinuity, we achieve the optimal



A MULTIVISCOSITY FEM FOR HYPERBOLIC PDEs 2009

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 7
 # elements=128
 h

N
=1.6e 02

numerical
exact

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 8
 # elements=256
 h

N
=7.8e 03

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 9
 # elements=512
 h

N
=3.9e 03

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 10
 # elements=1024
 h

N
=2.0e 03

−1 −0.5 0 0.5 1
0.5

1

1.5

 # levels: 11
 # elements=2048
 h

N
=9.8e 04

Periodic Burgers’ Equation

Diffusion on Finest Level Only
Q

k,i
=0 or 1

time=1.00 (3rd-Order SSP RK Method)

0 levels were post-processed

Fig. 5. Solution of periodic Burgers equation with linear polynomials (without post-processing).
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Fig. 6. Solution of periodic Burgers equation with linear polynomials (with post-processing).
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Table 1

Convergence rate for the periodic Burgers equation using linear hierarchical basis functions.

without post-processing with post-processing

levels L1 error rate L1 error rate
8 5.775e-03 - 5.238e-02 -
9 5.321e-04 3.44 3.124e-03 4.07
10 2.221e-05 4.58 2.517e-05 6.96
11 3.691e-06 2.59 3.691e-06 2.77
12 9.230e-07 2.00 9.230e-07 2.00
13 2.307e-07 2.00 2.307e-07 2.00
14 5.768e-08 2.00 5.768e-08 2.00

error rate with or without post-processing. We have no theoretical justification for
these convergence rates, but this is a common failing for conservation laws.

5. Concluding remarks. Initial results for the new method seem promising.
We have a stable finite element method which, in some cases, attains quasi-optimal
convergence rates in smooth regions. We also have developed a theoretical foundation
for understanding why the method works. These results, however, are preliminary.
There are potential pitfalls awaiting in more complicated problems, but there is also
untapped potential within the framework. Hierarchical bases, for example, should
provide a suitable environment for implementing adaptive strategies, both for the
grid and the diffusion term.
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