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1. Introduction

Karst aquifers are among the most important type of groundwater sys-
tems. They are mostly made up of a porous medium, referred to as the
matrix, that contains a network of fissures and conduits that are the major
underground highways for water transport. The matrix holds water while
in conduits, one has a free flow. Despite the fact that fissures and conduits
occupy less space compared to the matrix, they play an essential role in
the transport of fluid and contaminants in karst aquifers. Neglecting or not
properly accounting for the flow in conduits and fissures and especially the
exchange of fluid between them and the matrix can lead to inaccuracies.

Considerable effort has been directed at modeling and simulating the in-
teraction between the confined flow in the matrices and the free flow in the
conduit. The Navier-Stokes equations or their linearized counterpart, the
Stokes equations, are widely used to describe the free flow in the conduit
whereas Darcy’s law is chosen to model the confined flow in the matrix. For
connecting the components of the coupled Navier-Stokes-Darcy or Stokes-
Darcy systems, two interface conditions are well-accepted: the continuity
of the normal velocity across the interface which is a consequence of the
conservation of mass, and the balance of the stress force normal to the in-
terface. In three dimensions, two more interface conditions are needed; the
Beavers-Joseph interface condition [2] is regarded as perhaps providing the
most faithful accounting of what happens at the matrix-conduit interface;
there is abundant empirical evidence to support this claim. In the Beavers-
Joseph interface condition, the tangential component of the stress force of
the flow in the conduit at the interface is proportional to the jump in the
tangential velocity across the interface. Unfortunately, from a mathematical
point of view, the Beavers-Joseph interface condition poses some difficulties
because this condition makes an indefinite contribution to the total energy
budget. Consequently, many simplified versions of this interface conditions
have emerged, among which the Beavers-Joseph-Saffman-Jones interface con-
dition [12, 13, 16] is widely used; in this condition, the contribution of the
tangential velocity in the porous media is neglected. As a result, the to-
tal energy budget is dissipative and hence analyses are substantially facil-
itated.1 Despite the convenience for mathematical analysis, models using

1Recently, in [3, 4], the mathematical difficulties have been overcome and analyses and
numerical analyses of the Stokes-Darcy model with the Beavers-Joseph interface condition
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the Beavers-Joseph-Saffman-Jones interface condition can lead to an inaccu-
rate accounting of the exchange of fluid between the matrix and conduit. A
third choice for the remaining interface conditions is provided in [6] (see also
[7, 11]); there, the tangential velocity of the fluid in the conduit is set to be
zero at the interface. A fourth candidate is discussed in [5] where the free-slip
condition at the interface is proposed for the fluid flow in the conduit. These
are even greater simplifications of the Beavers-Joseph interface condition and
also further simplify mathematical and numerical analyses.

We need a reference solution to use to examine the differences resulting
from the four choices of interface conditions within the Stokes-Darcy model.
For this purpose, we replace the Darcy system with the Brinkman system as
the model for the flow in the matrix. Note that it is well known that, as the
Darcy number goes to zero, the differential equations of the Brinkman model
reduce to those of the Darcy model. Thus, the central question we address is
the connection between the interface conditions of the Brinkman model with
those corresponding to the four choices for the Stokes-Darcy model.

In this paper, we identify a non-dimensional parameter ε which is given
by the square root of the ratio of the permeability to the porosity divided by
a typical length scale in the porous media. We then perform an asymptotic
analyses with respect to ε of the Stokes-Darcy model with four choices for
the interface conditions. We use the Stokes-Brinkman model as the reference
model to effect comparisons.

We should mention that the Beavers-Joseph-Saffman-Jones interface con-
dition has been rigorously validated in the sense that, under appropriate
assumptions, the solution of the Stokes-Darcy system with that interface
condition is asymptotically, small Darcy number, the leading order of the so-
lution of the Stokes equations in both the conduit and pore regions at small
Darcy number; see [9, 10]. Those results are complementary to our results
because our work indicates that the Beavers-Joseph interface condition pro-
vides better approximations to the Brinkman-Stokes model at small Darcy
number than does the Beavers-Joseph-Saffman-Jones interface condition, but
the correction is of lower order. Note, however, that the correction could be
large in absolute value for not too small values of the Darcy number, a case
that may be of interest in some applications such as metallic foams.

The paper is organized as follows. In Section 2, we provide the Stokes-

have been provided.
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Brinkman equations and also the Stokes-Darcy equations along with the
four choices for the interface conditions. Section 3 is devoted to the one-
dimensional case in which the tangential velocities only depend on horizontal
variable and the normal velocities are identically zero. In Section 3, we
also consider the fourth choice of interface condition, i.e., free-slip interface
condition. In Section 4, we discuss the quasi-two-dimensional case in which
the velocities depend on both the horizontal and vertical variables but are
of special form. This is followed by a convergence theorem in Section 5 that
gives us full two-dimensional solutions. In Section 6, we examine an separate
issue by showing that the advective term is small for both the Brinkman
or Darcy equations so that the linearized models can be regarded as valid
approximations. Finally, in Section 7, we provide some concluding remarks.

2. The Stokes-Brinkman and Stokes-Darcy models

We start with a full description of the two models we consider. The
two-dimensional conduit domain Ωf = [0, L]× [−hf , 0] is occupied by a free
flow; the two-dimensional matrix Ωp = [0, L]× [0, hp] is occupied by a porous
media, where L is order hp. In this paper, we take L = hp. We consider func-
tions that are periodic in the horizontal variables with period hp. Because the
conduit occupies a much smaller space relative to the matrix, hp � hf > 0;

see Figure 1. We also denote by ~uf , pf , ~ff and ~up, pp, ~fp the fluid veloc-
ity, kinematic pressure, and external body force in Ωf and Ωp, respectively;
ν denotes the kinematic viscosity, n the porosity, Π the permeability, and
D(~u) = 1

2

(
∇~u + (∇~u)T

)
the deformation tensor. The relationship between

porosity and permeability is given by Π = Π0n
3/(1− n)2, where Π0 is the

typical permeability; see, e.g., [15]. We assume that n is a constant and
that the flows in both the conduit and matrix are incompressible. The stress
tensor is denoted by T(~u, p) = −pI + 2νD(~u), where I denotes the identity
tensor.

The steady-state Stokes-Brinkman model for coupled conduit-matrix flows
are given by{

−2ν∇ · D(~uf ) +∇pf = ~ff , ∇ · ~uf = 0, in Ωf

−2ν∇ · D(~up) + νn
Π
~up + n∇pp = ~fp, ∇ · ~up = 0, in Ωp.

(1)

At the interface between the conduit and matrix domains, two sets of in-
terface conditions are widely used. One is the standard continuity of the
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Figure 1: The conduit (free flow) and matrix (porous media) domains Ωf and Ωp, respec-
tively.

velocity and the stress force across the interface, i.e.,

~uf = ~up, (−pfI + 2νD(~uf )) · ~n = (−nppI + 2νD(~up)) · ~n. (2)

The other is continuity of the velocity, all velocity derivatives, and the pres-
sure across the interface proposed by Le Bars and Worster [14], i.e.,

~uf = ~up, ∇~uf = ∇~up, pf = pp. (3)

These two types of interface boundary conditions reduce to the same ones in
the one-dimensional case whereas we use the latter one when dealing with
two-dimensional systems.

We introduce the non-dimensional variables utilising typical reference
quantities in the matrix:

x′ =
x

hp
, p′ =

p
νhpU

Π0

, u′ =
u

U
, f ′ =

f
νU
Π0

. (4)

With these notations in hand, the non-dimensional form of the Brinkman
equation is

−νU
h2
p

∆′~u′p +
νnU

Π
~u′p +

nνhpU

hpΠ0

∇′pp =
νU

Π0

~f ′p,

which is, after dropping the primes,

−Π0

h2
p

∆~up +
nΠ0

Π
~up + n∇pp = ~fp. (5)
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We introduce a non-dimensional parameter, the Darcy number Da = Π0/h
2
p.

When the Darcy number goes to zero, the Brinkman equation (5) reduces to
the Darcy equation

~up = − Π

Π0

(
∇pp −

1

n
~fp

)
.

Similarly, the non-dimensional form of Stokes equation is

−Π0

h2
p

∆~uf +∇pp = ~ff . (6)

Although (6) also contain the Darcy number, the order of the term ∆~uf is
not O(1) since the non-dimensionalisation is based on reference quantities in
the porous media. Therefore, this term cannot be dropped.

Collecting the above results and returning to the dimensional form of the
equations, we have the Stokes-Darcy system{

−2ν∇ · D(~uf ) +∇pf = ~ff , ∇ · ~uf = 0, in Ωf

~up = −Π
ν

(∇pp − 1
n
~fp), ∇ · ~up = 0, in Ωp

(7)

for the coupled conduit-matrix flows. The Stokes-Darcy equations are sup-
plemented by periodic boundary condition in the horizontal direction and
no-penetration and free-slip boundary condition at the top and bottom for
simplicity2

∂uf1

∂y
= uf2 = 0, on y = −hf , (8)

∂up1
∂y

= up2 = 0, on y = hp. (9)

The system is also augmented by the interface conditions

~uf · ~npf = ~up · ~npf (10a)

−~npf ·
(
T(~uf , pf )~npf

)
= g(hp − y) (10b)

−~τpf ·
(
T(~uf , pf )~npf

)
= α ν√

Π
~τpf · (~uf − ~up), (10c)

2The free-slip condition at the bottom may be replaced by the no-slip condition. This
is necessary for well posedness if we adopt the simplified free-slip (10c′′′) at the interface
between the conduit and matrix.
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where hp = y+(pp/(ρg)) denotes the hydraulic head, α a constant, ~npf a unit
vector normal to the interface, and ~τpf a unit vector tangent to the interface.3

The interface conditions (10) for the Stokes-Darcy model are known as
the Beavers-Joseph conditions [2]. The first two interface conditions in (10)
are quite natural; (10a) guarantees the conservation of mass and (10b) the
continuity of the normal stress4 across the interface Γ. On the other hand,
(10c) is a not a statement of continuity of the tangential stress or the velocity
derivative components across the interface Γ.5 Near the interface Γ, a bound-
ary layer may form in the matrix; this boundary layer is not resolved by the
Darcy equations. Thus, (10c) models the jump in the tangential stress across
that boundary layer. In particular, it says that the tangential stress of the
conduit flow at the interface Γ is proportional to the jump in the tangential
velocities across the boundary layer, in the limit that the boundary layer
thickness vanishes; see [2] for details. The value of the parameter α depends
on the properties of the porous material as well as the geometrical setting of
the coupled problem; it also can be used as a model tuning parameter.

A widely accepted simplification of the Beavers-Joseph conditions is the
Beavers-Joseph-Saffman-Jones conditions [12, 16] in which the term ~τpf · ~up
on the right-hand side of (10c) is neglected so that that equation is replaced
by

−τpf ·
(
T(~uf , pf )~npf

)
= α ν√

Π
τpf · ~uf . (10c′)

A further simplification [6] of the Beavers-Joseph conditions is to ignore
the left-hand side, i.e., the tangential stress force, in (10c′) so that, as a
result, the tangential velocity of the fluid in the conduit is set to zero, i.e.,
we have

τpf · ~uf = 0. (10c′′)

In the sequel, for simplicity, we refer to (10c′′) as the zero tangential velocity
interface condition, even though it only sets the tangential velocity in the
conduit to zero.

Yet another simplification [5] of the Beavers-Joseph conditions is to ignore

3In the set up of Figure 1, we can choose ~npf and ~τpf to be the unit vectors in the y
and x directions, respectively.

4The stress force (or force due to stress) acting on a surface in the flow having the unit
normal vector ~n is given by T(~u, p)~n so that the normal and tangential stresses on that
surface are given by ~n ·

(
T(~u, p)~n

)
and ~τ ·

(
T(~u, p)~n

)
, respectively.

5Thus, (10c) is not obtainable through a direct reduction of (2) or (3).
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the right-hand side, i.e., setting α = 0 in (10c′) so that, as a result, velocity
of the fluid in the conduit satisfies the free-slip condition at the interface,
i.e., we have

τpf ·
(
T(~uf , pf )~npf

)
= 0. (10c′′′)

For simplicity, we refer to (10c′′′) as the free-slip interface condition in the
sequel.

In the karst aquifer setting, the non-dimensional parameter ε =
√

Π/n/hp
is usually small. We investigate the asymptotic behavior of the velocities
with respect to ε and then compare the solutions of the Stokes-Brinkman
model (1)–(3) with those of the three Stokes-Darcy models, i.e., the model
(7)-(10) with the Beavers-Joseph condition, the model (7), (10a), (10b),
and (10c′) with the Beavers-Joseph-Saffman-Jones condition, the model (7),
(10a), (10b), and (10c′′) with the zero tangential velocity interface condi-
tion, and the model (7), (10a), (10b), and (10c′′′) with the free-slip interface
condition.6

3. One-dimensional flows

In the one-dimensional case, we assume that the normal velocities are
identically zero and that the tangential velocities only depend on y so that
we have the ansatz for the velocities, pressures, and body forces given by{

~uf = (uf (y), 0)

~up = (up(y), 0)

{
pf ≡ 0

pp ≡ 0

{
~ff = (ff (y), 0)
~fp = (fp(y), 0).

(11)

3.1. Asymptotic solutions of the Stokes-Brinkman system

We first focus on the the asymptotic behavior of solutions of the Stokes-
Brinkman system (1)–(3).

Lemma 3.1. The exact solution of Stokes-Brinkman system (1)–(3) in the

6In this last case, the free-slip boundary condition at the bottom boundary y = −hf

should be replaced by the no-slip condition in order to ensure well posedness.
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one-dimensional case is given by

uf = −1

ν

∫ y

0

∫ t

0

ff (s)dsdt−
y

ν

∫ 0

−hf
ff (s)ds

+

√
Π

n

2Ã− C2 cosh
(√

n
Π
hp
)

sinh
(√

n
Π
hp
)

up =

√
Π

n

Ã cosh
(√

n
Π
y
)
− C2 cosh

(√
n
Π

(y − hp)
)

sinh
(√

n
Π
hp
)

+
1

2ν

√
Π

n

∫ y

0

fp(s)
(
e−
√

n
Π

(y−s) − e
√

n
Π

(y−s)
)
ds,

(12)

where

Ã =
1

2ν

∫ hp

0

fp(s)
(
e−
√

n
Π

(hp−s) + e
√

n
Π

(hp−s)
)
ds, C2 = −1

ν

∫ 0

−hf
ff (s)ds.

Proof. With the ansatz (11) in hand, the coupled Stokes-Brinkman equations
(1) reduce to

−νu′′f = ff , y ∈ (−hf , 0) and − νu′′p +
νn

Π
up = fp, y ∈ (0, hp),

the general solutions of which are given by
uf = − 1

ν

∫ y
0

∫ t
0
ff (s)dsdt+ C1 + C2y

up = 1
2ν

√
Π
n

∫ y
0
fp(s)

(
e−
√

n
Π

(y−s) − e
√

n
Π

(y−s)
)
ds

+C3e
√

n
Π
y + C4e

−
√

n
Π
y,

(13)

respectively. The interface conditions at y = 0 reduce to uf (0) = up(0) and
u′f (0) = u′p(0) so that

C1 = C3 + C4 and C2 =
√

n
Π

(C3 − C4) . (14)

The free-slip boundary conditions at y = hp and y = −hf reduce to u′f (−hf ) =
0 and u′p(hp) = 0, respectively, so that, together with (13), we have

1
ν

∫ 0

−hf
ff (s)ds+ C2 = 0,

− 1
2ν

∫ hp
0
fp(s)

(
e−
√

n
Π

(hp−s) + e
√

n
Π

(hp−s)
)
ds+√

n
Π

(
C3e
√

n
Π
hp − C4e

−
√

n
Π
hp
)

= 0.
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Together with (14), we then have

C1 =
√

Π
n

2 eA−C2

 
e

√
n
Π
hp

+e
−
√

n
Π
hp

!

e

√
n
Π
hp−e

−
√

n
Π
hp

, C2 = − 1
ν

∫ 0

−hf
ff (s)ds,

C3 =
√

Π
n

eA−C2e
−
√

n
Π
hp

e

√
n
Π
hp−e

−
√

n
Π
hp
, C4 =

√
Π
n

eA−C2e

√
n
Π
hp

e

√
n
Π
hp−e

−
√

n
Π
hp
.

Inserting these into the general solutions (13) completes the proof.

Lemma 3.2. Let ε =
√

Π/n/hp. The asymptotic solution of the Stokes-
Brinkman system (1)–(3) in the one-dimensional case is given by

uf ∼
1

ν

(
−
∫ y

0

∫ t

0

ff (s)dsdt− y
∫ 0

−hf
ff (s)ds+ εhp

∫ 0

−hf
ff (s)ds

+ ε2h2
pfp(0) + ε3h3

pf
′
p(0) + ε4h4

pf
′′
p (0)

)
,

up ∼
1

ν

(
ε3h3

pf
′
p(0) + εhp

∫ 0

−hf
ff (s)ds

)
e
− 1
ε
y
hp

+
1

ν

(
ε2h2

pfp(y) + ε4h4
pf
′′
p (y)

)
− 1

ν
ε3h3

pf
′(hp)e

− 1
ε
(1− y

hp
)
.

(15)

Proof. Note that the first two terms in the equation for uf in (12) do not
depend on ε. In light of the fact that 1

ε
� 1, by dividing both the numerator

and denominator of the third term by e
1
ε and dropping the exponentially

small term e−
2
ε , we obtain√

Π

n

2Ã− C2

(
e
√

n
Π
hp + e−

√
n
Π
hp
)

e
√

n
Π
hp − e−

√
n
Π
hp

∼ εhp

(
2Ãe−

1
ε − C2

)
.

Expanding Ãe−
1
ε with respect to ε yields

Ãe−
1
ε = 1

2ν

∫ hp
0
fp(s)

(
e
− 1
ε
(2− s

hp
)
+ e

− 1
ε
s
hp

)
ds

= 1
2ν

(∫ hp
0
fp(s)e

− 1
ε
s
hp ds+ e−

2
ε

∫ hp
0
fp(s)e

1
ε
s
hp ds

)
∼ 1

2ν

(
εhpfp(0) + ε2h2

pf
′
p(0) + ε3h3

pf
′′
p (0)− 2ε2h2

pf
′
p(hp)e

− 1
ε

)
.

(16)

Thus, we obtain the first relation in (15).
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In the same spirit, the first term of up in (12) can be reduced to√
Π

n

Ã cosh
(√

n
Π
y
)
− C2 cosh

(√
n
Π

(y − hp)
)

sinh
(√

n
Π
hp
)

∼ εhpÃe
− 1
ε

(
e
− 1
ε
y
hp + e

1
ε
y
hp

)
− C2e

− 1
ε
y
hp

by dropping the exponentially small factors. With (16) in hand, it is easy to
show that

εhpÃe
− 1
ε

(
e
− 1
ε
y
hp + e

1
ε
y
hp

)
− εhp

2ν
e

1
ε
y
hp
∫ y

0
fp(s)e

− 1
ε
s
hp

= εhp
2ν

(∫ hp
0
fp(s)e

− 1
ε
s
hp ds+ e−

2
ε

∫ hp
0
fp(s)e

1
ε
s
hp ds

)(
e
− 1
ε
y
hp + e

1
ε
y
hp

)
− εhp

2ν
e

1
ε
y
hp
∫ y

0
fp(s)e

− 1
ε
s
hp

∼ εhp
2ν
e

1
ε
y
hp
∫ hp
y
fp(s)e

− 1
ε
s
hp ds+ εhp

2ν
e
− 1
ε
y
hp
∫ hp

0
fp(s)e

− 1
ε
s
hp ds

+ εhp
2ν
e−

2
ε e

1
ε
y
hp
∫ hp

0
fp(s)e

1
ε
s
hp ds

∼ − ε2h2
p

2ν
e
− 1
ε
(1− y

hp
)(
fp(hp) + εhpf

′
p(hp)

)
+

ε2h2
p

2ν

(
fp(y) + εhpf

′
p(y) + ε2h2

pf
′′
p (y)

)
+

ε2h2
p

2ν
e
− 1
ε
y
hp
(
fp(0) + εhpf

′
p(0)

)
+

ε2h2
p

2ν
e
− 1
ε
(1− y

hp
)(
fp(hp)− εhpf ′p(hp)

)
∼ − ε3h3

p

ν
e
− 1
ε
(1− y

hp
)
f ′p(hp) +

ε2h2
p

2ν

(
fp(y) + εhpf

′
p(y) + ε2h2

pf
′′
p (y)

)
+

ε2h2
p

2ν
e
− 1
ε
y
hp
(
fp(0) + εhpf

′
p(0)

)
.

(17)

For the the second term of up in (12), we repeat the same procedure as
for (16) to obtain

εhp
2ν
e
− 1
ε
y
hp
∫ y

0
fp(s)e

1
ε
s
hp ds ∼ 1

2ν

(
−
(
ε2h2

pfp(0)− ε3h3
pf
′
p(0)

)
e
− 1
ε
y
hp

+
(
ε2h2

pfp(y)− ε3h3
pf
′
p(y) + ε4h4

pf
′′
p (y)

))
.

(18)

Combining with (17) yields

up ∼ 1
ν

(
ε3h3

pf
′
p(0) + εhp

∫ 0

−hf
ff (s)ds

)
e
− 1
ε
y
hp + 1

ν

(
ε2h2

pfp(y) + ε4h4
pf
′′
p (y)

)
− 1
ν
ε3h3

pf
′(hp)e

− 1
ε
(1− y

hp
)

which leads to the second relation in (15).
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3.2. Asymptotic solutions of the Stokes-Darcy system

Next, we focus on deriving the asymptotic solution of one-dimensional
Stokes-Darcy system (7), (10a), and (10b) with the Beavers-Joseph interface
condition (10c).

Lemma 3.3. Let ε =
√

Π/n/hp. The asymptotic solution of the one-
dimensional Stokes-Darcy equations with the Beavers-Joseph interface con-
dition (10c) is given by

u0
p,BJ =

ε2

ν
h2
pfp(y),

u0
f,BJ = −1

ν

∫ y

0

∫ t

0

ff (s)dsdt−
y

ν

∫ 0

−hf
ff (s)ds

+

√
n

α

ε

ν
hp

∫ 0

−hf
ff (s)ds+

ε2

ν
h2
pfp(0).

(19)

Proof. In the one-dimensional case, the Stokes-Darcy equations (7) reduce
to

−νu′′f = ff , y ∈ (−hf , 0) and up =
Π

νn
fp, y ∈ (0, hp), (20)

the general solutions of which are given by

u0
f,BJ = −1

ν

∫ y

0

∫ t

0

ff (s)dsdt+C1 +C2y and u0
p,BJ =

Π

νn
fp(y). (21)

Clearly, the first two interface boundary conditions (10a) and (10b) are sat-
isfied automatically, while the Beavers-Joseph condition (10c) reduces to

−ν
∂u0

f,BJ

∂y

∣∣∣∣
y=0

=
αν√

Π
(u0

f,BJ − u0
p,BJ)

∣∣∣∣
y=0

.

To determine the coefficients, we impose this condition and the free-slip
boundary condition at y = −hf on the general solution (20) to obtain

C1 =

√
Π

α

A

ν
+

Π

νn
fp(0) and C2 = −A

ν
, A =

∫ 0

−hf
ff (s)ds.

Accordingly, we arrive at the asymptotic solution (19) of Stokes-Darcy equa-
tions with Beavers-Joseph interface conditions by setting ε =

√
Π/n/hp.
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Using the same arguments, one obtains the asymptotic solution of the
Stokes-Darcy system (7), (10a), and (10b) with the Beavers-Joseph-Saffman-
Jones interface condition (10c′) and the zero tangential velocity interface
condition (10c′′).

Lemma 3.4. Let ε =
√

Π/n/hp. The asymptotic solution of the one dimen-
sional Stokes-Darcy system with the Beavers-Joseph-Saffman-Jones interface
condition (10c′) is given by

u0
p,BJSJ =

ε2

ν
h2
pfp(y),

u0
f,BJSJ = −1

ν

∫ y

0

∫ t

0

ff (s)dsdt

−y
ν

∫ 0

−hf
ff (s)ds+

√
n

α

ε

ν
hp

∫ 0

−hf
ff (s)ds. �

(22)

Lemma 3.5. Let ε =
√

Π/n/hp. The asymptotic solution of the one dimen-
sional Stokes-Darcy system with zero tangential velocity interface condition
(10c′′) is given by

u0
p,Q =

ε2

ν
h2
pfp(y),

u0
f,Q = −1

ν

∫ y

0

∫ t

0

ff (s)dsdt−
y

ν

∫ 0

−hf
ff (s)ds. �

(23)

Remark. In the one-dimensional case, one observes the following from (15),
(19), (22), and (23).

1. The optimal choice of α is α =
√
n.

2. Solutions with both Beavers-Joseph and Beavers-Joseph-Saffman-Jones
interface conditions have low sensitivity on α for α near this optimal
value or larger. This can be seen via a direct differentiation together
with the Kozeny-Carman formula relating permeability and porosity
[1]. This low sensitivity is observed in numerical simulations [8].

3. The leading-order term for the velocities for the Stokes-Brinkman and
Stokes-Darcy systems are both of O (1/ν) in the conduit and are both
of O (ε2/ν) in the matrix.

4. The velocity for the Stokes-Brinkman system contains boundary layers
in the matrix near both y = 0 and y = hp, the order being O (ε/ν) and
O (ε3/ν), respectively. �

13



We have also deduced the asymptotic behavior of solutions of the Stokes-
Darcy system with the free slip interface condition (10c′′′); however, for well
posedness, in this case we have to replace the free-slip boundary condition at
the bottom boundary y = −hf by the physical no-slip boundary condition.
In the case of the no-slip boundary condition at y = −hf , we have also
deduced the asymptotic behavior of solutions of the Stokes-Darcy system
with the three other interface conditions, i.e., with (10c) or (10c′) or (10c′′),
and also for the Stokes-Brinkman system; in all cases, the leading order
behavior does not change from that for the free-slip boundary condition at
y = −hf , so we do not report on these results here. The calculations for
the free-slip interface condition (10c′′′) are very much the same as those for
the other interface conditions, so that we also do not report on them here.
We merely include the implications resulting from the use of the interface
condition (10c′′′) in the comparisons made in Section 3.3.

3.3. Comparison of solutions of the Stokes-Brinkman and Stokes-Darcy sys-
tems

With (15), (19), (22), and (23) in hand, we can compare solutions of the
Stokes-Darcy system with different interface conditions with solutions of the
Stokes-Brinkman system under the optimal choice of α =

√
n.

Proposition 3.6. For the one-dimensional case, the difference between the
velocity in the conduit for the Stokes-Brinkman system and the Stokes-Darcy
system with the Beavers-Joseph interface condition is of O (ε3/ν). That dif-
ference is of O (ε2/ν) for the Beavers-Joseph-Saffman-Jones interface condi-
tion and the difference is of O (ε/ν) for the zero tangential velocity interface
condition. �

Proposition 3.7. For the one-dimensional case, the difference between the
velocity in the matrix for the Stokes-Brinkman system and the Stokes-Darcy
equations with either the Beavers-Joseph, the Beavers-Joseph-Saffman-Jones,
or the zero tangential velocity interface conditions are all of O (ε4/ν). �

From Proposition 3.6, we see that, when comparing with solutions of
the Stokes-Brinkman system, the solution of the Stokes-Darcy system with
the Beavers-Joseph interface condition fits better than does the solution ob-
tained using the Beavers-Joseph-Saffman-Jones interface condition and both

14



are better fits that are solutions obtained using the tangential velocity in-
terface condition. Note that the special case of ff and fp being constants is
essentially the same as that studied in [16].

The free-slip interface condition (10c′′′) formally corresponds to the case
α = 0 in the Beavers-Joseph interface condition (10c). Comparisons of
asymptotic solutions with those for the Stokes-Brinkman system are given in
the following proposition.

Proposition 3.8. For the one-dimensional case, the difference between the
velocity in the conduit for the Stokes-Brinkman system and the Stokes-Darcy
system with the free-slip interface condition is of O (1/ν). The difference be-
tween the velocities in the matrix is of O (ε4/ν) as it is for the other interface
conditions. �

From Propositions 3.6 and 3.8, we see that, when comparing with solu-
tions of the Stokes-Brinkman system, the solution of the Stokes-Darcy sys-
tem with the Beavers-Joseph interface condition fits better than does the
solution obtained using the Beavers-Joseph-Saffman-Jones interface condi-
tion and both are better fits than are solutions obtained using the tangential
velocity interface condition and all three are better fits than are solution ob-
tained using the zero-slip interface condition.7 Note that the special case of
ff and fp being constants is essentially the same as that studied in [16].

7Due to its poor performance as an approximation to the Beavers-Joseph interface
condition and to save space, we do not consider the zero-slip interface condition any
further.
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4. Quasi-two-dimensional flows

We now consider solutions and body forces that depend on both x and
y, assuming periodicity in the horizontal direction, i.e., we invoke the ansatz

~uf =
K∑

k=−K

~uf,k =
K∑

k=−K

(uf,1,k(y), uf,2,k(y)) e
i2πkx
hp

~ff =
K∑

k=−K

~ff,k =
K∑

k=−K

(ff,1,k(y), ff,2,k(y)) e
i2πkx
hp

~up =
K∑

k=−K

~up,k =
K∑

k=−K

(up,1,k(y), up,2,k(y)) e
i2πkx
hp

~fp =
K∑

k=−K

~fp,k =
K∑

k=−K

(fp,1,k(y), fp,2,k(y)) e
i2πkx
hp ,

where the integer k denotes the wave number. Here, we also make the as-
sumption that the Fourier decomposition only contains a finite number of
modes. Because solutions and data are real functions, we only need to con-
sider k ≥ 0. To simplify notation, in the sequel we set k̃ = 2πk

hp
.

4.1. Solutions of the Stokes-Brinkman system

We start by deriving the general solution of the Stokes-Brinkman system
(1) for each fixed k.

Lemma 4.1. For the Stokes-Brinkman system (1) and for each fixed k, the
normal velocity in the conduit takes the form

uf,2,ke
iekx =

(
C1e

eky + C2e
−eky + C3ye

eky + C4ye
−eky + ufs,k

)
ei
ekx, (24)

where the coefficients Ci, i = 1, 2, 3, 4, are to be determined and the particular
solution ufs,k is given by

ufs,k = − 1

4ν

(
e
eky ∫ y

0

e−
eks1 + k̃s

k̃3
F (s)ds

+e−
eky ∫ y

0

e
eks−1 + k̃s

k̃3
F (s)ds

−yeeky
∫ y

0

e−
eks 1

k̃2
F (s)ds− ye−eky

∫ y

0

e
eks 1

k̃2
F (s)ds

)
,

(25)
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where

F (s) = k̃2
(
ff,2,k(s) +

i

k̃
f ′f,1,k(s)

)
. (26)

Proof. Because ~uf,k is solenoidal, there exists a stream function ψ such that

~uf,k =
(
−∂ψ

∂y
, ∂ψ
∂x

)
. Let ψ = 1

iekuf,2,k(y)ei
ekx. Then,

~uf,k =
(
− u′f,2,k(y) , ik̃uf,2,k(y)

) 1

ik̃
ei
ekx. (27)

The pressure in the Stokes equation for the conduit can be eliminated by
taking the curl of that equation, resulting in

−ν∆2ψ = ∇× ~ff,k =
(
ik̃ff,2,k(y)− f ′f,1,k(y)

)
ei
ekx

which, together with (27), leads to the ordinary differential equation

−ν
ik̃

(
u

(4)
f,2,k − 2k̃2u′′f,2,k + k̃4uf,2,k

)
ei
ekx = ∇× ~ff,k. (28)

Let

F := −ik̃∇× ~ff,ke
−iekx = k̃2ff,2,k(y) + ik̃f ′f,1,k(y) = k̃2

(
ff,2,k(y) +

i

k̃
f ′f,1,k(y)

)
.

Then, (28) becomes

u
(4)
f,2,k − 2k̃2u′′f,2,k + k̃4uf,2,k =

1

ν
F (29)

for which we have the solution (24)–(25).

Using the same argument, we select φ = 1

iekup,2,k(y)ei
ekx such that

~up =
(
− ∂φ

∂y
,
∂φ

∂x

)
=
(
− u′p,2,k(y) , ik̃up,2,k(y)

) 1

ik̃
ei
ekx (30)

and define

G(y) := k̃2
(
fp,2,k(y) +

i

k̃
f ′p,1,k(y)

)
. (31)

Then, we have the following result.
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Lemma 4.2. For the Stokes-Brinkman system (1) and for each fixed k̃, the
normal velocity in the matrix takes the form

up,2,ke
iekx =

(
C5e

eky +C6e
−eky +C7e

√ek2+ n
Π
y +C8e

−
√ek2+ n

Π
y + ups,k

)
ei
ekx, (32)

where the coefficients Ci, i = 5, 6, 7, 8, are to be determined and the particular
solution ups,k is given by

ups,k = − 1

2ν

(
e
eky ∫ y

0

1

k̃ n
Π

e−
eksG(s)ds− e−eky

∫ y

0

1

k̃ n
Π

e
eksG(s)ds− e

√ek2+ n
Π
y×∫ y

0

1√
k̃2 + n

Π
n
Π

e−
√ek2+ n

Π
sG(s)ds

+e−
√ek2+ n

Π
y

∫ y

0

1√
k̃2 + n

Π
n
Π

e
√ek2+ n

Π
sG(s)ds

)
.

It remains to determine the coefficients Ci, i = 1, 2, . . . , 8. We set, as in

the one-dimensional case, ε =
√

Π/n/hp and let E =
√
k̃2 + (nh2

p/Π)/hp.

Lemma 4.3. For the Stokes-Brinkman system (1)–(3) and for each fixed k̃,
the coefficients Ci, i = 1, 2, . . . , 8, are the solution of the linear system

1 1 0 0 −1 −1 −1 −1ek −ek 1 1 −ek ek −E Eek2 ek2 2ek −2ek −ek2 −ek2 −E2 −E2

e
−ekhf e

ekhf −hf e
−ekhf −hf e

ekhf 0 0 0 0

0 0 0 0 e
ekhp e−

ekhp eEhp e−Ehp

0 0 −2 −2 − 1ekΠ

1ekΠ
0 0ek2e

−ekhf ek2e
ekhf (−ek2hf+2ek)e

−ekhf (−ek2hf−2ek)e
ekhf 0 0 0 0

0 0 0 0 ek2e
ekhp ek2e−

ekhp E2eEhp E2e−Ehp

 ·

·


C1
C2
C3
C4
C5
C6
C7
C8

 =


f1

f2

f3

f4

f5

f6

f7

f8

 ,

where

f1 =f2 = f3 = 0, f4 = −ufs,k(−hf ), f5 = −ups,k(−hp),

f6 =− i

νk̃

(
ff,1,k(0)− 1

n
fp,1,k(0)

)
, f7 = −u′′fs,k(−hf ), f8 = −u′′ps,k(−hp).
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Proof. Using (27) and (30), the first two interface conditions in (3) for the
Stokes-Brinkman system reduce to

uf,2,k(0) = up,2,k(0), u′f,2,k(0) = u′p,2,k(0), u′′f,2,k(0) = u′′p,2,k(0)

which imply that

C1 + C2 = C5 + C6 + C7 + C8, (C1)

k̃C1 − k̃C2 + C3 + C4 = k̃C5 − k̃C6 + EC7 − EC8, (C2)

k̃2C1 + k̃2C2 + 2k̃C3 − 2k̃C4 = k̃2C5 + k̃2C6 + E2C7 + E2C8. (C3)

Next, the Stokes-Brinkman equations (1) imply that the pressure on the
two sides of the interface is given by

∂pf,k
∂x

∣∣∣∣
y=0

=ff,1,k(0)ei
ekx + 2ν

(
∂2uf,1,k
∂x2

+
1

2

(
∂2uf,1,k
∂y2

+
∂2uf,2,k
∂x∂y

))∣∣∣∣
y=0

=ff,1,k(0)ei
ekx + ν(−2k̃2C3 − 2k̃2C4)

1

ik̃
ei
ekx,

∂pp,k
∂x

∣∣∣∣
y=0

=
1

n
fp,1,k(0)ei

ekx

+
2ν

n

(
∂2up,1,k
∂x2

+
1

2

(
∂2up,1,k
∂y2

+
∂2up,2,k
∂x∂y

))
− ν

Π
up,1,k

∣∣∣∣
y=0

=
1

n
fp,1,k(0)ei

ekx +
ν

n

(
k̃2(EC7 − EC8)− (E3C7 − E3C8)

) 1

ik̃
ei
ekx

+
ν

Π
(k̃C5 − k̃C6 + EC7 − EC8)

1

ik̃
ei
ekx.

Let pf,k|x=0,y=0 = pf,k(0, 0) and pp,k|x=0,y=0 = pp,k(0, 0). Integrating pf and
pp from 0 to x yields

pf,k = ff,1,k(0)
1

ik̃

(
ei
ekx − 1

)
+ 2ν(C3 + C4)

(
ei
ekx − 1

)
+ pf,k(0, 0) (33)
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and

pp,k =fp,1,k(0)
1

nik̃

(
ei
ekx − 1

)
− ν

n

E(k̃2 − E2)

k̃2
(C7 − C8)(ei

ekx − 1)

− ν

Πk̃2
(k̃C5 − k̃C6 + EC7 − EC8)

(
ei
ekx − 1

)
+ pp,k(0, 0)

=fp,1,k(0)
1

nik̃

(
ei
ekx − 1

)
+
ν

Π

(
− 1

k̃
C5 +

1

k̃
C6

)(
ei
ekx − 1

)
+ pp,k(0, 0).

(34)

With (33) and (34) in hand, we set x = 0 in the third interface condition in
(3) (which holds for all x) to obtain pp,k(0, 0)− pf,k(0, 0) = 0. Then,

−2C3 − 2C4 −
1

k̃Π
C5 +

1

k̃Π
C6 = − i

νk̃

(
ff,1,k(0)− 1

n
fp,1,k(0)

)
. (C4)

Besides the interface boundary conditions, we impose free-slip boundary
conditions at −hf and hp:

u′f,1,k(−hf ) = 0, u′p,1,k(hp) = 0, uf,2,k(−hf ) = 0, up,2,k(hp) = 0

so that

k̃2e−
ekhfC1 + k̃2e

ekhfC2 + (2k̃ − k̃2hf )e
−ekhfC3

−(2k̃ + k̃2hf )e
ekhfC4 = −u′′fs,k(−hf ), (C5)

k̃2e
ekhpC5 + k̃2e−

ekhpC6 + E2eEhp + E2e−Ehp = −u′′ps,k(hp), (C6)

e−
ekhfC1 + e

ekhfC2 − hfe−
ekhfC3 + hfe

ekhfC3 = −ufs,k(−hf ), (C7)

e
ekhpC5 + e−

ekhpC6 + eEhpC7 + e−EhpC8 = −ups,k(hp). (C8)

Consequently, combining (C1)–(C8) completes the proof.

4.2. Solutions of the Stokes-Darcy systems
We next obtain the solutions of the Stokes-Darcy system (7) in the quasi-

two-dimensional case. In the same spirit as for the Stokes-Brinkman system,
we invoke the ansatz

~u0
f =

K∑
k=−K

~u0
f,k =

K∑
k=−K

(
u0
f,1,k(y), u0

f,2,k(y)
)
ei
ekx,

~u0
p =

K∑
k=−K

~u0
p,k =

K∑
k=−K

(
u0
p,1,k(y), u0

p,2,k(y)
)
ei
ekx
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for solutions of the Stokes-Darcy system. By selecting the streamfunctions

ψ = 1

ieku0
f,2,k(y)ei

ekx and φ = 1

ieku0
p,2,k(y)ei

ekx, the velocities can be written as

~u0
f,k =

(
−u0′

f,2,k(y), ik̃u0
f,2,k(y)

) 1

ik̃
ei
ekx, ~u0

p,k =
(
−u0′

p,2,k(y), ik̃u0
p,2,k(y)

) 1

ik̃
ei
ekx.

Using the same argument as for the Stokes-Brinkman system, we obtain the
following result.

Lemma 4.4. For the Stokes-Darcy system (7) and for each fixed k̃, the
normal velocity in the conduit and matrix are given by

u0
f,2,ke

iekx =
(
C0

1e
eky + C0

2e
−eky + C0

3ye
eky + C0

4ye
−eky + u0

fs,k

)
ei
ekx (35)

and
u0
p,2,ke

iekx =
(
C0

5e
eky + C0

6e
−eky + u0

ps,k

)
ei
ekx, (36)

respectively, where the coefficients C0
i , i = 1, 2, . . . , 6, are to be determined

and the particular solutions u0
fs,k and u0

ps,k are given by

u0
fs,k = − 1

4ν

(
e
eky ∫ y

0

e−
eks1 + k̃s

k̃3
F (s)ds+ e−

eky ∫ y

0

e
eks−1 + k̃s

k̃3
F (s)ds

− yeeky
∫ y

0

e−
eks 1

k̃2
F (s)ds− ye−eky

∫ y

0

e
eks 1

k̃2
F (s)ds

)
and

u0
ps,k = − 1

2ν

Π

n
e
eky ∫ y

0

1

k̃
e−
eksG(s)ds+

1

2ν

Π

n
e−
eky ∫ y

0

1

k̃
e
eksG(s)ds,

respectively, where F and G are defined in (26) and (31), respectively.

Lemma 4.5. For the Stokes-Darcy system (7), (10a), and (10b) and for
each fixed k, the coefficients C0

i , i = 1, 2, . . . , 6, are the solution of the linear
system

1 1 0 0 −1 −1

−2ek2 2ek2 0 0 1/Π −1/Πek2e
−ekhf ek2e

ekhf (2ek−hfek2)e
−ekhf (−2ek−hfek2)e

ekhf 0 0

e
−ekhf e

ekhf −hf e
−ekhf −hf e

ekhf 0 0

0 0 0 0 e
ekhp e−

ekhp
2ek2+

ek
εhp

2ek2− ek
εhp

2ek+ 1
εhp

−2ek2+ 1
εhp

− ek
εhp

ek
εhp




C0
1

C0
2

C0
3

C0
4

C0
5

C0
6

 =


g0
1

g0
2

g0
3

g0
4

g0
5

g0
6
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for the Beavers-Joseph interface condition (10c),
1 1 0 0 −1 −1

−2ek2 2ek2 0 0 1/Π −1/Πek2e
−ekhf ek2e

ekhf (2ek−hfek2)e
−ekhf (−2ek−hfek2)e

ekhf 0 0

e
−ekhf e

ekhf −hf e
−ekhf −hf e

ekhf 0 0

0 0 0 0 e
ekhp e−

ekhp
2ek2+

ek
εhp

2ek2− ek
εhp

2ek+ 1
εhp

−2ek2+ 1
εhp

0 0




C0
1

C0
2

C0
3

C0
4

C0
5

C0
6

 =


g0
1

g0
2

g0
3

g0
4

g0
5

g0
6


for the Beavers-Joseph-Saffman-Jones interface condition, and (10c′)

1 1 0 0 −1 −1

−2ek2 2ek2 0 0 1/Π −1/Πek2e
−ekhf ek2e

ekhf (2ek−hfek2)e
−ekhf (−2ek−hfek2)e

ekhf 0 0

e
−ekhf e

ekhf −hf e
−ekhf −hf e

ekhf 0 0

0 0 0 0 e
ekhp e−

ekhpek −ek 1 1 0 0




C0
1

C0
2

C0
3

C0
4

C0
5

C0
6

 =


g0
1

g0
2

g0
3

g0
4

g0
5

g0
6


for the zero tangential velocity interface condition (10c′′), where

g1 = g6 = 0, g2 =
i

ν

(
ff,1,k(0)− 1

n
fp,1,k(0)

)
,

g3 = −u0′′
fs,k(−hf ), g4 = −u0

fs,k(−hf ), g5 = −u0
ps,k(hp).

Proof. Condition (10a) results in u0
f,2,k(0) = u0

p,2,k(0) so that

C0
1 + C0

2 = C0
5 + C0

6 . (D1)

Normalized with ρ = 1 and written in component form, (10b) takes the form

−(0, 1)

−( pf,k 0
0 pf,k

)
+ 2ν

 ∂u0
f,1,k
∂x

1
2

 
∂u0
f,1,k
∂y

+
∂u0
f,2,k
∂x

!
1
2

 
∂u0
f,1,k
∂y

+
∂u0
f,2,k
∂x

!
∂u0
f,2,k
∂y


( 0

1

)
= pp,k

which implies

pf,k − 2ν
∂u0

f,2,k

∂y
= pp,k. (37)

The Stokes equation in (7) implies

∂pf,k
∂x

= ff,1,k(0) + 2ν

(
∂2u0

f,1,k

∂x2
+

1

2

(
∂2u0

f,1,k

∂y2
+
∂2u0

f,2,k

∂x∂y

))
.
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Let pf,k|x=0,y=0 = pf,k(0, 0) and pp,k|x=0,y=0 = pp,k(0, 0). Integrating from 0
to x yields

pf,k = ff,1,k(0)
1

ik̃
(ei
ekx − 1) + 2ν

(
C0

3 + C0
4

)
(ei
ekx − 1) + pf,k(0, 0). (38)

On the other hand, the Darcy equation in (7) implies

∂pp,k
∂x

=
1

n
fp,1,k(0)− ν

Π
u0
p,1,k =

1

n
fp,1,ke

iekx +
ν

Π

(
k̃C0

5 − k̃C0
6

) 1

ik̃
ei
ekx.

Integrating from 0 to x results in

pp,k =
1

ik̃n
fp,1,k(0)(ei

ekx − 1)− ν

Π

1

k̃

(
C0

5 − C0
6

)
(ei
ekx − 1) + pp,k(0, 0). (39)

Furthermore, it is obvious that

2ν
∂u0

f,2,k

∂y
= 2ν

(
k̃C0

1 − k̃C0
2 + C0

3 + C0
4

)
ei
ekx. (40)

Inserting (38)–(40) into (37) and setting x = 0 yields pp,k(0, 0)− pf,k(0, 0) =

2ν
(
k̃C0

1 − k̃C0
2 + C0

3 + C0
4

)
. Elementary calculations shows that (37) can be

reduced to

−2k̃2C0
1 + 2k̃2C0

2 +
1

Π
C0

5 −
1

Π
C0

6 =
i

ν

(
ff,1,k(0)− 1

n
fp,1,k(0)

)
. (D2)

Written in component form, the Beavers-Joseph interface condition (10c)
takes the form

− (1, 0)

−( pf,k 0
0 pf,k

)
+ 2ν

 ∂u0
f,1,k
∂x

1
2

 
∂u0
f,1,k
∂y

+
∂u0
f,2,k
∂x

!
1
2

 
∂u0
f,1,k
∂y

+
∂u0
f,2,k
∂x

!
∂u0
f,2,k
∂y


( 0

1

)

=
αν√

Π
(1, 0)

(
u0
f,1,k − u0

p,1,k

u0
f,2,k − u0

p,2,k

)
,

i.e.,

−ν
(
∂u0

f,1,k

∂y
+
∂u0

f,2,k

∂x

)
=

αν√
Π

(u0
f,1,k − u0

p,1,k).
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We then have, after setting α =
√
n,(

2k̃2 +

√
n

Π
k̃
)
C0

1 +
(

2k̃2 −
√
n

Π
k̃
)
C0

2 +
(

2k̃ +

√
n

Π

)
C0

3

+
(
− 2k̃ +

√
n

Π

)
C0

4 −
√
n

Π
k̃C0

5 +

√
n

Π
k̃C0

6 = 0.

(D3)

Using the same argument for the Beavers-Joseph-Saffman-Jones interface
boundary condition (10c′) leads to(

2k̃2 +

√
n

Π
k̃

)
C0

1 +

(
2k̃2 −

√
n

Π
k̃

)
C0

2

+

(
2k̃ +

√
n

Π

)
C0

3 +

(
−2k̃ +

√
n

Π

)
C0

4 = 0.

(D3′)

Similarly, for the zero tangential velocity interface condition (10c′′), we
have

k̃C0
1 − k̃C0

2 + C0
3 + C0

4 = 0. (D3′′)

We also impose the free-slip boundary conditions u0′
f,1,k(−hf ) = 0 and

u0
f,2,k(−hf ) = 0 at −hf so that

k̃2e−
ekhfC0

1 + k̃2e
ekhfC0

2 + (2k̃ − k̃2hf )e
−ekhfC0

3

−(2k̃ + k̃2hf )e
ekhfC0

4 = −u0′′
fs,k(−hf ),

(D4)

e−
ekhfC0

1 + e
ekhfC0

2 − hfe−
ekhfC0

3 − hfe
ekhfC0

4 = u0
fs,k(−hf ) (D5)

along with the no-flow condition u0
p,2,k(hp) = 0 across the boundary at hp so

that
e
ekhpC0

5 + e−
ekhpC0

6 = −u0
ps,k(hp). (D6)

Combining (D1)–(D6), (D3′) and (D3′′) completes the proof.

4.3. Comparison of asymptotic solutions of the Stokes-Brinkman and Stokes
Darcy systems

With the coefficients solved using MATLAB, we have the following re-
sults.
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Proposition 4.6. The asymptotic solution of the normal velocity for the
quasi-two-dimensional Stokes-Brinkman system is given by

uf,2,k ∼Ck,1ei
ekx 1

ν
+ Ck,2e

iekx ε
ν

+ Ck,3e
iekx ε2

ν
+O

(
ε3/ν

)
,

up,2,k ∼Pk,1ei
ekx ε2
ν

+ Pk,2e
iekx ε2

ν
+ Pk,4e

iekx ε4
ν

+O
(
ε5/ν

)
+ Pk,5e

iekx ε2
ν
e−Ey + Pk,6e

iekx ε4
ν
eE(y−hp),

(41)

where the coefficients are listed in Appendix A.

Proposition 4.7. The asymptotic solution of the normal velocity for the
quasi-two-dimensional Stokes-Darcy system with the Beavers-Joseph inter-
face condition is given by

u0
f,2,k,BJ ∼Ck,1ei

ekx 1

ν
+ Ck,2e

iekx ε
ν

+ Ck,3e
iekx ε2

ν
+O

(
ε3/ν

)
,

u0
p,2,k,BJ ∼Pk,1ei

ekx ε2
ν

+ Pk,2e
iekx ε3

ν
+ Pk,3e

iekx ε4
ν

+O
(
ε6/ν

)
,

(42)

with the Beavers-Joseph-Saffman-Jones interface condition by

u0
f,2,k,BJSJ ∼Ck,1ei

ekx 1

ν
+ Ck,2e

iekx ε
ν

+ Ck,4e
iekx ε2

ν
+O

(
ε3/ν

)
,

u0
p,2,k,BJSJ ∼Pk,1ei

ekx ε2
ν

+ Pk,2e
iekx ε3

ν
+ Pk,3e

iekx ε4
ν

+ Pk,7e
iekxΠε2

ν
+O

(
ε6/ν

)
,

(43)

and with the zero tangential velocity interface condition by

u0
f,2,k,Q ∼Ck,1ei

ekx 1

ν
+O

(
ε3/ν

)
,

u0
p,2,k,Q ∼Pk,1ei

ekx ε2
ν

+ Pk,2e
iekx ε3

ν
+ Pk,8e

iekx ε4
ν

+O
(
ε5/ν

)
,

(44)

where the coefficients are listed in Appendix A.

Remark. In the quasi-two-dimensional case, one observes the following from
(41)–(44).
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1. The leading-order terms for the normal velocities for the Stokes-Brinkman
and the Stokes-Darcy systems are both of O (1/ν) in the conduit and
are both of O (ε2/ν) in the matrix.

2. The normal velocity for the Stokes-Brinkman system contains a bound-
ary layer in the matrix near both y = 0 and y = hp, the order being
O (ε2/ν) and O (ε4/ν), respectively.

3. The tangential velocities and normal velocities are not independent.
Indeed, they are associated with each other via the streamfunctions.
Elementary calculations show that the leading order of the tangential
velocities in the conduit and matrix are the same as the normal ve-
locities. However, the order of the tangential velocity in the boundary
layer changes to O (ε/ν) and O (ε3/ν) at y = 0 and y = hp, respectively.

4. The normal velocities of Stokes-Darcy equations with Beavers-Joseph
interface condition at the interface are different from that with Beavers-
Joseph-Saffman-Jones interface condition. The difference is of order
O (Πε2/ν), which is approximately of order O (ε5/ν).

With (41)–(44) in hand, we can compare solutions of the Stokes-Darcy
system with different interface conditions with solutions of the Stokes-Brinkman
system.

Proposition 4.8. For the quasi-two-dimensional case, the difference be-
tween the normal velocity in the conduit for the Stokes-Brinkman system
and the Stokes-Darcy system with the Beavers-Joseph interface condition is
of O (ε3/ν). That difference is of order O (ε2/ν) for the Beavers-Joseph-
Saffman-Jones interface condition and is of order O (ε/ν) for the zero tan-
gential velocity interface condition. �

Proposition 4.9. In quasi-two-dimensional case, the difference between the
normal velocity in the matrix for the Stokes-Brinkman system and the Stokes-
Darcy system with the Beavers-Joseph, the Beavers-Joseph-Saffman-Jones,
and the zero tangential velocity interface conditions are all of order O (ε4/ν).
�

Thus, as for the one-dimensional case, we see from Proposition 4.8 that,
when comparing with solutions of the Stokes-Brinkman system, the solutions
of the Stokes-Darcy system with the Beavers-Joseph interface condition fits
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better than does the solution obtained using the Beavers-Joseph-Saffman-
Jones and both of these fit better than the solution obtained using the zero
tangential velocity interface condition.

5. The two-dimensional flows

In Section 4, we obtained, for each wave number k ≥ 0, the quasi-two-
dimensional solutions ~uf,k = (uf,1,k, uf,2,k) and ~up,k = (up,1,k, up,2,k) of the
Stokes-Brinkman system in the conduit and matrix, respectively. Likewise,
we obtained the corresponding solutions ~u0

f,k,BJ = (u0
f,1,k,BJ , u

0
f,2,k,BJ) and

~u0
p,k,BJ = (u0

p,1,k,BJ , u
0
p,2,k,BJ) of the Stokes-Darcy system with the Beavers-

Joseph interface condition, ~u0
f,k,BJSJ = (u0

f,1,k,BJSJ , u
0
f,2,k,BJSJ) and ~u0

p,k,BJSJ =
(u0

p,1,k,BJSJ , u
0
p,2,k,BJSJ) of the Stokes-Darcy system with the Beavers-Joseph-

Saffman-Jones interface condition, and ~u0
f,k,Q = (u0

f,1,k,Q, u
0
f,2,k,Q) and ~u0

p,k,Q =
(u0

p,1,k,Q, u
0
p,2,k,Q) of the Stokes-Darcy system with the zero tangential velocity

interface condition. Summation of the quasi-two-dimensional solutions lead
to the two-dimensional solutions

~uf =
K∑

k=−K

~uf,k, ~up =
K∑

k=−K

~up,k,

~u0
f,BJ =

K∑
k=−K

~u0
f,k,BJ , ~u0

p,BJ =
K∑

k=−K

~u0
p,k,BJ ,

~u0
f,BJSJ =

K∑
k=−K

~u0
f,k,BJSJ , ~u0

p,BJSJ =
K∑

k=−K

~u0
p,k,BJSJ ,

~u0
f,Q =

K∑
k=−K

~u0
f,k,Q, ~u0

p,Q =
K∑

k=−K

~u0
p,k,Q.

We have the result∣∣~uf,k − ~u0
f,k,BJ

∣∣ ∼ K∑
k=−K

∣∣~uf,k − ~u0
f,k,BJ

∣∣ ≤ O

(
ε3

ν

)
,

∣∣~uf,k − ~u0
f,k,BJSJ

∣∣ ∼ K∑
k=−K

∣∣~uf,k − ~u0
f,k,BJSJ

∣∣ ≤ O

(
ε2

ν

)
,

∣∣~uf,k − ~u0
f,k,Q

∣∣ ∼ K∑
k=−K

∣∣~uf,k − ~u0
f,k,Q

∣∣ ≤ O
( ε
ν

)
,
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which leads to the following conclusion.

Theorem 5.1. For the two-dimensional case, the difference between the nor-
mal velocity in the conduit for the Stokes-Brinkman system and the Stokes-
Darcy system with the Beavers-Joseph interface condition is of order O (ε3/ν).
The difference is of order O (ε2/ν) for the Beavers-Joseph-Saffman-Jones in-
terface condition and is of order O (ε/ν) for the the zero tangential velocity
interface condition.

The difference between the normal velocity in the matrix for the Stokes-
Brinkman system and Stokes-Darcy system with the Beavers-Joseph, the
Beavers-Joseph-Saffman-Jones and the the zero tangential velocity interface
conditions are all of order O (ε4/ν). �

Thus, again, the Beavers-Joseph interface condition fits better than the
Beavers-Joseph-Saffman-Jones interface condition and both of these fit better
than the the zero tangential velocity interface condition, when comparing
solutions with that of the Stokes-Brinkman system.

6. The convection term in the Brinkman and Darcy equations

The asymptotic analyses of the previous sections can be put to other uses.
For example, it can be used to justify neglecting the convection term in the
matrix in the Brinkman and Darcy equations.

The steady-state Stokes-Brinkman and Stokes-Darcy equations with con-
vection in the matrix are given by{
−ν∆~uf +∇pf = ~ff , div ~uf = 0, in Ωf ,

(~up · ∇)~up − ν∆~up + νn
Π
~up + n∇pp − ~fp = 0, div ~up = 0, in Ωp

(45)

and {
−ν∆~uf +∇pf = ~ff , div ~uf = 0, in Ωf ,

(~up · ∇)~up + νn
Π
~up + n∇pp − ~fp = 0, div ~up = 0, in Ωp,

(46)

respectively. We have shown, in the previous sections, that away from the
boundary layer, ~up ∼ O (ε2/ν) , which is a small quantity in a typical karst
aquifer. It is obvious from the expression for ~up that the derivatives of the
velocities are of O (ε2/ν) as well so that the advective term is of O (ε4/ν2).

On the other hand, νn
Π
~up ∼ ν

ε2
ε2

ν
∼ O(1), ~fp ∼ O(1), and n∇pp ∼ O(1). In
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light of these results, we conclude that the advective term is smaller than the
others terms and therefore it is justified to neglect it in both the Brinkman
and Darcy equation.

7. Conclusion and Remarks

We have derived asymptotic solutions with respect to the non-dimensional

parameter ε =
√

Π
n

1
hp

for the time-independent Stokes-Darcy system with the

Beavers-Joseph, Beavers-Joseph-Saffman-Jones, zero tangential velocity, and
free-slip interface conditions. The leading order of the velocity is of O

(
1
ν

)
in the conduit whereas it is of O

(
ε2

ν

)
in the matrix. It is observed that

the optimal choice of the Beavers-Joseph constant α is
√
n for both the

Beavers-Joseph and Beavers-Joseph-Saffman-Jones interface conditions. We
also notice that the solutions with the Beavers-Joseph and Beavers-Joseph-
Saffman-Jones interface conditions show low sensitivity with respect to α for
α ∈ [

√
n,∞). Compared with asymptotic solutions of Stokes-Brinkman sys-

tem, which we also derived, the solution using the Beavers-Joseph interface
condition fits better in the conduit compared to that for the Beavers-Joseph-
Saffman-Jones interface condition and both fit better than that obtained
using the zero tangential velocity condition; in the matrix, the three choices
of conditions yield the same asymptotic behavior. We have also investigated
the use of the free-slip interface condition and determined that this is the
least accurate among all interface boundary conditions considered here.

In this paper, we only considered the steady-state case and neglected the
convection term in the Brinkman and Darcy systems. It would be interesting
to examine the time-dependent case. Also, investigating the results when the
porosity and permeability are no longer constants would be a challenging and
meaningful work.
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A. The normal velocities for the quasi-two-dimensional case

The velocities in the conduit are

u0
f,2,k,BJ ∼Ck,1ei

ekx 1

ν
+ Ck,2e

iekx ε
ν

+ Ck,3e
iekx ε2

ν
+O

(
ε3

ν

)
,

u0
f,2,k,BJSJ ∼Ck,1ei

ekx 1

ν
+ Ck,2e

iekx ε
ν

+ Ck,4e
iekx ε2

ν
+O

(
ε3

ν

)
,

uf,2,k ∼Ck,1ei
ekx 1

ν
+ Ck,2e

iekx ε
ν

+ Ck,3e
iekx ε2

ν
+O

(
ε3

ν

)
,

u0
f,2,k,Q ∼Ck,1ei

ekx 1

ν
+O

(
ε3

ν

)
,

where

Ck,1 =D3 +
D2

2k̃
(

1− 4k̃hfe−2ekhf − e−4ekhf)[hf (1− e−2ekhf )(e−ek(hf−y) − e−ek(hf+y))

− (2k̃hf − 1 + e−2ekhf )ye−ek(hf−y) − (1− e−2ekhf − 2k̃hfe
−2ekhf )ye−ek(hf+y)

]
+

D1

2
(

1− 4k̃hfe−2ekhf − e−4ekhf)[
(

(2 + k̃hf ) + (2− k̃hf )e−2ekhf) (e−
ek(hf+y) − e−ek(hf−y))

+
(

3 + 2k̃hf + e−2ekhf) k̃ye−ek(hf−y) +
(

1 + (3− 2k̃hf )e
−2ekhf) k̃ye−ek(hf+y)

]
,
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Ck,2 =
D2hp

1− 4k̃hfe−2ekhf − e−4ekhf
[
hf (1 + e−2ekhf )(1 + y)(e−

ek(hf−y) + e−
ek(hf+y))

]
+

D1k̃hp

1− 4k̃hfe−2ekhf − e−4ekhf
[ (

(2 + k̃hf )− (2− k̃hf )e−2ekhf + yk̃2(1− e−2ekhf ))×
(e−

ek(hf+y) − e−ek(hf−y))
]
,

Ck,3 =
−ifp,1,k(0)h2

p

1− 4k̃hfe−2ekhf − e−4ekhf
[
− (1 + e−2ekhf )eeky +

(
1 + 4k̃hf + e−2ekhf) e−ek(2hf+y)

+ 2k̃y(e
eky + e−

ek(2hf+y))
]

+ h2
p

k̃fp,2,k(0) + if ′p,1,k(0)

k̃(1− 4k̃hfe−2ekhf − e−4ekhf )
(
(1 + (1− 2k̃hf )e

−2ekhf )eeky
− (1 + 2k̃hf + e−2ekhf )e−ek(2hf+y) − k̃y(1 + e−2ekhf )(eeky + e−

ek(2hf+y))
)
,

Ck,4 =
−ifp,1,k(0)h2

p

1− 4k̃hfe−2ekhf − e−4ekhf
[
− (1 + (1− 2k̃hf )e

−2ekhf )eeky +
(

1 + 2k̃hf + e−2ekhf)×
e−
ek(2hf+y) + k̃y(1 + e−2ekhf )(eeky + e−

ek(2hf+y))
]

+ h2
p

k̃fp,2,k(0) + if ′p,1,k(0)

k̃(1− 4k̃hfe−2ekhf − e−4ekhf )×(
(1 + (1− 2k̃hf )e

−2ekhf )eeky − (1 + 2k̃hf + e−2ekhf )e−ek(2hf+y)

− k̃y(1 + e−2ekhf )(eeky + e−
ek(2hf+y))

)
,

D1 =
1

4k̃2

[
e−
ekhf ∫ −hf

0

e−
eks(1 + k̃s)

(
k̃ff,2,k(s) + if ′f,1,k(s)

)
ds+ e

ekhf ∫ −hf
0

e
eks(−1 + k̃s)×

(
k̃ff,2,k(s) + if ′f,1,k(s)

)
ds+ hfe

−ekhf ∫ −hf
0

e−
eksk̃(k̃ff,2,k(s) + if ′f,1,k(s)

)
ds

+ hfe
ekhf ∫ −hf

0

e
eksk̃(k̃ff,2,k(s) + if ′f,1,k(s)

)
ds

]
,

D2 =
1

4

[
− e−ekhf

∫ −hf
0

e−
eks(1− k̃s)(k̃ff,2,k(s) + if ′f,1,k(s)

)
ds+ e

ekhf ∫ −hf
0

e
eks(1 + k̃s)×

(
k̃ff,2,k(s) + if ′f,1,k(s)

)
ds+ hfe

−ekhf ∫ −hf
0

e−
eksk̃(k̃ff,2,k(s) + if ′f,1,k(s)

)
ds

+ hfe
ekhf ∫ −hf

0

e
eksk̃(k̃ff,2,k(s) + if ′f,1,k(s)

)
ds

]
,
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D3 =
1

4k̃2

[
e
eky ∫ y

0

e−
eks(1 + k̃s)

(
k̃ff,2,k(s) + if ′f,1,k(s)

)
ds+ e−

eky ∫ y

0

e
eks(−1 + k̃s)×

(
k̃ff,2,k(s) + if ′f,1,k(s)

)
ds+ hfe

eky ∫ y

0

e−
eksk̃(k̃ff,2,k(s) + if ′f,1,k(s)

)
ds

+ hfe
−eky ∫ y

0

e
eksk̃(k̃ff,2,k(s) + if ′f,1,k(s)

)
ds

]
.

The velocities in the porous media are

u0
p,2,k,BJ ∼Pk,1ei

ekx ε2
ν

+ Pk,2e
iekx ε3

ν
+ Pk,3e

iekx ε4
ν

+O

(
ε6

ν

)
,

u0
p,2,k,BJSJ ∼Pk,1ei

ekx ε2
ν

+ Pk,2e
iekx ε3

ν
+ Pk,3e

iekx ε4
ν

+ Pk,7e
iekxΠε2

ν
+O

(
ε6

ν

)
,

up,2,k ∼Pk,1ei
ekx ε2
ν

+ Pk,2e
iekx ε3

ν
+ Pk,4e

iekx ε4
ν

+O

(
ε5

ν

)
+ Pk,5e

iekx ε2
ν
e−Ey

+ Pk,6e
iekx ε4

ν
eE(y−hp),

u0
p,2,k,Q ∼Pk,1ei

ekx ε2
ν

+ Pk,2e
iekx ε3

ν
+ Pk,8e

iekx ε4
ν

+O

(
ε6

ν

)
,

where

Pk,1 =−
h2
p

k̃

(
k̃fp,2,k(hp) + if ′p,1,k(hp)

)
e
ek(y−hp) +

h2
p

k̃

(
k̃fp,2,k(y) + if ′p,1,k(y)

)
+ ifp,1,k(0)e−

ekyh2
p,

Pk,2 =2k̃ifp,1,k(0)e−
ekyh3

p − iff,1,k(0)e−
ekyh2

p + 4k̃3h3
p((2 + k̃hf )− (2− k̃hf )e−2ekhf )×

D1e
−ek(y+hf ) − 4k̃2h3

phf (1 + e−2ekhf )D2e
−ek(y+hf ),

Pk,3 =− 2k̃2iff,1,k(0)e−
ekyh3

p + 4k̃4h4
p((2 + k̃hf )− (2− k̃hf )e−2ekhf )D1e

−ek(y+hf )

− 4k̃3h4
phf (1 + e−2ekhf )D2e

−ek(y+hf ),

Pk,4 =
8hf k̃

3ifp,1,k(0)e−2ek2hfh4
p

1− 4k̃hfe−2ekhf − e−4ekhf − 2k̃iff,1,k(0)e−
ekyh3

p + 4k̃4h4
p(1− e−2ekhf )D1e

−ek(y+hf )

− 4k̃2h4
p(1 + e−2ekhf )D2e

−ek(y+hf ),
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Pk,5 =
2k̃2h2

p

1− 4k̃hfe−2ekhf − e−4ekhf
(

(1 + k̃hf )− (1− k̃hf )e−2ekhf)D1e
−ekhf

+
2h2

p

1− 4k̃hfe−2ekhf − e−4ekhf
(

(1− k̃hf )− (1 + k̃hf )e
−2ekhf)D2e

−ekhf ,
Pk,6 =− k̃h4

p

(
k̃fp,2,k(y) + if ′p,1,k(y)

)
,

Pk,7 =−
8k̃4h5

phf iff,1,k(0)e−2ekhf
1− 4k̃hfe−2ekhf − e−4ekhf ,

Pk,8 =− 2k̃2iff,1,k(0)e−
ekyh3

p,

where D1 and D2 are given as above.
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