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Robin-Robin domain decomposition methods for
the steady-state Stokes-Darcy system with
the Beavers-Joseph interface condition

Yanzhao Cao - Max Gunzburger
Xiaoming He - Xiaoming Wang

Abstract Domain decomposition methods for solving the coupled Stokes-Darcy sys-
tem with the Beavers-Joseph interface condition are proposed and analyzed. Robin
boundary conditions are used to decouple the Stokes and Darcy parts of the system.
Then, parallel and serial domain decomposition methods are constructed based on the
two decoupled sub-problems. Convergence of the two methods is demonstrated and the
results of computational experiments are presented to illustrate the convergence.

Keywords Stokes-Darcy flow - Beavers-Joseph interface condition - domain
decomposition method - finite element

1 Introduction

The Stokes-Darcy model arises in many applications such as surface water flows,
groundwater flows in karst aquifers, and petroleum extraction. This model describes
the free flow of a liquid by the Stokes equation and the confined flow in a porous media
by the Darcy equation; the two flows are coupled through interface conditions. For the
problems mentioned, the resulting coupled Stokes-Darcy model has higher fidelity than
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either the Darcy or Stokes systems on their own. However, coupling the two constituent
models leads to a very complex system. Most of previous works on the Stokes-Darcy
system use the Beavers-Joseph-Saffman-Jones (BJSJ) [22,24, 33] interface conditions
or even further simplification because well-posedness can be demonstrated in a fairly
straightforward manner. However, the BJSJ condition ignores certain contributions
made by the flow in the porous media flow to the coupling of the two models; the ig-
nored contributions may be important in some applications such as karst aquifers. The
more physically faithful Beavers-Joseph (BJ) [4] interface condition is more accurate
because it fully accounts for the contributions of the two flows in the coupling of the
two models. The major reason why most previous works did not use the BJ condition
is that the well posedness of the Stokes-Darcy model with BJ condition had not been
demonstrated. However, recently, this problem was resolved in [8,9,11, 21]. For the
steady Stokes-Darcy model with the BJ condition, it is proved that the model is well
posed if the exchange cofficient « introduced in (2.6) is sufficiently small.

Several methods have been developed to numerically solve the Stokes-Darcy prob-
lem, including coupled finite element methods [2, 8,10, 25, 32], domain decomposition
methods [12-18, 23], Lagrange multiplier methods [20, 26], two grid methods [29], dis-
continuous Galerkin methods [19,31], and boundary integral methods [35]. Many other
methods have been developed to solve the Stokes-Brinkman and other similar models;
see [1,3,5-7,28,30,34,36,37] and the reference cited therein. Among these methods, do-
main decomposition is more natural than others because the problem domain naturally
consists of two different subdomains and because parallel computation is facilitated;
see, e.g., [12] for the BJSJ condition and [13-18,23] for simplified BJSJ conditions. In
this article, we will extend the previous work in [12] to Robin-type domain decompo-
sition methods for the steady Stokes-Darcy system with BJ interface condition, which
is more accurate than BJSJ condition [11].

The rest of paper is organized as follows. In Section 2, we introduce the Stokes-
Darcy system with the Beavers-Joseph interface condition. In Section 3, the system is
decoupled by using Robin interface conditions. In Section 4, parallel and serial domain
decomposition methods are proposed. In Sections 5 and 6, we analyze the convergence
of the domain decomposition methods. Finally, in Section 7, we present some numerical
results that illustrate the convergence of the domain decomposition methods and show
their features.

2 Steady Stokes-Darcy model with Beavers-Joseph interface condition

We consider the coupled Stokes-Darcy system on a bounded domain 2 = 2p U 29 C
Rd, (d =2,3); see Figure 1.
In the porous media region {2p, the flow is governed by the Darcy system

Up =-KV¢p,
V-up = fp.

—
o N
N =
= =

Here, % p is the fluid discharge rate in the porous media, K is the hydraulic con-
ductivity tensor, fp is a sink/source term, and ¢p is the hydraulic head defined as
z+ %7 where pp denotes the dynamic pressure, z the height, p the density, and g the
gravitational acceleration. In this article, we assume the media in {2 is homogeneous
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Fig. 1 A sketch of the porous media domain §2p,the free-flow domain §2g, and the interface
I.

isotropic so that K is a constant scalar matrix. In the fluid region {2g, the fluid flow is
assumed to satisfy the Stokes system

-V -T(Ws,ps
V-Ug

N
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where ¥ g is the fluid velocity, pg is the kinematic pressure, 73 is the external body
force, v is the kinematic viscosity of the fluid, T(W g,pg) = 2vD(W g) — psl is the
stress tensor, and D(Wg) = 1/2(VU g+ VI @g) is the deformation tensor.

Let I' = 2p N {2g denote the interface between the fluid and porous media regions.
On the interface I', we impose the following three interface conditions:

Us-Msg=—up- 7"p, (2.5)

— — vvd — —
—Tj'(T(us,ps)'ns)Zgaggl_[)"'j'(us—uD)? (2.6)
-ng (T(dg,ps) s)=gl¢p —2), (2.7)

where g and 7 p denote the unit outer normal to the fluid and the porous media
regions at the interface I', respectively; 7; (j = 1,...,d—1) denote mutually orthogonal
unit tangential vectors to the interface I', and [] = X2, The second condition (2.6) is
referred to as the Beavers-Joseph (BJ) interface condition [4].

We assume that the hydraulic head ¢ and the fluid velocity % g satisfy homoge-
neous Dirichlet boundary condition except on I", i.e., $p = 0 on the boundary 02p\I"
and @ g = 0 on the boundary 902g\I".

The spaces that we utilize are

Xg={v e [H'(2s)" | T =00n02s\I'},
Qs = L*(R2s),
Xp={¢€H (2p) | ¢=0o0nd2p\I'}.

For the domain D (D = Qg or 2p), (-,) p denotes the L? inner product on the domain
D, and (-,-) denotes the L? inner product on the interface I' or the duality pairing

between (HéO/Q(F))/ and H01(§2(F)'



With these notations, the weak formulation of the coupled Stokes-Darcy problem
is given as follows [8,9]: find (U g,ps5) € Xg x Qg and ¢p € Xp such that

G‘S(E}Sa?) + bS(?aPS) +G‘D(¢Daw) + <g¢D7? : ﬁs> - <ﬂ)s : WSJ/’)

OCV\/H — —
+TQ(H)(PT(HS +KV¢p), Prv)
= (fp.¥)ap + (F 5,0 )os + (92,7 - Ws) (2.8)
Vv eXg, e Xp,
bs(Ws,q) =0, vV qeQs, (2.9)

where the bilinear forms are defined as

ap(¢p,¥) = (KVép, Vi) oy,
as(Us, V) =2v(D(Us),D(V)) s,
65(77(1) = _(v ) ?7Q)Qs,

and Pr denotes the projection onto the tangent space on I, i.e.,

In this article, we assume that K isotropic and « is small enough. In [9], it is shown
that the system of (2.8) and (2.9) is well posed under these two assumptions.

3 Robin boundary conditions

In order to solve the coupled Stokes-Darcy problem utilizing a domain decomposition
approach, we naturally consider (partial) Robin boundary conditions for the Stokes
and the Darcy equations by following the idea in [12].

Let us consider the following Robin condition for the Darcy system: for a given
constant yp > 0 and a given function 7, defined on I,

wKVép - Wp+gpp=n, onl. (3.10)

Then, the corresponding weak formulation for the Darcy system is given by: for n, €
L%(I"), find ¢p € Xp such that

ap @)+ (L2,0) = (fp. ¥y + (L,0) Ve eXp.  (311)
Tp Yp
Similarly, we propose the following two Robin type conditions for the Stokes equa-
tions: for a given constant vy > 0 and given functions n; and o f+ defined on I,

s (T(Ws,ps) Ms)+yfus-ng=n  onl, (3.12)
Oél/\/a

Pig=T1 on I 3.13
e S T T (3.13)

_PT(T(US’pS) ' WS) -



Then, the corresponding weak formulation for the Stokes system is given by: for
ng, M fr € L*(I), find Wg € Xg and pg € Qg such that

as(%sy V) +bs(V,ps) + 7f<%s ‘Mg, V- Mg) ﬂ(ﬂﬁg,ﬂ?)
trace(]])
:(?37?)Qs+<nf7?WS>7<WfT7PT?> VWGXS (314)
bs(us,q) =0 Vg€ Qs. (3.15)

We can combine the Stokes and Darcy systems with Robin boundary conditions
into one system. Indeed, it is easy to see that if np, 7y, 7]«7 € LQ(F) are given, then,
there exists a unique solution (¢p,us,ps) € Xp x Xg x Qg such that

as(Ws, V) +bs(V,bs) + ap(¢p,¥) + v (Ws-Ts, U - TWg) + <g,(:i7¢>
p

avvd = -
+———(Pr U s, Pr V) = (fD, V) + (f 5. V)0g +p, V- Wg)
trace(]])
+<Z—”,w>—<ﬁfﬂpﬂ> Vi € Xp,T € Xs, (3.16)
P
bs(Ws,9) =0  VgeQs. (3.17)

Our next step is to show that, for appropriate choices of v¢, vp, 0y, np, and Wfq.,
(smooth) solutions of the Stokes-Darcy system are equivalent to solutions of (3.16),
and hence we may solve the latter system instead of the former.

Lemma 1 Let (¢p, u g,ps) be the solution of the coupled Stokes-Darcy system (2.8)-
(2.9) and let (&\D,ﬂ)s,ﬁs) be the solution of the decoupled Stokes and Darcy system
with Robin boundary conditions (3.16)—(3.17) at the interface. Then, ((;ASD7 Ug,Dg) =

(¢p, UWs,ps) if and only if Yf> Ypr Nfs Wfr: and np satisfy the following compatibility
conditions:

M= tus s+ 9op, (3.18)

nf=7;Us-MWs—gbp + 9z (3.19)
_ avVd

= _VE  p (KVsp). 3.20
7 fr trace[) r(KVép) (3.20)

Proof. For the necessity, we pick 1 = 0 and @ such that P, = 0 in (2.8)—(2.9)
and (3.16)—(3.17), then by subtracting (3.16) from (2.8), we get

<nf—’yf7f-ﬁs+g¢p—gz,7~ﬁs>:0,V7€XS with P v =0

which implies (3.19). The necessity of (3.18) and (3.20) can be derived in a similar
fashion.
As for the sufficiency, by substituting the compatibility conditions (3.18)—(3.20),

we easily see that ((ED, U g,Ps) solves the coupled Stokes-Darcy system (2.8)—(2.9).
Since the solution to the Stokes-Darcy system is unique under the assumption that o

is small enough [9,21], we have (<$D: Ug,D5) = (6D, W g,Ps)-



4 Robin-Robin domain decomposition methods
4.1 The parallel Robin-Robin domain decomposition algorithm

We propose the following parallel Robin-Robin domain decomposition method for solv-
ing the coupled Stokes-Darcy system with the BJ interface condition.

1. Initial values of 772, njoc and ﬁ?c,,_ are guessed. They may be taken to be zero.
2. For k =0,1,2,..., independently solve the Stokes and Darcy systems with Robin
boundary conditions. More precisely, (;SIB € Xp is computed from

k k
ap(@b, ) + (22D gy = (2

) + (fp,¥)a2p Vi e Xp
Tp Tp

and 7’; € Xg and pg € Qg are computed from

avvd
trace(]])
E — — e —k — —
:<7]f7’U'nS>+(f57U).Qs_<nf‘r:PTU> Vv e Xg,
bs(U8,9)=0  VqeEQs.

3. 7]’5"'1, n’;+1 and W?il are updated in the following manner:

as(W, V) +bs(V,p§) + (W - Hs, VW) (Pru, Pr0)

K k k
nyth = any + bgdh + g2
775"'1 = c77]fC + dﬂ’g Mg +gz
k+1 Oél/\/a k
T = ———P;(KV¢Dh),
trace(]])

where the coefficients a, b, ¢, d are chosen as follows:

a:’ij b=-1—a, c=-1, d="5+7. (4.21)

Yp

In the special case for which vf = vp = v, we have

a=1 b= -2 c=-1 d=2~.

4.2 The serial Robin-Robin domain decomposition algorithm

Similarly, we have the following serial Robin-Robin domain decomposition method for
solving the coupled Stokes-Darcy system with the BJ interface condition.

1. Initial values of ng, ng)c are guessed. They may be taken to be zero.
2. For k =0,1,2,..., solve the Darcy system with Robin boundary condition. More
precisely, ¢kD € Xp is computed from

k k
ap(@b, ) + (22D 4y = (2

)+ (fp,¥)o, Yy eXp;
p Tp



3. 7]}7_ is updated in the following manner:
Wk _ avvd
I trace(]])

4. For kK =0,1,2,..., independently solve the Stokes and Darcy systems with Robin
boundary conditions. More precisely, ﬂ)g € Xg and p’gv € Qg are computed from

avvd
trace(]])
k — — 7 = —k — —
=My v - Ns)+(fs V)as —(Mfr Prv) VU € Xg,

bs(Ws,9) =0 Vg€ Qs.

Pr(KVoD).

aS(7§7F)+bS(?7pI§')+’Yf<E)§ ﬁ)Svﬁ)ﬁ)f:ﬁ <PTE)]§7PT?>

5. 17;;+1 and 77’;+1 are updated in the following manner:

k+1 k k
;T = any +bgdh + 92,
n§+1 = cn]; + dﬂ)]fg ‘g + gz

5 Convergence of the parallel Robin-Robin DDM

We follow the elegant energy method proposed in [27] and the arguments in [12]
to demonstrate the convergence of the parallel Robin-Robin domain decomposition
method for appropriate choice of parameters v, and ~y.

To this end, let (¢p, Wg,ps) denote the solution of the coupled Stokes-Darcy
system (2.8)—(2.9). Then, we have that (¢p, U g,pg) solves the equivalent decoupled
system (3.16) with ~v¢,vp,mp,nf, 7 ¢+ satisfying the compatibility conditions (3.18)-
(3.20) with the hats removed.

Next, we define the error functions

E k k —k =
ED="p —Mp ES =MNf —Nf ESr = MNfr— Njfr
k k k

€p=0p—9¢p E€u=TUg—

Then, the error functions satisfy the following error equations:

k k k

Ypap(eg, ) + (geg, ¥) = (ep,¥) V¢ € Xp, (5.22)

as (@5 ) 4 bs(Teb) 41 (Th - s, T - W) + —2Y(poh )

trace(]])
= (e, vV Wg)— (& PP 7)YV € X, (5.23)
k
bs(€usq) =0  VgeQs, (5.24)
and, along the interface I,

5?—1 = aekD + bgeg (5.25)
el = e+ et 7. (5.26)
ThH = L\/HPT(KVe’,;). (5.27)

ST trace(]])



Equation (5.26) leads to

k+1 2 k2 2 —k —k
BT = ClleélT + e - W sllT + 2ed(es, € - 7). (5.28)
Setting v = ¢ ¥ in (5.23), we get
avyvd
as(F5,TE) 1 b5(Fh k) s (Fh - T T W) + 2D ip 2k ook
trace([])
= (&, eh - W) — (T, P )

Using (5.24) we have
bs(eh,el) = 0.

Hence, by (5.27), we have

k —k k k k
(€4, Cu- M) = as(€n, €un) + ¢l €n - Wsllt
d _
+%<PT(?Z+KW{; hH, ek, (5.29)

Combining (5.28) and (5.29), we have

k+1 k
lep €u)

17 = ClleblF + (@ + 2cdvp) | €s - WsllT + 2cd as (€, €
d _
+2cd L(PT(?Z +KVeE™), P E). (5.30)
trace(]])

Similarly, (5.25) implies

k1 20 k2 L p2p k2 ko k
et IF = a® BT + 6% llgel T + 2ab(eD, ges)-

Setting ¥ = geéﬁ in (5.22), we have

k k k k k k
(eD>geg) = Ypap(eg, geg) + (geg, geq)-
Combining the last two equations, we deduce

k k k k k
€T = a®lleblIT + (b° + 2ab)||gel |7 + 2abypg ap (e, ef). (5.31)

Substituting (4.21) into (5.30) and (5.31), we have the following result.

Lemma 2 The error functions satisfy

k+1 2 k k
BT = IebIT + (o = vPIIEs - Tl — 2075 + w)as(€u, €n)

d _
—2(vf + ) _avvd (Pr(Eh +KVeE™), P Eh), (5.32)
trace([])

2 2
k v k v k
ek, =(7—f) |eD||%+<1—(%J:) >||ge¢||%

~
—2vf (1 + é) gaD(ef;,ef;). (5.33)



We are now ready to demonstrate the convergence of our parallel Robin-Robin
domain decomposition method. The convergence analysis for vy = vp and vy < yp are
different and will be treated separately.

Case 1: 7y = vp = 7. In this case, we have

N avyVd
trace(]])

k+1)2
H5D+

k2 k k k k—1 k
IT = lleslr — 4vas(€u, €u) — (Pr(€4 +KVeh ™), Prey)

ket 1 k2 ko k
Ie§THIF = bl — 4vgap (el ef).

Adding the two equations and summing over k from k =1 to N, we deduce

el HIE + ey THIT
al k k
= lepllF + sl — 49> (as(€wn, €4) + g ap(ef, ef)
k=1
d N
+L(PT(?ﬁ+KVe’; H,pehy)
trace(]])
N
= lleplIF + leSIT — 47 D (as(€h, €0) + g ap(eh, eb)
k=1
oVl p ok kveh), Pet)
trace(]])
N
ozl/\f k—1 —k
Z Pr(KVe, ' —KVe ), Prey). (5.34)

v/ trace

By the coercivity in Lemma 3.2 of [9], when « is small enough, we have

avvd
as(€u, ) + g aplef, ef) + — e (Pr (€, + KVef), Pre%)
trace(]])
k
> 1 (I€6IE + e 1) (5.35)

where C7 depends on K and v. Since we suppose K is isotropic, then K = K1 where K is
an constant and I is the identity matrix. Since the tangential projection of the gradient
to the tangential plane is the tangential derivative, then (Pr (KVeg)Hp = KVT(eg\p)

where V-,—(e¢|p) is the gradient derivative of e¢\p Hence, we have Pr'e u|[‘ € Hl/Q(F)

and PT(KVS¢| r € (Héf( )) . Using the Cauchy-Schwarz inequality, the triangle
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inequality, and trace theorems, we have

N
S (P (KVeET —KVeh), P E)
k=1
N

k—1 k k
> - Z |Pr(KVeg  —KVeg)| 12, rllPreulliyer

k k
[|Pr( Kv% )||—1/2,F + HPT(KV‘3¢)“—1/2,F) I1Pr € all1/2,r

Mz|

k

Il
-

Mz

I\DM—A

k—1
1P (RVEE D2 o+ & ||PT<KVe¢>||,1/2p+||PTeunlm)

ol
Il
-

(
2
2

1 9 1 k 2 k2
§||KVT eqs \F)||—1/2,F + §||KVT(€¢\F)||—1/2,F + ||Pf?u“1/2,r)

u
Mz

b
Il
—

\Y]

N
k k
~C > (IF8IR + ek I1?) (5.36)
k=0

where C2 depends on K. Hence, plugging (5.35) and (5.36) into (5.34), we get

N+1 N+1
0 < llep™IF +lles THIT

—o|? &
< lebliF + lesliF + mon([ =8| + 3]

avvd al —k
i1 (01— o2 S+ )

Hence, for any positive integer N,

N
avyd k|2 e
P GRS T
W( trace(H)) kzzo( “ll ¢ 1)
olI2 2
< (b lF + lleb 7 ) + avend| 20| + €3] )
If « is small enough such that

Cy — czﬂ >0, (5.37)

trace(]])

then ?ﬁ and eg tend to zero in (H1 (.QS))d and H' (£2p), respectively. The convergence
of eg together with the error equation (5.22) implies the convergence of EIB in H™2 (.
Combining the convergence of skD and e]; and the error equation on the interface (5.25),
we deduce the convergence of s’é in H™2 (I'). Combining the convergence of ef; and the

error equation on the interface (5.27), we deduce the convergence of ?I_%T in H™2 ().
The convergence of the pressure then follows from the inf-sup condition and (5.23).
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Case 2: v¢ < yp. Multiplying (5.32) by ::—i and adding it to (5.33), we get

Y k k
L + ek
Y,
Y Y Y il k k
(i) el + 2L 18l + 2 (F — )1 sl - 22 oy +pdas(€h )
Tp Tp Tp
Vs ow\f —k k—1y p —k
—2—= + —(Pr(ey +KVe ,Pre
Lo +w) trace(H)< - (h b=, Poel)

2
Y k2 Y k k
¥ (1 -(¥) ) loch1~ 225 (14 22 ) gan(ehoeh)
2 2
s k2 Y k2 Y 2 2 k 2 Y k2
(—f) lebl2 + b1z + 2 (2 -2k wall + 1—(1) lgek 12
Tp Tp Tp Tp
Y k k kE k
=201y ) [as (0, 0 + gan (el ch)
p

avvd

—k k—1 —k
+W<Pf( eh KV Pe u)].

Then summing over k from k =1 to N, we deduce

o
/\

N
Y N+1 v ’Y N+1 il k2
< e +Z[f Uae M B2 4 e +np+§j[ —ﬂnesnp
k=2

—k = 2
ew - sl

M=

Y212 v 142 v 2 2
(L2 IeblF + “LlesF + 2L (vp —77)
T T p

()2

k

Il
N

Jr

N
> llgelt 22 vy + ) Z[ eheh)
k=1 k=1
(Po(@E + KV, P k) + gap(eh, e’;)}

YF\2 .1 2 Y 12 v 2 2
= (L2)eblF + Lk} + L2 -3
Tp Tp Tp

" (%)2
avvd
trace(]])

—k — 2
|ew sl

Djz

k
N

>l ¢\|p—2—wf+wp§j[ eh et

k=1 k=1

k k
(Pr(€4% +KVek), Prew) + gap(el, eb)]

1

—+

vy Y awvd
72’7(%0 ) g \/trace(H)<

Pr(KVel ™ —KVeh), Pe). (5.38)

By the trace inequality and the Poincaré inequality, we have

k k

1€ 7sl? < Calleull, (5.39)
k2 2 k2

lgesll < g"Calleg|l1- (5.40)
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Suppose « is small enough such that (5.35) is true. Then by (5.35), (5.36), and the
above three inequalities, we get

N
v N+1 Y V N+1 v k2
0< et +Z[ LX) }u B2 4 [N+ HwZ[ fﬂ ek
—2

N
Vi 12, Y2, V2 2 —k 2
< (—=)%le + —le + —(vp —v7)C3 €
Gy bl + Db+ 22 05 = ah10s 3 Il
2

v 2 0
- (2) 2o IR +2 oy + ) (1517 + 1415)

Tp 1
22 (g )€1 — G2 )i(||?’“u%+||e’“u%) (5.41)

Tp rw trace([]) " ;1= “ ¢

Fix any number s € (0,2). Suppose vy and 7p are chosen such that

Vf, o2 2 Yrf avvd
(32 =305 — 5L (vf + ) (C1 — Ca—2XE ) <,
,yp(’}/p 77)Cs %(Vf ¥p)(C1 — C2 trace(H))_
2
’Yf) 2 Vf avvd
1- (L Cy — s (v +9)(CL = C <o,
[ (% 9°Cs %w ) (C1 2H)
which are equivalent to
vWd
Oy — Cop—vvd
< (@ 2\/trace(H)) = 1o
Yo —Vf < o ; (5.42)
C _C OLV\/i
1 1 s 2\/trace H))
— =< = . (5.43)
Yo p Cy
Then, we get
v v
0< et .S -2y usD\|p+ueN“|\p+Z[ 2] ek

k=2

2.1 42, V.12 v
< EPlebliF + ZLiebiiF + 22 (v + ) (1005 + led1)
Tp Tp Yp

N
V¢ avvd k2 k2

—(2 —s8)— + Cp - C + |le .
( ),yp('yf 1p)(C1 — C2 e irace (D Eﬁ [ Cullt+ ¢||1}

With the same argument as the end of the Case 1, we obtain the convergence for Case
2.

Now we derive a geometric convergence rate for Case 2. Similar to (5.35), we still
need to assume that « is small enough such that

1 k-1 avvd
bty v
trace(]])

k k—
@
k —
> 1 (It + llef 1) - (5.44)

as(Ch, %)+ gaple (Pr(e4 +KVeh ™), Prey)
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Also, it is easy to see
ap(ey ' eb™h) < Cslleb T (5.45)
where C5 depends on K. Plugging (5.33) into (5.32) and using (5.39), (5.40), (5.44),
and (5.45), we have
k+1)2
lep" 11T
'Yf2k12 7f2 k—12 Vf k-1 k-1
== €p + 17(—) ge, — 2y <1+—>gaDef,ef
(2) 15 ( u >|| 5% - 207 (14 2 ) gap(e ek
k k k
+(vp = VDI Cu - WslF = 2(vf +p)as(€u, €n)
avvd _
~2(yf + ) — e (P (€ + KVeES ™), P E)
trace([])
2 2
. ’Yf) k—1,2 (’Yf) k—1)2
— € +{1—-|— ge
(22) b ( ) lael 1
v k— k— k
+2007 +) (1= 2 ) gantel ™ eh ™+ 0F - DITh - Tl
p
k k _ _
—2(y5 + ) [as(Fh, T +gan(ef ek
d _
L(PT(?Z+KV62 1),3?5)}
trace(]])
v 2 k—1)2 v 2 2 k—1)2
< (L) ey +17(f) g°Culleg "1
(22) 15 ( 1 ) Bl
v k— k
#2007 +90) (1= 2 ) g5l I+ (0F - ah)cal 2R
p
k —
207 +3)C1 (IIZ 61T + e 1) - (5.46)

Fix any number s € (0,2). Suppose vy and p are chosen such that

(vp —73)C3 — s(7f +7p)C1 <0,

-G

which are equivalent to

-
§>Ca+2(vs +p) (1 - vi) gCs — s(vf +p)C1 <0,
p

sCq
— e < == 5.47
LT (5.47)
2
S'chl
— < 57— 5.48
T —VfF > 9204 +2’yng’5 ( )
Then, we have

2
k+12 k2 k—12 v k—12
IS IE + @ = 9) (s +w)Cr (€l + e nl)s(—f) el 17

Hence, we get the geometric convergence rate % for EkD, ?ﬁ, and eg. Using (5.22)-
(5.27), we obtain the geometric convergence rate X2 for sg, e];; and ?}_%T.

Combining the results of Case 1 and Case 2, we have proved the following theorem.
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Theorem 1 Assume v¢ < vp, K is isotropic, and o is small enough such that (5.35)
and (5.37) are true. If v < ~yp, assume that v and ~vp are close to each other such
that (5.42) and (5.43) are true. Then,

k Xp —k Xs — k Qs
éD — ¢p Ug— ug P§ — DS,
1
K H 2(I)
np — YUg-Ts+gép=-KVeép-np+gép,
) H™3 (D)

Ny — YUs - mg—gop =g (T(UWg,ps) Ns)+7Us  Wg,

ok H’_%()F) avVd
T trace([])

Specifically, for the case of vy < vp, if vf and vp are close to each other such that

(5.47) and (5.48) are true, then we have geometric convergence rate 77;7 for E’B, 5{%,

?Z, efz, elg and ?IgT.

P KVép.

6 Convergence of the serial Robin-Robin DDM

In this section, we similarly demonstrate the convergence of the serial Robin-Robin
domain decomposition method for appropriate choice of parameters yp and vy. Most
of the notations are the same as those of the previous section. First, the error functions
still satisfy (5.22)-(5.26), but (5.27) is changed to be

—k avvd
€87 = /=
trace([])

With similar arguments for Lemma 2, we get the following lemma.

Pr(KVel). (6.49)

Lemma 3 The error functions satisfy

k k k k k
B E = lESIF + (vp — A€ - WsllE — 20vf +p)as(€a, €u)
d
=207 + ) _owd_ (Pr(€y +KVeh), Pret), (6.50)
trace(]])
k41,2 Yf 2 k2 vf 2 k2
kL2 = (—) b+ (1- (—) lgek 12
Tp Tp
—2vf (1 + 1—f) gaD(ef;,eg). (6.51)
p

Following the same idea as in the previous section, we are now ready to demonstrate
the convergence of our serial Robin-Robin domain decomposition method. Again the
convergence analysis for vy = vp and vy < 7p will be treated separately.

Case 1: vy = vp = 7. In this case, we have

k+1
D

k avvd
) gy eV

k k k k k
lep ™ IF = lleslT — 4vas(€u, €u (Pr(€y +KVeg), Prey)
trace([])

k+1,2 k 2 k k
IeSTHIE = leblIF — 4vgap(eh, eh).
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Adding the two equations and summing over k from k& = 0 to N, we deduce

N

N+1 N+1 —k
ledFHF + led THIT = IeDIF + 1181F — 49> (as(€n, € W) +gap(eh,ek)
k=0
avvd
+ (P (T + KVeE), P Eh)).

trace([])

Suppose « is small enough such that (5.35) is true. Then,

N
2 2
N+1 N+1 0 2 02 k k
0 < eI+ lle§ T < DT + 1e8IF — 901 D (| 2, + ]|,
=0

which leads to
ATRAE k|| 02 012
4vC Z(H € qu + H6¢H1) < |lepllt + llesl| for arbitrary positive integer N.
=0

This implies that ?Z and e]; tend to zero in (H'(2¢))% and H'(2p), respectively.
With the same arguments in the previous section, we obtain the convergence for Case
1.

Case 2: v¢ < 7yp. Multiplying (6.50) by % and adding it to (6.51), we get

Y k+1,2 k+1,2
V—fne; 1% + et 3
P

2

i k2 Vo k2 Vi, 2 2\ —k — 12

== lepllr+ ==lleslr + ==(vp =)l €u- sl —
T p Tp

v ( avvd
trace(]])

k Y k k
lgek |2 — 2y (1 + 7f) gan(ek, ck)

—k —k v
Yf +’Yp)aS( €us €u) — 2%(7}‘ + )
e
p

2
Y k2 Y k2 v 2 2 k 2
- (—f) b2+ k2 + 02 -2y et g2 4
Tp Yp Tp

(Pr(€y +KVeE), Preh)

+

2
’Yf) k2
1—-(— ge
(’yp ]H ollT

(Pr(eF + KVEE), ﬂ?ﬁ)]. (6.52)

v —k
—Z,Tf(’Yf + ) [GS( €u, € )+9aD(e¢7€¢>)
P

avyvd
* trace(]])

Then summing over k from k = 0 to N, we deduce

N
Vf o N+12
0< 2 len 17+

2 N

f Vf) N1 { Wf} k2

- = € + + - —lle

(% }| i+ 181+ 3 12 1kl
Y Y 2
:(%) Iebife + 2 8%+ 22 ZH ksl

ST A ¥ al k ok Kk

i () ] Stk =22 (400 Y [as(eh T+ gan(ehch)

P k=0 ks k=0

avvd
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Suppose « is small enough such that (5.35) is true. Then by (5.35), (5.39), (5.40), and
the above inequality we get

Y N+1
0< f||e 3, +Z

k=1

N
v Vf\2 N+1
€ + lleg +
Lp (Vp)}\l BIF+1 7+ {

Y k
——f} ek 2
1 Tp
02 v
D lebliE + f||snp-+
2
C Z leglif ~22 s + )0 Y |
k=0

’Yf)C3Z Il
2
()]
p

k2
WlE -+ 11e§s]
k=0
Fix any number s € (0,2). Suppose vy and 7p are chosen such that
ﬁ( 2 _
Tp b

Jr

N

Y
)03 — STf(’Yf + 'Yp)Cl <0
p

2
()]
Tp

(vf +9p)C1 <0
Tp

which are equivalent to

sCq
6.54
BT (6.54)
L_iggh
v o T 9°Ca
Then we get

(6.55)
< Wf N+1
0 Ik 17 +Z:

v Y2 N+1
[f MM B 4 eV,
1 Tp Tp

2

Vf k2
+ [1 - —} ek
kz::l Yp

N

v k ]
= CEPIBIF + HIeSIF - 2= )+ 3 [0l + el
k=0

With similar argument in the previous section, we finish the convergence for Case 2

Now we derive a geometric convergence rate for Case 2. We still need to assume
that o is small enough such that (5.35) is true; then, substituting (5.35), (5.39), and
(5.40) into (6.52) we get

Tkt k+1
LB IF + llesH 7
Tp

2

W) <W> 2
< | £ + 5 11— C e + C-
_(% b1+ 2L b + ( 1)) calebli + Log - poslehis
226y + )0 (12T + e 7) -

Suppose vy and vp are chosen such that
v 2 2 v
i(’)/p —75)C3 — s !
Tp

- (2)

(’Yf + 'Yp)cl <0
Tp

v
9*Cy—s f(’Yf+7p)C1<0
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which are equivalent to

sCq
— < — .
WS (6.56)
i. _1 < ﬂ (6.57)

Then, we have
Vf oy _k+1p2 k412 v k2 k2
(7§||5D+ I+ 11 up) +@=9)2L0r 9 (120 + 116l

v v k2 k2
<1 (—f\|spup+ usSup) .
Yo \Vp

Hence, we get the geometric convergence rate j/—i for EkD, z—:]gv, ?ﬁ, and e](;. Using (5.22)-

(5.26) and (6.49), we obtain the geometric convergence rate 2L for elg and ?lgT. Com-
bining the results of Case 1 and Case 2, we have proved the ff)llowing theorem.

Theorem 2 Assume vy < yp, K is isotropic, and o is small enough such that (5.35)
is true. If vy < 7yp, assume that ¢ and yp are close to each other such that (6.54) and
(6.55) are true. Then,

k Xbp —k Xs — k Qs
¢p — ¢p Ug— ugs P§ — DS,
K H™3(D)

np — yﬂ)S’H}sﬂLgd)D :*WKV¢D‘WD+Q¢D5

1
K H™2(I)
Ny — Aus-nNsg—gpp=ng - (T(Ug,ps) Ws)+V7us Mg,

ok H__%()F) avvd
T trace([])

Specifically, for the case of vy < ~yp, if vy and yp are close to each other such that

P KVép.

(6.56) and (6.57)are true, we then have the geometric convergence rate % for &%, sg,

k
o, eg, e]; and ?Z%T.

7 Computational examples

Consider the model problem (2.1)-(2.6) on {2 = [0,1] x [-0.25,0.75] where 2p =

[0,1] x [0,0.75] and 25 = [0,1] x [~0.25,0]. Choose —22¥d__ — 1, — 1 =1,
\/trace(H)

z = 0, and K = kI where I the identity matrix and k£ = 1. The boundary condition
data functions and the source terms are chosen such that the exact solution of the
Stokes-Darcy system with the BJ interface condition is given by

¢p = [2 — msin(mz)][-y + cos(w(1 — y))],
Ug = [z +eY, — %xyg + 2 — wsin(mz)]",
ps = —[2 — wsin(7z)] cos(27my).

We use a uniform grid with A = 3% The Taylor-Hood element pair is used for the
Stokes equation and quadratic finite elements are used for the Darcy equation.
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Error of the parallel Robin DDM solution with finite element solution, [u*-u,|, Error of the parallel Robin DDM solution with finite element solution, [¢f- g,

10° 10°
——Y,=U3y, —— Y=Ly,
e L2y, Y12y,
— VY —— Y,

;=2 ¥,72Y

—4— vp=3v, —k— vp=3‘/,

107 107

0 40 0 b( 40

10 20 30 0 20 30
k=1,v=1, y=15, h=1/32 k=1,v=1, y=15, h=1/32

Fig. 2 L? velocity (left) and hydraulic head (right) errors of the iterates versus the iteration
counter k for the parallel Robin-Robin domain decomposition method for vy = 1.5.

Error of the serial Robin DDM solution with finite element solution, [u*- v, Error of the serial Robin DDM solution with finite element solution, |¢'- ],
0
10
——Y,=U3y, ——Y,=U3y,
V,=112y, V,=L2y,
108 - VY 10° -
%72 %2
=3y, =3y,

* KA KR
WA A VAR

* 4
Y

10 SRR
¥
% IR R R R R

B .,
. e - "
10 S, 10 oh,
**N e
Sk F
*ﬁ:w
1070 ek, - 1070 M“&*
107° 107°
0 1 40 0 40

0 20 30 10 20 30
k=1,v=1,y=15, h=1/32 k=1,v=1,y=15, h=1/32

Fig. 3 L? velocity (left) and hydraulic head (right) errors of the iterates versus the iteration
counter k for the serial Robin-Robin domain decomposition method for vy = 1.5.

Figure 2 shows the errors of the velocity and hydraulic head for the parallel DDM
for vy = 1.5. We can see that the parallel domain decomposition method is convergent
for 4 < 7p, which computationally verifies the conclusions given in Section 5.

Figures 3 shows the errors of the velocity and hydraulic head in the serial DDM
for vy = 1.5. We can see that the serial domain decomposition method is convergent
for 4 < 7p, which computationally verifies the conclusions given in Section 6.

Table 1 shows the number of iterations K for different grid sizes for both domain
decomposition methods. Here, we set vy = 1.5 and p = 3. The criteria used to stop
the iteration, i.e., to determine the value K, is ||u% — 72_1Hl2 + o — (bkp_l”l? +
Pk — p§_1||l2 < &, where the tolerance ¢ = 107> and ||v||;2 denotes the I norm of
a vector formed by the values of a function v at the grid nodes. We can see that the
number of iteration steps k is almost independent of the grid size h.

8 Conclusions

This article discusses two iterative domain decomposition methods for solving the
steady Stokes-Darcy system with the Beavers-Joseph interface condition. Both the
analyses and numerical experiments show that the domain decomposition solutions
converge to the solution of the coupled system. Of course, more extensive computa-
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Table 1 The iteration counter K versus the grid size h for both the parallel and the serial
Robin-Robin domain decomposition methods.

1 1 1 1 1
8 16 32 64 128

2 24 24 26 28
4 24 26 26 28

h

K for the parallel DDM
K for the serial DDM

tional testing on more complicated geometries and with nonuniform meshes is needed
and is underway.

So far, all studies concerning domain decomposition methods for the Stokes-Darcy
system address the steady-state case, but most real-world applications are time-dependent.
Thus, domain decomposition methods for the time-dependent Stokes-Darcy system are
a subject of future research.
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