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Abstract. Centroidal Voronoi tessellations are useful for subdividing a region in Euclidean
space into Voronoi regions whose generators are also the centers of mass, with respect to a prescribed
density function, of the regions. Their extensions to general spaces and sets are also available; for
example, tessellations of surfaces in a Euclidean space may be considered. In this paper, a precise
definition of such constrained centroidal Voronoi tessellations (CCVTs) is given and a number of their
properties are derived, including their characterization as minimizers of an “energy.” Deterministic
and probabilistic algorithms for the construction of CCVTs are presented and some analytical results
for one of the algorithms are given. Computational examples are provided which serve to illustrate the
high quality of CCVT point sets. Finally, CCVT point sets are applied to polynomial interpolation
and numerical integration on the sphere.
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1. Introduction. In [1, 2, 3, 4] and [8], a methodology for point placement in
regions, i.e., volumes, in R

N has been developed. The methodology is based on the
notion of centroidal Voronoi tessellations (CVTs), which is explained in section 1.1.
The ensuing methodology produces high-quality point distributions which may them-
selves be of interest or may be used as a basis for triangulations or Voronoi tessellations
of the region. Among the advantages of the CVT methodology is that points may
easily be distributed according to a prescribed nonuniform density function and the
algorithms which make up the methodology are amenable to parallelization. In addi-
tion, CVTs enjoy an optimization characterization so that they themselves turn out
to be useful in many applications such as image and data analysis, vector quantiza-
tion, resource optimization, optimal placement of sensors and actuators for control,
cell biology, territorial behavior of animals, numerical partial differential equations,
meshless computing, etc.; see, e.g., [1, 2, 3, 5, 10].

The basic definition of the CVT can be generalized to very broad settings that
range from abstract spaces to discrete point sets [1]. The purpose of this paper is to
study the CVT methodology that was developed in [1, 2, 3, 4] and [8] in the case where
the point sets are constrained to lie on surfaces in R

N . There are many instances in
which point distributions lying on surfaces or triangulations or more general subdi-
visions of surfaces are needed. Just to mention a few important examples, there are
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geophysical calculations on the surface of the earth, i.e., on nearly a sphere, collocation
or nodal points for boundary finite element methods, and the geometric representation
of surfaces by panels or other simple objects. Also, many mesh generation methods
in three dimensions require that first a surface grid be developed.

The plan of the paper is as follows. After the brief review of CVTs in section 1.1,
we develop and analyze, in section 2, the notion of constrained CVTs. Then, in sec-
tion 3, we discuss some deterministic and probabilistic algorithms for the construction
of constrained CVTs. In section 4, some computational examples are provided that
illustrate the high quality of constrained CVT point sets. Finally, in section 5, we dis-
cuss the use of constrained CVT point sets for polynomial interpolation and numerical
integration on a sphere.

1.1. Centroidal Voronoi tessellations. We refer to the discussion in [1] for
the general definition of CVTs in abstract spaces. We include the case of CVTs in
Euclidean spaces here for the sake of completeness. Let | · | denote the Euclidean norm
in R

N . Given a bounded open set Ω ⊂ R
N and a set of points {zi}ki=1 belonging to

the closure Ω of Ω, let

Vi = {x ∈ Ω : |x− zi| < |x− zj | for j = 1, . . . , k, j �= i }, i = 1, . . . , k.(1.1)

Clearly, we have Vi ∩ Vj = ∅ for i �= j and ∪ki=1V i = Ω. The set {Vi}ki=1 is referred
to as a Voronoi tessellation or Voronoi diagram of Ω, the members of the set {zi}ki=1

are referred to as generating points or generators, and each Vi is referred to as the
Voronoi region or Voronoi cell corresponding to zi. It is well known that the Voronoi
regions are polyhedra and that they are very useful in a number of applications; see,
e.g., [10].

Given a density function ρ(x) ≥ 0 defined on Ω and positive and continuous
almost everywhere, then, for each Voronoi region Vi, we define its mass centroid z∗i
by

z∗i =

∫
Vi

xρ(x) dx∫
Vi

ρ(x) dx

for i = 1, . . . , k.(1.2)

We call the tessellation defined by (1.1) a CVT if and only if

zi = z∗i for i = 1, . . . , k,

i.e., each point zi, which serves as the generator associated with the Voronoi region Vi,
is the mass centroid of that region. The existence of centroidal Voronoi tessellations
for a given set has been proved, but note that, in general, they are not uniquely
defined; see [1].

2. Constrained centroidal Voronoi tessellations. Now consider a compact
and continuous surface S ⊂ R

N defined by

S = {x ∈ R
N : g0(x) = 0 and gj(x) ≤ 0 for j = 1, . . . ,m}(2.1)

for some continuous functions g0 and {gj}mj=1. Similar to (1.1), given a set of points

{zi}ki=1 ∈ S, one may define their corresponding Voronoi regions on S by

Vi = {x ∈ S : |x− zi| < |x− zj | for j = 1, . . . , k, j �= i }, i = 1, . . . , k.(2.2)
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For a density function ρ(x) defined on the surface S and positive almost every-
where, one may encounter a problem with the definition (2.2) when one defines CVTs
{(zi, Vi)}ki=1 of S: the mass centroids {z∗i }ki=1 of {Vi}ki=1 as defined by (1.2) do not in
general belong to S. For example, the mass centroid of any region on the surface of
a sphere is always located in the interior of the sphere. Therefore, we must first use
a generalized definition of a mass centroid on surfaces.

For each Voronoi region Vi, we call zci the constrained mass centroid of Vi on S if
zci is a solution of the following problem:

min
z∈S

Fi(z), where Fi(z) =

∫
Vi

ρ(x)|x− z|2 dx.(2.3)

The integral over {Vi} is understood as standard surface integration on S. Clearly,
for each i = 1, . . . , k, Fi(·) is convex. Assume that z1, z2 ∈ S; then we have

Fi(z1)− Fi(z2) =

∫
Vi

ρ(x)(|x− z1|2 − |x− z2|2) dx.

Since S is compact and ρ(·) is continuous almost everywhere, there exists a constant
C such that

|Fi(z1)− Fi(z2)| ≤ C|z1 − z2|.
Thus, we know that Fi is continuous and compact, and consequently we obtain the
existence of solutions of (2.3); however, the solution may not be unique.

We call the tessellation defined by (2.2) a constrained centroidal Voronoi tessella-
tion (CCVT) if and only if the points {zi}ki=1, which serve as the generators associated
with the Voronoi regions {Vi}ki=1, are the constrained mass centroids of those regions.
Note that although the definition of CCVT conforms with that of CVT for general
spaces, it is important to emphasize the main features of the former, namely, the
generators are constrained to the surfaces while the distances are still the standard
Euclidean distances, not the more general geodesic distances.

For practical applications, it is natural to ask, For a given Vi, how does one find its
constrained mass centroid on S, i.e., how does one solve the constrained optimization
problem (2.3)? We rewrite (2.3) in the more standard form:

min
z∈RN

Fi(z),

g0(z) = 0,

gj(z) ≤ 0 for j = 1, . . . ,m.

(2.4)

If zci is a solution of (2.4), then the Lagrange multiplier rule states that zci is a
stationary point of

Li(z) = F (z)−
m∑
j=0

λjgj(z) =

∫
Vi

ρ(x)|x− z|2 dx−
m∑
j=0

λjgj(z),(2.5)

where λj ∈ R. Under smoothness assumptions on the Lagrange functional, the nec-
essary condition can then be written as

Li,z(z
c
i ) = 0,

g0(z
c
i ) = 0,

λj ≥ 0, λjgj(z
c
i ) ≤ 0 for j = 1, . . . ,m.

(2.6)



CENTROIDAL VORONOI TESSELLATIONS FOR SURFACES 1491

Suppose zci is not located on the boundary of S, i.e.,

gj(z
c
i ) < 0 for j = 1, . . . ,m.

Then, we know that λj must be 0 for all j = 1, . . . ,m, and so (2.6) simplifies to

2

∫
Vi

ρ(x)(x− zci ) dx− λ0∇z

(
g0(z

c
i )
)
= 0.(2.7)

Furthermore, if λ = λ0

2 , we have∫
Vi

xρ(x) dx = zci

∫
Vi

ρ(x) dx+ λ∇z

(
g0(z

c
i )
)

or ∫
Vi

xρ(x) dx∫
Vi

ρ(x) dx

= zci +
λ∫

Vi

ρ(x) dx

∇z

(
g0(z

c
i )
)
.

Using (1.2), we then obtain

z∗i − zci =
λ∫

Vi

ρ(x) dx

∇z

(
g0(z

c
i )
)

(2.8)

and g(zci ) = 0. Thus, we have obtained the following result.
Theorem 2.1. For each i = 1, . . . , k, the constrained mass centroids of Vi exist.

Furthermore, if zci ∈ S − ∂S is a constrained centroid of Vi, then z∗i − zci is a vector
normal to the surface S at zci , where z

∗
i is defined by (1.2), i.e., zci is the projection

of z∗i onto S along the normal direction at z
c
i .

From Theorem 2.1, it is easy to see that the CCVT of a flat surface, i.e., of a
surface S having zero curvature almost everywhere, is reduced to the CVT in the
Euclidean space.

There are many available theoretical results for CVTs; see [1]. Similar analyses
can be applied to CCVTs. For example, we have the following results.

Proposition 2.2. Given a compact surface S ⊂ R
N defined by (2.1), a positive

integer k, and a positive and measurable density function ρ(·) defined on S, let {zi}ki=1

denote any set of k points belonging to S and let {Vi}ki=1 denote any tessellation of S
into k regions. Define the energy functional or the distortion value for {(zi, Vi)}ki=1

by

F({(zi, Vi)}ki=1) =

k∑
i=1

∫
x∈Vi

ρ(x)|x− zi|2 dx.(2.9)

A necessary condition for F to be minimized is that the Vi’s are the Voronoi regions
corresponding to the zi’s and, simultaneously, the zi’s are the constrained centroids
of the corresponding Vi’s, i.e., {(zi, Vi)}ki=1 is a CCVT of S.

Proof. First examine the first variation of F with respect to a single point, say
zj . We then have that

F(zj + v)−F(zj) =

∫
x∈Vj

ρ(x)
(|x− zj − v|2 − |x− zj |2) dx,(2.10)
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where we have not listed the fixed variables in the argument of F and where v is
arbitrary such that zj +v ∈ S. From (2.10), we see that minimizers of F with respect
to zj have the same characterization as minimizers of Fj given in (2.3). Thus, the
minimizing points {zj}kj=1 are the constrained centroids of the corresponding regions

{Vj}kj=1 on S.

Next, for given points {zi}ki=1 and a tessellation {Vi}ki=1 other than the Voronoi

tessellation {Ṽi}ki=1 corresponding to {zi}ki=1, we may compare

F({(zi, Ṽi)}ki=1) =

k∑
i=1

∫
x∈Ṽi

ρ(x)|x− zi|2 dx(2.11)

with the value of F({(zi, Vi)}ki=1) given by (2.9). For a point x ∈ S that belongs to

the Voronoi region Ṽj , we have that

ρ(x)|x− zj |2 ≤ ρ(x)|x− zi|2 for i = 1, . . . , k(2.12)

since possibly x does not belong to the Voronoi region corresponding to zi. However,
since {Vi}ki=1 is not a Voronoi tessellation of S corresponding to {zi}ki=1, (2.12) must
hold with strict inequality over some measure nonzero set of S. Thus,

F({(zi, Ṽi)}ki=1) < F({(zi, Vi)}ki=1)

so that F is minimized when the {Vj}kj=1 are chosen to be the Voronoi regions asso-

ciated with the points {zj}kj=1.
Define the functional

K({zj}kj=1) =

k∑
i=1

∫
x∈Ṽi

ρ(x)|x− zi|2 dx,(2.13)

where zi’s belong to S and Ṽi’s are the corresponding Voronoi regions on S. We call K
the energy of {zj}kj=1 on the surface S. From the above proof, we have the following
result.

Proposition 2.3. Given a surface S ∈ R
N , a positive integer k, and a positive

density function ρ(·) defined on S, then F and K have the same minimizers.
Let K = {Z = (z1, z2, . . . , zk), zj ∈ S}. Let Ai = |Ṽi| denote the area of Ṽi

and let A = (A1, A2, . . . , Ak). It is obvious that A is continuous. Furthermore, the
following result holds.

Theorem 2.4. Let ρ(x) be continuous on Ω. Then, K is continuous and possesses
a global minimum.

Proof. Let Z,Z′ ∈ K. Then,

|K(Z)−K(Z′)| =
∣∣∣∣∣

k∑
i=1

{(∫
x∈Ṽi

−
∫
x∈Ṽ ′

i

)
ρ(x)|x− zi|2 dx

+

∫
x∈Ṽ ′

i

ρ(x)
(|x− zi|2 − |x− z′i|2) dx

}∣∣∣∣∣.
(2.14)

Since S is compact and ρ(·) is continuous, there exists a constant C such that

|K(Z)−K(Z′)| ≤ C
k∑

i=1

(|Ai −A′
i|+ |zi − z′i|).
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Then, the continuity of K follows from the continuity of A and the existence of the
global minimizer follows from the compactness of K.

3. Algorithms for determining CCVTs. An arbitrary choice of generating
points {zi}ki=1 on a surface is not, in general, the constrained mass centroid of the
corresponding Voronoi regions on that surface. As a result, one is left with the
following construction problem: given a surface S ⊂ R

N , a positive integer k, and a
density function ρ(x) defined for x ∈ S, determine a k-point CCVT of S with respect
to the given density function.

Similar to CVTs of a region, CCVTs of a given surface also are not uniquely
defined in general. For example, given a CCVT {(zi, Vi)}ki=1 on the surface of a
sphere with respect to a constant density function, then {(z′i, V ′

i )}ki=1, a rotation of
{(zi, Vi)}ki=1, is still a CCVT.

3.1. Probabilistic and deterministic methods for determining CCVTs.
There are several algorithms known for constructing CCVTs of a given set; see [1, 7,
8, 9]. Here, we consider three methods. The first is MacQueen’s method [1, 9], a very
elegant probabilistic algorithm which divides sampling points into k sets or clusters
by taking means of clusters. The second method is a deterministic algorithm that
is known in some circles as Lloyd’s method [1, 7] and which is the obvious iteration
between computing Voronoi diagrams and mass centroids. The third method is a
probabilistic method suggested in [8] which may be viewed as a generalization of
the known MacQueen and Lloyd methods. Using Theorem 2.1, we modify the three
methods for the construction of CCVTs.

The modified version of MacQueen’s method is given as follows. Throughout,
Monte Carlo sampling simply means random sampling according to the given density
function.

Algorithm 1 (MacQueen’s method for CCVTs). Given a surface S, a density
function ρ(x) defined for all x ∈ S, and a positive integer k,
0. choose an initial set of k points {zi}ki=1 on S, e.g., by using a Monte Carlo

method; set ji = 1 for i = 1, . . . , k;
1. determine a point y in S at random, e.g., by a Monte Carlo method, according to

the probability density function ρ(x);
2. find a zi∗ among {zi}ki=1 that is the closest to y;
3. set

z′i∗ ←
ji∗zi∗ + y

ji∗ + 1
, ji∗ ← ji∗ + 1, and zi∗ = proj(z′i∗);

the new zi∗ , along with the unchanged {zj}, j �= i∗, form the new set of points
{zi}ki=1;

4. if the new points meet some convergence criterion, terminate; otherwise, return
to step 1.

In Algorithm 1, zi∗ = proj(z′i∗) denotes the following process. If there exists a

set {zji∗}rj=1 ∈ S − ∂S, which are projection points of z′i∗ onto S along the normal

direction to S at zji∗ , choose a zci∗ satisfying |zci∗ − z′i∗ | = minj=1,...,r |zji∗ − z′i∗ | and
then replace zi∗ by zci∗ ; otherwise, keep zi∗ unchanged.

There are two key issues in Algorithm 1 that need to be addressed. The first
is how to sample points on a given surface by a Monte Carlo method, i.e., how to
do random sampling on a surface according to a given density function. The second
concerns the implementation of the projection process. These issues are discussed in
section 4.
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The almost sure convergence of the energy for the random MacQueen method has
been proved in the CVT case; note that in some cases this method fails to converge
to a CVT; see [6, 9]. It also has been observed that Macqueen’s method converges
very slowly and that, in practical computations, the energy of the final set of points
is closely correlated to the energy of the corresponding initial set of points; see [8].

The following algorithm is the modification to the CCVT case of Lloyd’s method
[1, 7].

Algorithm 2 (Lloyd’s method for CCVTs). Given a surface S, a density func-
tion ρ(x) defined for all x ∈ S, and a positive integer k,
0. select an initial set of k points {zi}ki=1 on S, e.g., by using a Monte Carlo method;
1. construct the Voronoi sets {Vi}ki=1 of S associated with {zi}ki=1;
2. determine the constrained mass centroids of the Voronoi sets {Vi}ki=1; these con-

strained centroids form the new set of points {zi}ki=1;
3. if the new points meet some convergence criterion, terminate; otherwise, return

to step 1.
In Algorithm 2, the determination of constrained mass centroids can be done in

two steps: first find the mass centroids and then project them onto the surface S using
the projection process proj. Note that Algorithm 2 requires the explicit construction
of Voronoi tessellations of S and of the constrained mass centroids of the Voronoi
regions.

In the CVT setting, Lloyd’s method converges much faster than does MacQueen’s
method. However, in the CCVT case, one is faced with the difficult task of construct-
ing Voronoi tessellations corresponding to a given set of points on a surface. For a
sphere, the STRIPACK package for constructing Voronoi diagrams [11] is available,
but similar software is not currently available for general surfaces. This difficulty
represents a serious obstacle to the use of the deterministic Lloyd method for deter-
mining CCVTs of general surfaces. A variant scheme is to approximate the Voronoi
sets using background grids, but the local refinement of background grids for complex
density functions is still a substantial problem. Despite this difficulty, Lloyd’s method
retains considerable theoretical interest.

We next present a modified version, applicable to the CCVT case, of a probabilis-
tic method given in [8] for CVTs. This method can be viewed as a both a probabilistic
version of Lloyd’s method and as a generalization of the random MacQueen method.

Algorithm 3. Given a surface S, a density function ρ(x) defined for all x ∈ S,
and a positive integer k,
0. choose a positive integer q and constants {αi, βi}2i=1 such that α2 > 0, β2 > 0,

α1 + α2 = 1, and β1 + β2 = 1; choose an initial set of k points {zi}ki=1 on S,
e.g., by using a Monte Carlo method; set ji = 1 for i = 1, . . . , k;

1. choose q points {yr}qr=1 in Ω at random, e.g., by a Monte Carlo method, according
to the probability density function ρ(x);

2. for r = 1, . . . , q, determine a zi∗r among {zi}ki=1 that is closest to yr;
3. for i = 1, . . . , k, gather together in the set Wi all sampling points yr closest to

zi (i.e., in the Voronoi region of zi); if the set Wi is empty, do nothing;
otherwise, compute the average y∗

i of the set Wi and set

z∗i
′ ← (α1ji + β1)zi + (α2ji + β2)y

∗
i

ji + 1
, ji ← ji + 1, and z∗i = proj(z∗i

′);

the new set of {z∗i }, along with the unchanged {zj}, j �= i, form the new set
of points {zi}ki=1;
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4. if the new points meet some convergence criterion, terminate; otherwise, return
to step 1.

Algorithm 3, like MacQueen’s method and unlike Lloyd’s method, does not require
the calculation of Voronoi diagrams on a surface. Note that since two of the αi’s and
βi’s are free, Algorithm 3 is actually a two-parameter family of methods. Furthermore,
α1 and β1 may actually be chosen to be negative, yielding an under-relaxation method.
However, for surfaces of closed bodies, e.g., a sphere, one should be careful when using
negative values for α1 and β1 because then it is possible for the average point y∗

i to
lie outside the body. This, in turn, could complicate the proj operation.

Some theoretical and computational analyses of Algorithm 3 (for the CVT case)
can be found in [8]. We also note that Algorithm 3 can be parallelized in much the
same way it was described in [8] for the standard CVT case.

For the computational examples discussed in section 4, we will use Algorithm 3
with α1 = β1 = 0 so that α2 = β2 = 1. This choice yields a probabilistic Lloyd’s
method in the sense that the integrals that appear in the construction of the centroids
are approximated probabilistically by random sampling. In this case, we can expect
convergence of the positions of the CCVT points only within sampling error, i.e., the
CCVT points can be determined only to within a tolerance related to the error in the
evaluation of the centroids by sampling. Thus, it makes no sense to iterate beyond
what is required to reduce the movement of the generators to something less than this
tolerance. The discussion in [8] concerning the performance of Algorithm 3 for CVTs
in the plane and in three dimensions with respect to the various parameters in the
algorithm (αi, βi, and q) is relevant to the current setting of CVTs on surfaces.

3.2. Some results about Lloyd’s method. Let us consider the Lloyd map
Zn+1 = T(Zn) on a surface S. From Propositions 2.2 and 2.3, we have

K(Zn+1) = F(Zn+1, V (Zn+1)) ≤ F(Zn+1, V (Zn)) ≤ F(Zn, V (Zn)) = K(Zn),(3.1)

where V (Z) denotes the Voronoi regions of S associated with Z. From (3.1), we know
the Lloyd iteration produces a sequence of points {Zn} on S that is bounded and that
has monotonically decreasing energy. Applying the above results and a similar proof
in [4], we can obtain the following result.

Proposition 3.1. The set of limit points of a given Lloyd iteration share the
same energy K. Consequently, if the fixed point with the same energy is unique, then
the Lloyd iteration converges globally.

It is difficult in general to formulate verifiable conditions on the density function
and the geometry of the surface that lead to global convergence. In the following, we
will consider a special case.

Let us consider using Lloyd’s method of constructing constrained Voronoi tessel-
lations on the unit circle S = {(x, y) ∈ R

2 | x2 + y2 = 1}. Let the density function
ρ(·) be smooth and strictly positive. For convenience, we represent the unit circle by
S = {(cos(θ), sin(θ)) | 0 ≤ θ < 2π} and ρ(θ) = ρ(cos(θ), sin(θ)). In addition, ρ(·) is
assumed to satisfy (

ρ′(β)
ρ(β)

− ρ′(α)
ρ(α)

)
sin(α− β) > 0 ∀α �= β.(3.2)

Given k points X = {(cos(θi), sin(θi)), i = 1, . . . , k} such that 0 ≤ θ1 < θ2 <
· · · < θk < 2π, clearly, the corresponding Voronoi regions are Vi = {(cos(θ), sin(θ)) :
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θ ∈ �θi}, where

�θ1 =

(
θk + θ1

2
− π, θ1 + θ2

2

)
,

�θi =

(
θi−1 + θi

2
,
θi + θi+1

2

)
for i = 2, . . . , k − 1,

�θk =

(
θk−1 + θk

2
,
θk + θ1

2
+ π

)
.

(3.3)

Then, the Lloyd map T = (T1, . . . , Tk) can be defined as

Ti(X) =
yi

|yi| , where yi =

∫
Vi

xρ(x) dx∫
Vi

ρ(x) dx

.(3.4)

Using (3.3), the yi’s of (3.4) can be rewritten as

yi =


∫
�θi

ρ(θ) cos(θ) dθ∫
�θi

ρ(θ) dθ

,

∫
�θi

ρ(θ) sin(θ) dθ∫
�θi

ρ(θ) dθ

 .(3.5)

Letting Θ = {θ1, . . . , θk}, we can redefine the Lloyd map T : [0, 2π)k → [0, 2π)k as

Ti(Θ) = tan−1


∫
�θi

ρ(θ) sin(θ) dθ∫
�θi

ρ(θ) cos(θ) dθ

 .(3.6)

Without loss of generality, we assume that Ti(Θ) ∈ [0, π/2) and 1 < i < k since other

cases need only a rotation. Let θ− = θi−1+θi
2 and θ+ = θi+θi+1

2 ; then, we have

Ti(Θ) = tan−1


∫ θ+

θ−
ρ(θ) sin(θ) dθ∫ θ+

θ−
ρ(θ) cos(θ) dθ

 .(3.7)

Let φ(θ) = ρ(θ) cos(θ) and ψ(θ) = ρ(θ) sin(θ). Then, at the fixed point Θ = T(Θ),
the Jacobian matrix of the Lloyd map is the tridiagonal matrix

∂Ti
∂θi−1

=

−ψ(θ−)

∫ θ+

θ−
φ(θ) dθ + φ(θ−)

∫ θ+

θ−
ψ(θ) dθ

2(1 + tan2 θi)

(∫ θ+

θ−
φ(θ) dθ

)2 ,

∂Ti
∂θi+1

=

ψ(θ+)

∫ θ+

θ−
φ(θ) dθ − φ(θ+)

∫ θ+

θ−
ψ(θ) dθ

2(1 + tan2 θi)

(∫ θ+

θ−
φ(θ) dθ

)2 ,

∂Ti
∂θi

=
∂Ti
∂θi−1

+
∂Ti
∂θi+1

.

(3.8)
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From (3.4) and (3.5), we know that at a fixed point Θ∫ θ+

θ−
φ(θ) dθ = Mi cos(θi) and

∫ θ+

θ−
ψ(θ) dθ = Mi sin(θi),

where Mi = |yi|
∫ θ+

θ− ρ(θ) dθ; then,
∂Ti
∂θi−1

=
ρ(θ−) sin(θi − θ−)

2Mi(1 + tan2 θi)(cos
2(θi)

=
ρ(θ−) sin(θi − θ−)

2Mi
,

∂Ti
∂θi+1

=
ρ(θ+) sin(θ+ − θi)

2Mi(1 + tan2 θi) cos
2(θi)

=
ρ(θ+) sin(θ+ − θi)

2Mi

(3.9)

since 0 < θi− θ− = θi−θi−1

2 < π and 0 < θ+− θi = θi+1−θi
2 < π. From (3.9) one easily

sees that ∂T/∂Θ at the fixed point is a nonnegative matrix.
Using (3.8) and (3.9), we have

Mi

1−
k∑

j=1

∂Ti
∂θj

 = Mi

(
1− 2

∂Ti
∂θi−1

− 2
∂Ti
∂θi+1

)
= Mi − ρ(θ−) sin(θi − θ−)− ρ(θ+) sin(θ+ − θi)

=

(∫ θ+

θ−
φ(θ) dθ

)2

+

(∫ θ+

θ−
ψ(θ) dθ

)2

−
[
−ψ(θ−)

∫ θ+

θ−
φ(θ) dθ + φ(θ−)

∫ θ+

θ−
ψ(θ) dθ

]

−
[
ψ(θ+)

∫ θ+

θ−
φ(θ) dθ − φ(θ+)

∫ θ+

θ−
ψ(θ) dθ)

]

=

∫ θ+

θ−

∫ θ+

θ−
φ(α)φ(β) dαdβ +

∫ θ+

θ−

∫ θ+

θ−
ψ(α)ψ(β) dαdβ

−(ψ(θ+)− ψ(θ−)
) ∫ θ+

θ−
φ(θ) dθ +

(
φ(θ+)− φ(θ−)

) ∫ θ+

θ−
ψ(θ) dθ.

Rearranging terms on the right-hand side, we get

Mi

1−
k∑

j=1

∂Ti
∂θj

 =

∫ θ+

θ−

∫ θ+

θ−

[
(φ(α)− ψ′(α))φ(β) + (ψ(α) + φ′(α))ψ(β)

]
dαdβ

=

∫ θ+

θ−

∫ θ+

θ−

[− ρ′(α)ρ(β) sin(α) cos(β) + ρ′(α)ρ(β) sin(β) cos(α)
]
dαdβ

=

∫ θ+

θ−

∫ θ+

θ−
ρ′(α)ρ(β) sin(β − α) dαdβ

=
1

2

∫ θ+

θ−

∫ θ+

θ−

(
ρ′(α)ρ(β)− ρ′(β)ρ(α)) sin(β − α) dαdβ

=
1

2

∫ θ+

θ−

∫ θ+

θ−
ρ(α)ρ(β)

(
ρ′(β)
ρ(β)

− ρ′(α)
ρ(α)

)
sin(β − α) dαdβ,

> 0,
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where the last step follows from (3.2). Thus, by the Gerschgorin theorem, the spectral
radius of the Jacobian matrix is less than 1 and we have the local convergence of the
Lloyd iteration on the circle.

Theorem 3.2. Let S be the unit circle and assume that ρ(·) is a smooth density
function that satisfies(

ρ
′
(β)

ρ(β)
− ρ

′
(α)

ρ(α)

)
sin(α− β) > 0 ∀α �= β.

Then, the Lloyd map T is a local contraction near its fixed points. Consequently, the
Lloyd iteration is locally convergent.

We note that for the case S being a finite one-dimensional interval, a similar
result as that in the above theorem holds for logarithmically concave functions, i.e.,
functions satisfying(

ρ
′
(β)

ρ(β)
− ρ

′
(α)

ρ(α)

)
(β − α) < 0 ∀α, β ∈ S, α �= β.

The assumption (3.2) corresponds to a natural generalization of such a condition on
the density function in the case S being a circle.

4. Computational examples. Three different surfaces were used to illustrate
CCVT point sets. In all examples, Algorithm 3 was used with α1 = β1 = 0 and α2 =
β2 = 1. Monte Carlo sampling, i.e., random sampling according to a given density
function, on a given surface plays a key role in that method. The main ingredient in
our sampling procedure is to use the rejection method [12]; the incorporation of this
method into our algorithms will be clear. Additionally, we need to implement the
projection process proj onto a surface.

4.1. CCVTs on the surface of the unit sphere. First, let S be the surface
of the unit sphere, S = {(x, y, z) | x2 + y2 + z2 = 1}. The projection process proj is
quite simple for this surface because of its simple geometry. It is easy to show that
the mass centroid of any region of the surface of the unit sphere is always located
inside the unit sphere, so the proj process can be easily implemented as follows. The
projection of a given point (x, y, z) inside the unit sphere (except for the origin, i.e.,
the center) onto the surface of the sphere is given by

proj(x, y, z) =
1

r
(x, y, z), where r =

√
x2 + y2 + z2.

We use the following procedure to sample points on S, the surface of unit sphere,
for a given density function ρ(·) defined on S.

Procedure 1. Set ρ̂ = max(x,y,z)∈S ρ(x, y, z);
1. sample three random numbers X ′, Y ′, and Z ′ uniformly distributed on [0, 1]; set

X = 2X ′ − 1, Y = 2Y ′ − 1, and Z = 2Z ′ − 1;
2. set R =

√
X2 + Y 2 + Z2; if 0 < R ≤ 1, then set (x, y, z) = proj(X,Y, Z);

otherwise, go to step 1;
3. sample another random number U uniformly distributed on [0, 1];

if U < ρ(x, y, z)/ρ̂, return (x, y, z); otherwise go to step 1.
Note that step 3 of this procedure is the embodiment of the rejection method

mentioned above.
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The results of some computationally determined 256-point CCVTs on the unit
sphere are given in Figure 4.1. Three different density functions were chosen: a
constant density function; e−6.0z2

, which has a large variation, i.e., its values range
from 1 to e−6, and reaches its maximum on the circle {(x, y, z) | x2 + y2 = 1, z = 0};
and e−3.0(1−z)2 , which has a large peak at the north pole (0, 0, 1). The Voronoi
diagrams were produced using the STRIPACK package [11]. Also, the energies for
these tessellations are given in Table 4.1.

Visually, we see from Figure 4.1 that the tessellations of the sphere based on
CCVT generators are much more regular than those based on random point sampling.
This is also borne out by the results of Table 4.1; the fact that, for the same number
of points, the energy of the CCVT tessellations are roughly half those for Monte
Carlo–based tessellations is also an indication of the superior regularity of the CCVT
tessellations.

4.2. CCVTs on a developable surface. We next choose the developable sur-
face S = {(x, y, z) | z = −x2, |x| ≤ 1

2 , |y| ≤ 1
2}. It is easy to show that the mass

centroid of any region of this surface always belongs to the set Q = {(x, y, z) | |x| <
1
2 , |y| < 1

2 ,− 1
4 < z < −x2}. For a given point (x, y, z) ∈ Q, its projection onto S, i.e.,

(x̃, ỹ, z̃) = proj(x, y, z), is found by solving

2x̃(z − z̃)
x− x̃ = 1, z̃ = −x̃2, and ỹ = y.

These may be combined into the cubic equation

x̃3 +
2z + 1

2
x̃− x = 0.(4.1)

Since x always belongs to (− 1
2 ,

1
2 ) and z is restricted to (− 1

4 ,−x2), it is not difficult
to verify that (4.1) has only one real solution; thus, (x̃, ỹ, z̃) is uniquely determined.

A special procedure is given as follows to effect sampling on the developable
surface S for a given density function ρ(·) defined on S.

Procedure 2. Set ρ̂ = max(x,y,z)∈S ρ(x, y, z);

1. sample two random numbers X ′ and Y ′ uniformly distributed on [0, 1]; set X =
X ′ − 1

2 and Y = Y ′ − 1
2 ;

2. set V =
√

(1 + 4X2)/2 and sample a random number U1 uniformly distributed
in [0, 1]; if U1 < V , set x = X, y = Y , and z = −x2, and go to step 3;
otherwise, go to step 1;

3. sample another random number U2 uniformly distributed in [0, 1];
if U2 < ρ(x, y, z)/ρ̂, return (x, y, z); otherwise go to step 1.

Note that the rejection method is invoked in both steps 2 and 3 of this procedure.

The results of some computationally determined 256-point CCVTs on the devel-
opable surface are given in Figure 4.2. Two different density functions were chosen:
a constant density function and e−20.0x2

, which has a large variation, i.e., its values
range from 1 to e−5 and reaches its maximum on the segment {(x, y, z) |x = z =
0, y ∈ [− 1

2 ,
1
2 ]}. Since there is currently no software available for determining Voronoi

diagrams for a given set of points on such a developable surface, only the positions of
the generators are given in Figure 4.2. Visually, we again see from Figure 4.2 that the
CCVT points are much more regularly distributed than those obtained by random
selection.
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Fig. 4.1. Voronoi diagrams of 256 generators on the surface of unit sphere. Left: Monte Carlo

point set; right: constrained CVT point set; top: ρ(x, y, z) = 1; middle ρ(x, y, z) = e−6.0z2
; bottom:

ρ(x, y, z) = e−3.0(1−z)2 .

4.3. CCVTs on the surface of a torus. For the last example, we choose the
surface of the torus S = {(x, y, z) | (x− x

r )
2+(y− y

r )
2+z2 = 0.32, r =

√
x2 + y2}. The

projection process proj for this surface is similar to that for the surface of a sphere
but is a little more complicated. It is easy to show that the mass centroid of any region
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Table 4.1
Energies of 256-point Monte Carlo and CCVTs of a sphere for three density functions.

Density function ρ(x, y, z) 1 e−6.0z2
e−3.0(1−z)2

Monte Carlo 0.19382 0.05670 0.03081

CCVT 0.09995 0.02533 0.01293
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Fig. 4.2. Voronoi diagrams of 256 generators on a developable surface. Left: Monte Carlo

point set; right: CCVT point set; top: ρ(x, y, z) = 1; bottom: ρ(x, y, z) = e−20.0x2
.

of the surface of this torus will always belong to the set Q = {(x, y, z) | x2 + y2 <
1.32, |z| < 0.3}. Thus, for a given point (x, y, z) ∈ Q except for the origin (0,0,0), we
have

proj(x, y, z) = (x+ x̂, y + ŷ, ẑ),

where 
(x, y) =

1

d
(x, y) and d =

√
x2 + y2,

(x̂, ŷ, ẑ) =
0.3

d
(x− x, y − y, z) and d =

√
(x− x)2 + (y − y)2 + z2.

The following procedure is for sampling points on the torus S for a given density
function ρ(·) defined on S.

Procedure 3. Set ρ̂ = max(x,y,z)∈S ρ(x, y, z);
1. sample three random numbers X ′, Y ′, and Z ′ uniformly distributed in [0, 1]; set

X = 1.3(2X ′ − 1), Y = 1.3(2Y ′ − 1), and Z = 0.3(2Z ′ − 1);
2. set R =

√
X2 + Y 2 and V =

√
(X −X/R)2 + (Y − Y/R)2 + Z2; if 0 < V ≤ 0.3,

then set (x, y, z) = proj(X,Y, Z) and go to step 3; otherwise, go to step 1;

3. set D =
√
x2 + y2 + z2; sample a random number W uniformly distributed in

[0, 1]; if W < D/1.3, go to step 4.; otherwise go to step 1;
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Fig. 4.3. Voronoi diagrams of 256 generators on a torus. Left: Monte Carlo point set; right:
CCVT point set; top: ρ(x, y, z) = 1; bottom: ρ(x, y, z) = e−5.0|y|.

4. sample a random number U uniformly distributed in [0, 1]; if U < ρ(x, y, z)/ρ̂,
return (x, y, z); otherwise go to step 1.

Again, the rejection method is invoked in steps 2, 3, and 4 of this procedure.
The results of some computationally determined 256-point CCVTs on the torus

are given in Figure 4.3. Two different density functions were chosen: a constant
density function and e−5.0|y|, which has a large variation, i.e., its values range from
1 to e−6.5, and reaches its maximum on the two circles {(x, y, z) | (x − 1)2 + z2 =
0.32, y = 0} and {(x, y, z) | (x + 1)2 + z2 = 0.32, y = 0}. Again, since there is
no existing software for determining the Voronoi tessellations on a torus, only the
positions of the generators are given in Figure 4.3. Visually, we again see from Figure
4.3 that the CCVT points are much more regularly distributed than those obtained
by random selection.

5. CCVTs for interpolation and quadrature on the sphere. We now ex-
amine the use of the generators of CVTs of the surface of the sphere for interpolation
and quadrature. We will only consider the case of uniformly distributed points, i.e.,
of a constant density function ρ(x).

The mesh norm h of a set of points {xi}ki=1 on the unit sphere S2 is defined by

h = max
x∈S2

min
i=1,...,k

cos−1(xTxi).

Of course, it is topologically impossible to tessellate the surface of a sphere exactly
uniformly. Note, however, that it is clear that a “uniform” tessellation of the surface
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Fig. 5.1. Mesh norm of CCVT generators vs. degree of the polynomial n; the number of
generators kn = (n+ 1)2.

of a sphere into hexagonal-like regions would result in h
√
k ≈

√
8
√

3π/9 ≈ 2.2 when
k is large. Thus, we can use h as an indicator of the uniformity of point distributions
on the sphere. In Figure 5.1, we provide plots of h and h(n+1) vs. n for k = (n+1)2-
point CCVTs of the surface of the unit sphere. (We set k = (n+1)2 and refer to n as
the degree to be consistent with the plot given below for global interpolation on the
sphere.) We determine the mesh norm h by sampling 40,000 points x on the sphere S2

and then selecting the maximum value of mini=1,...,kn
cos−1(xTxi) over the sampling

points. We see from Figure 5.1 that h(n+1) is indeed nearly constant and nearly equal
to 2.2 for CCVT point distributions. This implies that CCVT point distributions are
very uniform and would be useful for piecewise polynomial interpolation on the sphere
and for finite element discretizations of partial differential equations posed on a sphere.

We now consider global polynomial interpolation on the sphere S2. In [13, 15]
good choices of points for this purpose are discussed in detail. Note that if the
degree of interpolating polynomial is n, then kn = (n + 1)2 interpolating points
{xi}kn

i=1 are needed for global interpolation on the sphere. The “goodness” of a set
of interpolation points can be characterized by the uniform norm of the interpolation
operator. Following [13, 15], we determine this quantity as follows. Let G̃n(z) =
n+1
4π P

(1,0)
n (z), where P

(a,b)
n denote the Jacobi polynomials. Define

g(x) =
(
G̃n(x

Tx1), G̃n(x
Tx2), . . . , G̃n(x

Txkn
)
)T

and the kn × kn Gram matrix G of the reproducing kernel basis

G =
(
g(x1),g(x2), . . . ,g(xkn

)
)
.

Then, the uniform norm of the interpolation operator Λn is given by

‖Λn‖L∞ = max
x∈S2

‖G−1g(x)‖�1 .

In Figure 5.2, we provide, for kn = (n + 1)2-point CCVT point distributions, a
plot of ‖Λn‖L∞ vs. n, where n is the degree of the interpolating polynomial. We
determine ‖Λn‖L∞ by sampling 40,000 points x on the sphere S2 and then selecting
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Fig. 5.2. Global polynomial interpolation norms using CCVT generators vs. degree of the
polynomial n; the number of generators kn = (n+ 1)2.

the maximum value of ‖G−1g(x)‖�1 over the sampling points. We see from Figure 5.2
that the growth in the log of the norm of the interpolation operator is roughly linear
in the degree n of the polynomial; this is the ideal situation.

We next turn to interpolatory quadrature on the surface of the S2 based on the
interpolating polynomial of degree n. If {xi}kn

i=1 is a set of quadrature points, then
the quadrature weights are determined by the requirement that∫

S2

p(x) dx =

kn∑
i=1

wip(xi)

for all polynomials p of degree ≤ n. Following [13, 15], we determine the quadrature
weights w = (w1, w2, . . . , wkn) by solving the linear algebraic system

Gw = e,

where e is the vector having all components equal to one. In Figure 5.3, we provide
a plot of the maximum and minimum values for the quadrature weights vs. n, the
degree of the polynominal. We see that the quadrature weights are all positive and
that they are well clustered around the ideal value of unity; in fact, for n ≤ 18, we
have that all the quadrature weights are well within the interval [0.6, 1.4]. Again, this
is a very good situation for interpolatory quadrature.

In [13, 15] four types of point sets for global interpolation and quadrature on a
sphere are compared. One of the point sets is based on minimizing a Coulomb-type
potential energy between points; it is dismissed as yielding very large interpolation
operator norms and very poor quadrature weights, including some that are negative.
CCVT point sets are, in these respects, vastly superior to Coulomb potential point
sets. Compared to the other three types of point sets discussed in [13, 15], CCVT
point sets are as good as the best of those with respect to quadrature weights; the
spread between the maximum and minimum quadrature weights is comparable to
that of the best of the point sets discussed in [13, 15]. CCVT points sets are also
every bit as good as the best point set of [13, 15] with respect to the mesh norm h.
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quadrature points are chosen to be CCVT generators vs. degree of the polynomial n; the number of
generators is kn = (n+ 1)2.

With respect to the size of the norm of the interpolation operator, CCVT point sets
do not perform as well as do the best of the point sets discussed in [13, 15]. However,
as shown in Figure 5.2, the growth in this norm for CCVT is acceptable for most
practical purposes. Moreover, it is important to note that CCVT point sets may be
determined at very much less cost than what is needed for the three good point sets
discussed in [13, 15], and the CCVT concept is also applicable to similar problems,
i.e., interpolation and quadrature, for more general surfaces.

One important observation is that all three algorithms discussed in section 3 (and
indeed all common algorithms for determining CVTs and CCVTs) merely locate local
minimizers of the energy functional (2.9). This may account for the lack of monotonic-
ity in the plots in Figures 5.1–5.3. Moreover, it is possible that the global minimizers
are located so that the performance of CCVT point sets for global interpolation on
the sphere would be as good as the best point set discussed in [13, 15]. Algorithms
for the determination of CVT and CCVT point sets that are global minimizers of the
energy functional (2.9) are currently under study.

Acknowledgment. We thank R. J. Renka for providing his elegant software
package STRIPACK for constructing Voronoi diagrams on spheres.
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