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Abstract. Proper orthogonal decompositions (POD) have been used to sys-
tematically extract the most energetic modes while centroidal Voronoi tessel-
lations (CVT) have been used to systematically extract best representatives.
We combine the ideas of CVT and POD into a hybrid method for model
reduction. The optimality of such an approach and various practical imple-
mentation strategies are discussed.

1. Introduction

In the study of turbulent and chaotic systems and in the real-time feedback control
of complex systems, model reduction plays a very important role. In the former
case, there is a need to identify highly persistent spatio-temporal structures using
simple approaches. In the latter case, low-dimensional state models are needed so
that actuation can be determined quickly from sensed data. As a result, there have
been many studies devoted to the development, testing, and use of reduced-order
models for complex dynamical systems such as unsteady fluid flows.

Today, perhaps the most popular technique for model reduction is based on
proper orthogonal decomposition (POD). POD is closely related to the statistical
method known as Karhunen-Loève analysis or the method of empirical orthogo-
nal eigenfunctions. POD has become popular due to its potential for extracting
empirical information from experimental data or from data obtained from high-
fidelity numerical simulations; it has also become popular as a means of building
low-dimensional models.

For model reduction in the context of partial differential equations, approxi-
mation is effected by solving partial differential equations for long time periods or
for various parameter values, then performing the POD analysis on snapshots of
the solution, and then using the Galerkin method to project the partial differential
equation model onto the reduced POD basis.
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There have been many studies devoted to the use of POD for obtaining low-
dimensional dynamical system approximations; see, for example [2, 3, 4, 5, 6, 13,
15, 16, 21, 24, 28, 29, 32, 33, 34, 36]. The use of POD analysis in control problems
for partial differential equations has been considered in [1, 17, 18, 25, 26, 27, 30,
31, 35].

In this paper, we consider reduced order modeling through the use of a cen-

troidal Voronoi tessellation (CVT) of a snapshot set; CVT may be viewed as a
clustering technique. Thus, CVT provides an alternative to POD. Moreover, CVT
and POD may be combined to define a generalization of POD. The plan of the
paper is as follows. In Section 2 we briefly review the POD technique and some of
its properties; we do so so that POD and CVT can be compared and contrasted.
In Section 3, we introduce the CVT concept. In Section 4, we combine the POD
and CVT concepts into a hybrid method (CVOD) which inherits good features of
both. Finally, in Section 5, we provide brief remarks about the use of the hybrid
method for model reduction. The testing of the usefulness of CVT and CVOD for
this purpose through numerical experiments is currrently under way.

2. Proper orthogonal decomposition

In the proper orthogonal decompositions (POD) technique, dominant features from
experimental or numerical data are extracted through a set of orthogonal functions
which are related to the eigenfunctions of the correlation matrix of the data.

For n snapshots x̃j ∈ R
N , j = 1, . . . , n, let

µ̃ =
1

n

n∑

j=1

x̃j

and

xj = x̃j − µ̃ , j = 1 . . . , n,

be a set of modified snapshots. Let d ≤ n. Then, the POD basis {φi}
d
i=1 of

cardinality d is found by successively solving, for i = 1, . . . , d,

λi = max
‖φ

i
‖=1

1

n

n∑

j=1

|φT
i xj |

2 and φT
i φℓ = 0 for ℓ ≤ i− 1 .

If n ≥ N , this decomposition is known as the direct method; if n < N , then it is
known as the snapshot method. For the latter case, φi = 1√

nλi
Aχi, where χi with

‖χi‖ = 1 denotes the eigenvector corresponding to the i-th largest eigenvalue λi

of the n×n correlation matrix K = (Kjℓ), where Kjℓ = 1
n
xT

j xℓ. From now on, we
will only consider the case n < N .

The POD basis is optimal in the following sense [15]. Let {ψi}
n
i=1 denote an

arbitrary orthonormal basis for the span of the modified snapshot set {xj}n
j=1. Let

Pψ,d
xj be the projection of xj in the subspace spanned by {ψi}

d
i=1 and let the
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error be defined by

E =

n∑

j=1

‖xj − Pψ,d
xj‖

2 . (1)

Then, the minimum error is obtained when ψi = φi for i = 1, . . . , d, i.e., when the
ψi’s are the POD basis vectors.

2.1. POD and the singular value decomposition

We review some of the close connections between the proper orthogonal decom-
position of a set of snapshots x̃j ∈ R

N , j = 1, . . . , n, and the singular value
decomposition (SVD) of the N × n matrix whose j-th column is the modified
snapshot xj = x̃j − µ̃. Recall that throughout, N > n.

The SVD of an N × n matrix A is given by [14] A = UΣV T , where U is
an N × N orthonormal matrix, V is an n × n orthogonal matrix, and Σ is an
N ×n diagonal matrix having only non-negative and non-increasing entries on the
diagonal. (Here we only treat the real case; everything can be easily generalized
to the complex case.) The non-zero entries of Σ are the singular values of A, the
columns {uj}N

j=1 of U are the left singular vectors of A, and the columns {vi}n
i=1

of V are the right singular vectors of A.

For the given set of snapshots x̃j ∈ R
N , let A denote the matrix whose

columns are the modified snapshots xj , i.e.,

A =
(
x̃1 − µ(x̃) , x̃2 − µ(x̃) , . . . , x̃n − µ(x̃)

)
.

Let A = UΣV T denote the SVD of A. Then, the correlation matrix (or the scaled
normal matrix) is the n× n matrix

K =
1

n
ATA =

1

n
V ΣT ΣV T .

Recall that

Kχi =
1

n
ATAχi = χiλi and ‖χi‖ = 1 for i = 1, . . . , n .

Then, it is well known that χi = vi, i.e., the eigenvectors of the matrix ATA

coincide with the right singular vectors vi of the snapshot matrix A. Moreover,
we have that σ2

i = nλi, where σi and λi denote the i-th singular value of A and
the i-th largest eigenvalue of K, respectively. It then follows that the POD basis
vectors {φi}

n
i=1 may be expressed in terms of the singular values and right singular

vectors of A by φi = 1
σi
Avi, for i = 1, . . . , n. It then easily follows that φi = ui

for i = 1, . . . , n, i.e., the POD basis vectors are the first n left singular vectors of
the snapshot matrix A. Note that both {χi}

n
i=1 and {φi}

n
i=1 are orthonormal sets

in R
n and R

N , respectively.

The connection between POD and SVD can be exploited to give a simple
proof of the optimality property of the POD basis that was stated earlier. Indeed,
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we have that

E =

n∑

j=1

‖xj − Pφ,d
xj‖

2 =

n∑

j=1

‖xj‖
2 −

n∑

j=1

‖Pφ,d
xj‖

2 .

Now,
n∑

j=1

‖Pφ,d
xj‖

2 =

d∑

i=1

‖ATψi‖
2 =

d∑

i=1

‖Σ′αi‖
2 ,

where αi = U ′ψi and Σ′ and U ′ are the n × n submatrices defined by the parti-
tionings

Σ =

(
Σ′

0

)
and U = (U ′ U ′′) .

Note that also {αi}d
i=1 forms an orthonormal basis of a d-dimensional subspace of

R
n. Clearly,

max
{αi}d

i=1

d∑

i=1

‖Σ′αi‖
2

is achieved for αi = ei, where ei is the unit vector with i-th component 1 and the
other components zero. Hence, we have that E is minimized when ψi = Uei = ui

for i = 1, . . . , d, i.e., by the POD basis.
The connection between POD and SVD also makes it is easy to show that

the “error” of the d-dimensional POD subspace is given by

Epod =
n∑

j=d+1

σ2
j = n

n∑

j=d+1

λj .

Thus, if one wishes for the relative error to be less than a prescribed tolerance δ,
i.e., if one wants Epod ≤ δΣn

j=1|xj |2, one should

choose d to be the
smallest integer such that

n∑

j=d+1

σ2
j = n

n∑

j=d+1

λj < δΣn
j=1|xj |

2 . (2)

Since we also have that

n∑

j=1

‖xj‖
2 =

n∑

j=1

σ2
j = n

n∑

j=1

λj and

n∑

j=1

‖Pφ,d
xj‖

2 =

d∑

j=1

σ2
j = n

d∑

j=1

λj ,

we may recast (2) in the more familiar form:

choose d to be the
smallest integer such that

d∑

j=1

σ2
j

n∑

j=1

σ2
j

=

d∑

j=1

λj

n∑

j=1

λj

≥ γ = 1 − δ .
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3. Centroidal Voronoi tessellations

A centroidal Voronoi tessellation (CVT) is a Voronoi tessellation of a given set
such that the associated generating points are centroids, i.e., the centers of mass
with respect to a given density function, of the corresponding Voronoi regions.

Given the discrete set of modified snapshots W = {xj}n
j=1 belonging to R

N ,

a set {Vi}k
i=1 is a tessellation of W if Vi ⊂ W for i = 1, . . . , k, Vi ∩ Vj = ∅ for

i 6= j, and ∪k
i=1Vi = W . Given a set of points {zi}k

i=1 belonging to R
N (but not

necessarily to W ), the Voronoi set corresponding to the point zi is defined by

V̂i = {x ∈W | ‖x− zi‖ ≤ ‖x − zj‖ for j = 1, . . . , k, j 6= i,

where equality holds only for i < j } .
(3)

Other tie-breaking rules for points equidistant to two or more of the zi’s can also

be used. The set {V̂i}k
i=1 is called a Voronoi tessellation or Voronoi diagram of W .

Given a density function ρ(y) ≥ 0, defined for y ∈ W , the mass centroid z∗

of any subset V ⊂W is defined by
∑

y∈V

ρ(y)|y − z∗|2 = inf
z∈V ∗

∑

y∈V

ρ(y)|y − z|2 , (4)

where the sums extend over the points belonging to V and the set V ∗ can be taken
to be V or it can be an even larger set such as R

N . In the latter case, z∗ is the
ordinary mean

z∗ =

∑

y∈V

ρ(y)y

∑

y∈V

ρ(y)
;

in this case, z∗ 6∈ W in general.
If zi = z∗i for i = 1, . . . , k, where {zi}k

i=1 is the set of generating points

for the Voronoi tessellation {V̂i}k
i=1 and {z∗i }

k
i=1 are the set of mass centroids of

the Voronoi regions, we refer to the Voronoi tessellation as a centroidal Voronoi

tessellation. The concept of CVT’s can be extended to more general sets, includ-
ing regions in Euclidean spaces, and more general metrics. They have a variety
of applications including data compression, optimal allocations of resources, cell
division, territorial behavior of animals, optimal sensor and actuator location,
and numerical analysis including both grid-based and meshfree algorithms for in-
terpolation, multi-dimensional integration, and partial differential equations; see
[7, 8, 9, 10, 11, 12, 19, 23].

Given the discrete set of points W = {xj}n
j=1 belonging to R

N , we define

the error with respect to a tessellation {Vi}k
i=1 of W and a set of points {zi}k

i=1

belonging to W or, more generally, belonging to R
N by

F
(
(zi, Vi), i = 1, . . . , k

)
=

k∑

i=1

∑

y∈Vi

ρ(y)|y − zi|
2 . (5)
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It can be shown that a necessary condition for the error F to be minimized is that
the pair {zi, Vi}k

i=1 form a CVT of W . We note that the error (5) is also often
referred to as the variance, cost, distortion error, or mean square error.

CVT’s of discrete sets are closely related to optimal k-means clusters and
Voronoi regions and centroids are referred to as clusters and cluster centers, re-
spectively. Clustering analysis provides a selection of a finite collection of templates
that well represent, in some sense, a large collection of data. To illustrate the con-
nection between centroidal Voronoi diagrams and optimal k-means clustering, let
us consider the case of ρ(y) ≡ 1. Given any subset (cluster) V of W with m points,
the cluster is represented by its arithmetic mean

xi =
1

m

∑

xj∈V

xj

which corresponds to the mass centroid of V in the definition (4) with V ∗ = R
N .

The variance is given by

V ar(V ) =
∑

xj∈V

|xj − x|2

and, for a k-clustering {Vi}k
i=1 (a tessellation of W into k disjoint subsets), the

total variance is given by

V ar(W ) =
k∑

i=1

V ar(Vi) =
k∑

i=1

∑

xj∈Vi

|xj − xi|
2 . (6)

(Compare (6) with (5).) The optimal k-clustering having the minimum total vari-
ance occurs when {Vi}k

i=1 is the Voronoi partition of W with {xi}k
i=1 as the gen-

erators; i.e., using the variance-based criteria to define optimality, the optimal
k-clustering is a centroidal Voronoi diagram.

3.1. Algorithms for constructing CVT’s

There are several algorithms known for constructing centroidal Voronoi tessella-
tions of a given set; see [7, 19, 20, 22]. One representative is MacQueen’s method

[22] (see also [7, 19]), a very elegant probabilistic algorithm which divides sampling
points into k sets or clusters by taking means of clusters. A second representative
is a deterministic algorithm known in some circles as Lloyd’s method [20] (see also
[7]) and which is the obvious iteration between computing Voronoi diagrams and
mass centroids, i.e., for a given set of generators, they are replaced in an itera-
tive process by the mass centroids of the Voronoi regions corresponding to those
generators. There are various other methods based on the minimization properties
of CVT’s. A new probabilistic method has been suggested in [19] which may be
viewed as a generalization of both the MacQueen and Lloyd methods; the method
of [19] is amenable to efficient parallelization.
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3.2. CVT and model reduction

We mentioned previously that CVT’s have been used in data compression; one
particular application was to image reconstruction; see [7]. Therefore, it is natural
to examine CVT’s in another data compression setting, namely model reduction.
The idea, just as it was in the POD setting, is to extract, from a given set of
snapshots {xj}n

j=1 of vectors in R
N , a smaller set of vectors also belonging to R

N .

In the POD setting, the reduced set was the d-dimensional set of vectors {φj}
d
i=1

defined in Section 2. In the CVT setting, the reduced set is the k-dimensional set
of vectors {zk}

k
i=1 that are the generators of a centroidal Voronoi tessellation of

the set of modified snapshots. Just as POD produced an optimal reduced basis in
the sense that the error E defined in (1) is minimized, CVT produces an optimal
reduced basis in the sense that the error F defined in (5) is minimized.

4. CVT based POD

We have already mentioned that the concept of centroidal Voronoi tessellations
can be extended to more general notions of distance. This allows us to combine
POD and CVT to take advantage of the best features of both approaches.

To generalize the CVT concept, there are essentially two ingredients that we
need to redefine, namely, the concept of distance (which appears in the definition
of and thus serves to define Voronoi tessellations) and the concept of centroid.

First, the square of the distance between the one-dimensional spaces spanned
by two vectors x and y may be defined by [14]

δ2(x,y) = 1 −
|xT y|2

‖x‖2 ‖y‖2
.

More generally, the square of the distance from a one dimensional subspace spanned
by a vector x to a d-dimensional subspace Z is given by

δ2(x,Z) = 1 −
1

‖x‖2

d∑

i=1

|xTθi|
2 ,

where {θi}
d
i=1 forms an orthonormal basis for Z. Then, given a set of vectors (e.g.,

modified snapshots) W = {xj}n
j=1 and a set of d-dimensional subspaces {Zi}k

i=1

(which are called the generators), we define the generalized Voronoi tessellation of
W by

Vi = {xj ∈ W | δ2(xj ,Zi) ≤ δ2(xj ,Zℓ) ∀ ℓ 6= i } for i = 1, . . . , k .

A tie-breaking rule may be applied to insure that in the case equality holds in the
above definition, each modified snapshot only belongs to one generalized Voronoi
region.

Second, given a set of vectors V = {xj} that span an m-dimensional subspace
of R

N (e.g., again, for us these are a subset of cardinality m of the modified
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snapshots), the concept of d-generalized centroid (d ≤ m) of V may be defined by
an orthonormal basis {φi}

d
i=1 which minimizes

D =
∑

xj∈V
‖xj − Pxj‖

2 ,

where P denotes the projection operator into the d-dimensional subspace spanned
by {φi}

d
i=1. For simplicity, we call such a centroid or basis the d-g centroid of V .

Note that, by Section 2, the optimal basis {φi}
d
i=1 is the d-dimensional POD basis

for the set V .

We are now ready to define CVT based POD. We note that the generators
{Zj} in general may not be required to have the same dimension. Thus, if k denotes
the number of generators, we may use a multi-index d = {di}k

i=1 to replace the
scalar index d.

Definition 4.1. A set of finite subspaces {Zj}k
i=1 with dimensions d = {di}k

i=1,

respectively, along with the corresponding generalized Voronoi tessellation {Vj}k
i=1

is called a d-g CVT if and only if the Zi’s are themselves the d-g centroids of the

Vi’s.

Definition 4.2. The union of basis vectors corresponding to a d-g CVT is called a

CVT based POD or a centroidal Voronoi orthogonal decomposition (CVOD).

To recapitulate, CVOD can be viewed as a generalization of CVT for which
the set W of modified snapshots is divided into k clusters or generalized Voronoi
regions {Vi}k

i=1 and for which the generators are di-dimensional spaces each of
which is spanned by the di-dimensional POD basis for the cluster. CVOD can also
be viewed as a generalization of POD for which the set of modified snapshots is
divided into k clusters and then a POD basis is separately determined for each
cluster. In fact, if di = 1 for i = 1, . . . , k, then CVT based POD reduces to the
standard CVT of Section 3. On the other hand, if k = 1, then CVT based POD
reduces to the standard POD of Section 2.

Algebraically, one may also interpret CVOD as follows. First, the original
correlation matrix for the whole set of snapshots W is replaced by a block diago-
nal matrix with diagonal blocks being the correlation matrices for the snapshots
in individual Voronoi sets {Vi}; then, the POD analysis is separately performed
on each of the blocks. These Voronoi sets form a generalized centroidal Voronoi
tessellation of W in the sense given in Definition 4.1. Thus, the role of CVT within
CVOD may be viewed as providing, in some sense, an optimal clustering of the
modified snapshots; the role of POD is then to provide an optimal reduced basis
for each cluster.

There are cases where certain snapshots need to be weighted more heavily;
thus, weighted POD’s have been defined [5]. In light of the fact that a nonuniform
density function can be used in the standard CVT construction, we may also define
the weighted CVOD with a prescribed discrete density or a set of weights, i.e., we
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may minimize ∑

xj∈V
ρ(xj)δ

2(xj ,Zi)

over a di-dimensional subspace of V for a given density function ρ.

4.1. Optimization properties of CVT based POD

Similar to the original CVT, the d-g CVT minimizes the error functional

G
(
(Zi,Vi), i = 1 . . . , k

)
=

k∑

i=1

∑

xj∈Vi

δ2(xj ,Zi)

over all possible subdivisions of the set {xj}n
j=1 of modified snapshots into k clus-

ters {Vi}k
i=1 and all possible di-dimensional spaces Zi, i = 1, . . . , k.

More generally, we have for a density function with values {ρj}n
j=1, that the

d-g CVT minimizes

G
(
(Zi,Vi), i = 1 . . . , k

)
=

k∑

i=1

∑

xj∈Vi

ρjδ
2(xj ,Zi) .

This optimization property is one of the key properties of CVT based POD that
may make it very useful in practice.

The functional G also provides a natural error tolerance measure in the sense
that

G
(
(Zi,Vi), i = 1 . . . , k

)
=

k∑

i=1

|Vi|

|Vi|∑

j=di+1

λij
,

where |Vi| denotes the cardinality of the Voronoi set or cluster Vi and the λij
’s are

the eigenvalues (in decreasing order) of the (weighted) local correlation matrix of
the snapshots in the cluster.

In addition, for k large, it has been conjectured [7] that CVT’s enjoys the
equi-partition of error property; it is natural to extend such a conjecture to CVT
based POD. Such an error equi-partition property leads naturally to adaptive
strategies to refine the CVOD analysis. Intuitively, one may compare the relative
local error

|Vi|

|Vi|∑

j=di+1

λij

G
(
(Zi,Vi), i = 1 . . . , k

)

with a given tolerance. One possible strategy is to enlarge the index di if the local
error for the corresponding cluster (Voronoi set) Vi is much bigger than the errors
for other clusters. On the other hand, if the error for one cluster is much smaller,
then the index may be reduced. If the overall local errors are all very big, then
besides enlarging di’s, a larger value of k may also be desirable, i.e., more clusters
may be used. While enlarging di may reduce the global error more efficiently, it
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also increases the computational cost in solving the eigenvalue problem. Thus, a
balance needs to be maintained between enlarging k and increasing the di’s.

4.2. Constrained CVT based POD

Sometimes, the physical system and thus the modified snapshots inherit certain
symmetry properties, such as rotational symmetry, which are to be preserved by
the selected representations [2]. In other situations, constraints needs to be en-
forced such as the vectors need to be divergence free or are constrained to a
hypersurface, etc. [5]. For CVT, it is easy to modify the basic definition to allow
additional constraints to be placed on the centroids [7, 9]. Thus, we can introduce
the notion of constrained CVOD by extending the definition of generalized mass
centroids from Euclidean spaces to other manifolds or more general constrained
sets.

4.3. Algorithms for CVT based POD

A natural extension of the Lloyd method for computing standard CVT’s is readily
available. Let us begin with a given set of di-dimensional subspaces {Zi}k

i=1. One
may then construct the generalized Voronoi tessellation of the set of modified
snapshots and then compute the d-g centroid of each generalized Voronoi set;
these new centroids replace {Zi}k

i=1 for the next iteration. More precisely, we have
the following algorithm.

Algorithm 1. Generalized Lloyd’s method (a deterministic iteration)

Given a set of modified snapshots {xj}n
j=1 and a discrete den-

sity function {ρj}n
j=1, a positive integer k, and a multi-index d =

{di}k
1 ;

: 0. choose an initial set of k subspaces {Zi}
k
1 with dimensions

d = {di}k
1;

: 1. determine the generalized Voronoi tessellation

Vi = {xj ∈W | δ2(xj ,Zi) ≤ δ2(xj ,Zℓ) ∀ ℓ 6= i }

for i = 1, . . . , k, along with a tie-breaking rule;

: 2. find the d-g centroids {Z∗
i }

k
i=1 of {Vi}k

i=1;

: 3. set {Zi = Z∗
i }

k
i=1 as the new set of generators;

: 4. if the new generators meet some convergence criterion, ter-

minate; otherwise, return to step 1.

Note that the determination of the d-g centroids in Step 2 is equivalent to
conducting a POD analysis of each of the Voronoi regions. Thus, one may also view
Lloyd’s method as an iterative procedure that decomposes the whole process of
finding a d-g CVT into a sequence of POD analyses in sets with a smaller number
of modified snapshots. Since the computational complexity of the POD analysis
for n snapshots is related to that of solving the eigenproblem for an n×n matrix,
it is very demanding computationally when n is large. The POD analysis of the
smaller set of snapshots in Step 2, on the one hand, reduces the dimension of the
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matrix eigenproblem and thus requires less memory and computation time; on the
other hand, it can also be done concurrently for each generalized Voronoi region,
thus leaving much room for improvements in efficiency through parallelization.

The above algorithm has the nice feature that the d-g CVT error functional

G
(
(Zi,Vi), i = 1 . . . , k

)
=

k∑

i=1

∑

xj∈Vi

ρjδ
2(xj ,Zi)

decreases during the iteration. Moreover, as in the case of the original Lloyd iter-
ation for the standard CVT [11], it can be shown that if the local minimizers of
G share the same functional value, then the iteration is globally convergent. For
the more general case, we also expect the iteration to converge to local minimiz-
ers based on earlier computational experiences, though no rigorous theory is yet
available.

Lloyd’s iteration can be regarded as a fixed point iteration between the gen-
eralized Voronoi generators and the d-g centroids. It can also be interpreted as
a gradient descent method for the functional G with a fixed step size. Naturally,
one can then define improvements to the Lloyd iteration. Extensions of other algo-
rithms for computing the CVT’s to the case of computing CVOD’s are currently
under investigation.

5. Remarks about model reduction

A reduced basis, be it POD or CVT or CVOD, can be used to define a low-
order model in the usual manner. The partial differential equations governing the
dynamics of the system are projected over the subspace spanned by a particular
basis and a system of ordinary differential equations for the temporal modes is
obtained. The projection is effected through the standard Galerkin method. For
instance, let F (t,X, u(X, t)) = 0 be a system of partial differential equations with
suitable boundary and/or initial conditions for the unknown function u. Here, t
could be the time variable or some system parameter. Then, the CVOD based
model reduction is performed as follows.

Algorithm 2. CVOD based model reduction procedure

: 1. Construct a set of modified snapshots {uj}n
1 by solving (per-

haps approximately) the system of differential equations for

different values of t.

: 2. Calculate the CVOD for the set {uj}n
1 for some integer

k and multi-index {dj}k
j=1 to obtain a set of basis vectors

{φm}
|d|
m=1.

: 3. Solve the reduced system:

〈
φm, F (t,X,

|d|∑

l=1

βlφl)
〉

= 0 for m = 1, 2, . . . , |d| .



12 Q. Du and M. Gunzburger

Naturally, an important question is why should one use CVOD instead of
POD? Although answers have to be substantiated through numerical experiments,
heuristically, one can make some arguments.

CVOD naturally introduces the concept of clustering into the decomposition.
Imagine situations where intermittency is important or the dynamics are described
by somewhat less related modes. By imposing a clustering, each sub-CVOD basis
for a specific cluster can be used to capture the dynamics of that cluster.

As we have already mentioned, CVOD also reduces the amount of work rela-
tive to the full POD analysis. POD involves the solution of an n×n eigenproblem,
where n is the number of snapshots; CVOD instead requires the solution of several
smaller eigenproblems. CVT itself requires no eigenproblem solution.

Another interesting feature of CVOD which has been observed in other con-
texts, e.g., image processing [7], is that it avoids the over-crowding of the reduced
basis into a few dominant modes which is viewed as one of the drawbacks of POD
in some practical simulations.
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