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1) Introduction
• Climate modeling is a computationally intense effort that benefits

greatly from the use of multi-resolution, non-uniform, spatial grids.
The DOE OS’s Model for Prediction Across Scales (MPAS) models the
Earth’s climate using this idea (right) and the Primitive Equations.

• Currently MPAS does not have a matching multi-resolution temporal
scheme. Such a scheme would need to be conservative and negate the
restrictive CFL condition generated by the smallest grid cells.

• Exponential Integrators solve linear problems exactly (CFL indepen-
dent), and solve stiff problems well, but are they conservative?

2) Exponential Integrators(EI)
Consider the following system of nonlinear con-
servation laws with periodic boundary condi-
tions

ut = F (u) = fx(u) , (1)

Ω := {a < x < b} , 0 < t < ∆t , u(tn, x) = un

and expanding F (u) at u0

ut = F (un) + Jn(u− un) +R(u) = Ju+ R̃(u)

where Jn = F ′(un) .
The 2nd order Exponential Rosenbrock-Euler
method, using the variation of constants formula
and freezing F at un, has the form

u(∆t) = un +

(∫ ∆t

0

eJn(∆t−s)ds

)
F (un)

⇒ ~U
n+1

= ~U
n

+ ∆tφ1(∆tJn)~F
n
, (2)

where

φs(A) =
∞∑
k=0

Ak

(k + s)!
. (3)

This can be calculated efficiently in several ways:

1. Krylov Methods: Assume φ1(∆tJn)Fn

lies in the space Km(Jn,Fn), for m < n,
then

~U
n+1

= ~U
n

+ ∆t||~F
n
||Vmφ1(∆tHm)~e1.

Typically the number of Krylov vectors re-
quired for an accurate, non-oscillatory so-
lution is one to three times the ∆t/∆x ra-
tio. Thus more Krylov vectors are needed
for larger time steps.

2. Sub-stepping methods: The quantity
~R(1) = φ1(∆tJn)~F

n
is solution of the fol-

lowing ODE:

~R
′
(t) = Jn

~R(t)+~F
n
, 0 < t < 1 , ~R(0) = ~0 .

Thus ~R(1) = φ1(∆tJn)~F
n
can be found

by sub-stepping (perhaps RK4) instead of
explicitly evaluating matrix exponentials.

3. Open software packages such as Expokit
combine these methods in some way and
provide error control.

4. Chebyshev interpolation for the φs func-
tions over the domain containing the spec-
trum (not yet implemented).

3) Conservation of Mass of EI
Consider the system of nonlinear conservation
law in (1) for the variable u. The linearization
for ũ = u+ τv as τ → 0

∂tv(x, t) + ∂xf
′(x, u)v = 0 , (4)

and the weak form is given by

∂t

∫
Ω

φv dx−
∫

Ω

∂x(φ)f ′(x, u)v dx = 0 ,

∀φ ∈ V .

(5)

Note the boundary terms cancel due to period-
icity of v. Let Ω := ∪N−1

i=0 Si, Si := {xi−1/2 <

x < x1+1/2}, h = xi+1 − xi, and let φh = ~1.
Discretizating the weak form (5) on each Si and
summing all Si gives∑

Si

d

dt

∫
Si

vh dx+
(
ĝ′i+1/2 − ĝ′i−1/2

)
=
∑
Si

d

dt

∫
Si

vh dx = 0 ∀t ∈ (0, T )

(6)

where ĝ′i+1/2 = 1
2 (f ′(xi+1/2, u

h,−
i )vh,− +

f ′(xi+1/2, u
h,+
i )vh,+−αi(v

h,−−vh,+)) is the Lax
Friedrichs flux at the interface, where αi is a
penalty parameter. This is equivalent to matrix
problem

d

dt
Mh

~V
h

+ F ′h(~U
h
)~V

h
= 0 ;∑

Si

(
ĝ′i+1/2 − ĝ′i−1/2

)
= 0

⇒ ~1
T
F ′h(~U

h
)~V

h
= 0 .

The EI method is of the form

~U
n+1

= ~U
n

+ ∆tφ1(M−1
h F ′h(~U

n
))Fh(~U

n
) .

Testing φ1(·) by ~1
T
Mh and using (3) yields

~1
T
Mhφ1(M−1

h F ′h(~U
n
)) = ~1

T
Mh ,

yielding conservation of mass

~1
T
Mh

~U
n+1

= ~1
T
Mh

~U
n
∀n .

4) Shallow Water Setup
The Shallow water equations (which serve as
a prototype for the Primitive Equations) for a
given bathymetry are (g ≈ 9.8 kg m s−2 )

∂th+ ∂x(uh) = 0

∂tu+ ∂x(u2/2 + g(h− b(x))) = 0

b(x) = Hshelf +H0/2(1 + tanh(d(x)/ψ)) .

The shallow water equations are discretized
using a staggered central finite volume scheme.

h′i =
−1

∆x
(ui+1/2ĥi+1/2 − ui−1/2ĥi−1/2)

u′i+1/2 =
−1

∆x
{(û2

i+1/2− û2
i /2)

+g([hi+1 − b(xi+1)]− [hi − b(xi)])}

ûi =
1

2
(ui+1/2 + ui−1/2) , ĥi+1/2 =

1

2
(hi+1 + hi)

ν = max
i

(|ûi ±
√
ghi|) , ∆t = ∆x/ν ≈ 9.38 s .

Figure 1: (Top) The bathymetry of the ocean
given by the function b(x). (Bottom) Initial condi-
tions on h (h0(x)=ae−(x/105)2 - b(x)) for wave-like
behavior (a=1) and shock-like behavior (a=10).

5) 1-D Shallow Water (S.W.)
The S.W. system is discretized in time, using the
3 EI methods and RK4. KV is the # of Krylov
vectors, Sub is the # of RK4 sub-steps, and in
space using the FV discretization with N = 2049
points. The solutions are compared to an over-
refined solution using RK4 and 10 times as many
spatial points and time steps.
The wave-like IC in Fig. 1 is used and u0(x) = 0,
and homogeneous Dirichlet BC’s on u. For small
perturbations in h and u, S.W. → Wave Equa-
tion. This is where EI performs well since the
problem is nearly linear. Large perturbations
give rise to shocks, and the EI cannot propagate
faster than the shock.
The time horizon for the simulation is one day,
and α = 6.38E−3. The EI-Sub method provides
a performance advantage over RK4 by minimiz-
ing the number of nonlinear flux calculations and
replaces them with sparse mat-vecs using the Jn.

Method ∆t/∆x Time (s) Errorh Erroru
RK4 α 6.59 6.4E-3 4.34E-4
EI-KV24 10α 15.3 6.4E-3 4.41E-4
Expokit-KV10 100α 7.69 2.8E-2 1.81E-3
Expokit-KV10 10α 15.7 6.5E-3 4.41E-4
EI-Sub-10 10α 5.43 6.5E-3 4.41E-4
EI-Sub-100 100α 2.67 2.8E-2 1.81E-3

Figure 2: The S.W. equations at Day 1 using EI-
Sub-10. Both energy and mass are conserved.
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