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Goals

Learn steps to approximate BVPs using the Finite Difference Method

Start with two-point BVP (1D)

Investigate common FD approximations for u′(x) and u′′(x) in 1D

Use FD quotients to write a system of difference equations to solve
two-point BVP

Higher order accurate schemes

Systems of first order BVPs

Use what we learned from 1D and extend to Poisson’s equation in 2D
& 3D

Learn how to handle different boundary conditions
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Steps in the Finite Difference Approach to linear Dirichlet
BVPs

Overlay domain with grid

Choose difference quotients to approximate derivatives in DE

Write a difference equation at each node where there is an unknown

Set up resulting system of equations as a matrix problem

Solving resulting linear system efficiently

Compute error when solution is known
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Prototype Dirichlet BVP in 1D

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f (x) a < x < b , (1)

u(a) = α u(b) = β

When p(x) = p, a constant, we have

−pu′′(x) + q(x)u = f (x) a < x < b ,

When p = 1 and q = 0 we have the Poisson equation

−u′′(x) = f (x) a < x < b

in one dimension. We will see that the minus sign is important.
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Here p(x), q(x) are required to satisfy the bounds

0 < pmin ≤ p ≤ pmax and qmin = 0 ≤ q(x) ≤ qmax . (2)

For existence and uniqueness we also require that f and q be continuous
functions of x on the domain [a, b] and that p has a continuous first
derivative there.
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Step 1: Overlay domain with a grid

Suppose that we subdivide our domain [a, b] into n + 1 subintervals using
the (n + 2) uniformly spaced points xi , i = 0, 1, . . . n + 1 with

x0 = a, x1 = x0 + h, . . . ,

xi = xi−1 + h, . . . , xn+1 = xn + h = b

where

h =
b − a

n + 1
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The points xi are called the grid points or nodes.

The nodes x1, x2, . . . , xn are interior nodes (denoted by open circles in
the diagram below)

The two nodes x0 and xn+1 are boundary nodes (denoted by solid
circles in the diagram).

e e e e e e e e eu u
x0 x1 x1 xi−1 xi xi+1 xn xn+1

a bh-�
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Step 2: Choose difference quotients to approximate
derivatives in DE

For general p(x) we have

−p(x)u′′(x)− p′(x)u′(x) + q(x)u = f (x) a < x < b .

So we need difference quotient approximations for both the first and
second derivatives. So far we have approximations for the first derivative.

Forward Difference: u′(x) =
u(x + h)− u(x)

h
+O(h)

Backward Difference: u′(x) =
u(x)− u(x − h)

h
+O(h)
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Difference quotient for u′′(x)

A Taylor series expansion for u(x + h) is

u(x + h) = u(x) + h u′(x) +
h2

2!
u′′(x) +

h3

3!
u′′′(x) +O(h4) . (3)

Now we want an approximation for u′′(x) but if we solve for it we get

h2

2!
u′′(x) = u(x + h)− u(x)− hu′(x)− h3

3!
u′′′(x) +O(h4) .

in (3) then we still have the u′(x) term. However if we consider the Taylor
series expansion for u(x − h)

u(x − h) = u(x)− h u′(x) +
h2

2!
u′′(x)− h3

3!
u′′′(x) +O(h4) (4)

then we can eliminate the u′(x) term by adding the two expansions; we
have
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u(x + h) = u(x) + h u′(x) +
h2

2!
u′′(x) +

h3

3!
u′′′(x) +O(h4) .

u(x − h) = u(x)− h u′(x) +
h2

2!
u′′(x)− h3

3!
u′′′(x) +O(h4)

implies
u(x + h) + u(x − h)− 2u(x) = h2u′′(x) +O(h4)

Note that the terms involving h3 cancel.

This difference quotient is called a second centered difference
quotient or a second order central difference approximation to u′′(x)

It is second order accurate.

Second centered difference:

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+O(h2) (5)
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Another way to derive this approximation is to difference the forward and
backward approximations to the first derivative, i.e.,

u′′(x) ≈ 1

h
[Forward difference for u′(x)− Backward difference for u′(x)]

which implies

u′′(x) ≈ 1

h

[
u(x + h)− u(x)

h
− u(x)− u(x − h)

h

]

u′′(x) ≈ u(x + h)− 2u(x) + u(x − h)

h

hence the name second difference.
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Finite Difference Stencil

Finite difference approximations are often described in a pictorial format by
giving a diagram indicating the points used in the approximation. These
are called finite difference stencils and this second centered difference is
called a three point stencil for the second derivative in one dimension.

kk k
xi−1 xi xi+1

-21 1
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Finite difference quotient for u′(x)

The forward or backward difference quotients for u′(x) are first order

The second centered difference for u′′(x) is second order

So we need a second order approximation to u′(x)

If we subtract the expansions

u(x + h) = u(x) + h u′(x) +
h2

2!
u′′(x) +

h3

3!
u′′′(x) +O(h4) .

u(x − h) = u(x)− h u′(x) +
h2

2!
u′′(x)− h3

3!
u′′′(x) +O(h4)

we get
u(x + h)− u(x − h) = 2hu′(x) +O(h3)
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which gives the (first) centered difference

First centered difference: u′(x) =
u(x + h)− u(x − h)

2h
+O(h2)

It is described by the stencil

kk
xi−1 xi xi+1

-1 1
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Step 3: Writing the Difference Equation

We have the ODE

−p(x)u′′(x)− p′(x)u′(x) + q(x)u = f (x)

with the approximations

u′′(xi ) ≈
u(xi+1)− 2u(xi ) + u(xi−1)

h2

u′(xi ) ≈
u(xi+1)− u(xi−1)

2h
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ODE: − p(x)u′′(x)− p′(x)u′(x) + q(x)u = f (x)

Let Ui ≈ u(xi ) so that U0 = α, U1 = β.
Using our difference quotients at each interior grid point xi , i = 1, . . . , n
we have

p(xi )

(
−Ui+1 + 2Ui − Ui−1

h2

)
− p′(xi )

(
Ui+1 − Ui−1

2h

)
+ q(xi )Ui = f (xi ) .

At i = 1 we have

p(x1)

(
−U2 + 2U1 − U0

h2

)
− p′(x1)

(
U2 − U0

2h

)
+ q(x1)U1 = f (x1) ,

U0 = α is known so we take it to the right hand side of the equation

p(x1)

(
−U2 + 2U1

h2

)
−p′(x1)

(
U2

2h

)
+q(x1)U1 = f (x1)+p(x1)

α

h2
+p′(x1)

α

2h
,
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Step 4: Write difference equations as linear system of
equations

First consider the simple case when p = 1 and q = 0 then we have the
equations

2U1 − U2 = h2f (x1) + α
−U3 + 2U2 − U1 = h2f (x2)
−U4 + 2U3 − U2 = h2f (x3)

...
−Un + 2Un−1 − Un−2 = h2f (xn−1)

2Un − Un−1 = h2f (xn) + β
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The corresponding matrix problem is A~U = ~F where A is the matrix

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 2


(6)

with the vector of unknowns

~U =


U1

U2
...
Un−1

Un

 ~F =


h2f (x1) + α
h2f (x2)
...
h2f (xn−1)
h2f (xn) + β
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The linear system is

tridiagonal

symmetric

positive definite

O(n) operations to solve

Cholesky for tridiagonal system can be used A = LLT then forward
solve L~Y = ~F and back solve LT ~U = ~Y

storage required is two vectors for matrix and one for ~F

Note that if we didn’t have the minus sign in −u′′(x) = f (x) then the
matrix would not be positive definite.
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Example 1 - Homogeneous Dirichlet Boundary Conditions

We want to use finite differences to approximate the solution of the BVP

−u′′(x) = π2 sin(πx) 0 < x < 1
u(0) = 0, u(1) = 0

using h = 1/4. Our grid will contain five total grid points

x0 = 0, x1 = 1/4, x2 = 1/2, x3 = 3/4, x4 = 1

and three interior points x1, x2, x3. Thus we have three unknowns
U1,U2,U3. We will write the equation at each interior node to
demonstrate that we get the tridiagonal system. We have
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2U1 − U2 =
π2

16
sin(

π

4
)

−U1 + 2U2 − U3 =
π2

16
sin(

π

2
)

−U2 + 2U3 =
π2

16
sin(

3π

4
) .

Writing these three equations as a linear system gives 2 −1 0
−1 2 −1

0 −1 2

 U1

U2

U3

 =
π2

16

 sin(π4 )
sin(π2 )

sin( 3π
4 )

 =

 0.436179
0.61685

0.436179

 .

Solving this system gives U1 = 0.7446, U2 = 1.0530 and U3 = 0.7446; the
exact solution to this problem is u = sin(πx) so at the interior nodes we
have the exact solution (0.7071, 1, 0.7071).
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Example 2 - Inhomogeneous Dirichlet BCs

Consider the BVP

−u′′(x) = π2 cos(πx) 0 < x < 1
u(0) = 1, u(1) = −1

whose exact solution is u(x) = cos(πx). Using the same grid (h = 1/4) as
in the previous example, we still have three unknowns so we write the
equations at the three interior nodes

−U0 + 2U1 − U2 =
π2

16
cos(

π

4
)

−U1 + 2U2 − U3 =
π2

16
cos(

π

2
))

−U2 + 2U3 − U4 =
π2

16
cos(

3π

4
))

Now U0 = 1 and U4 = −1 so we simply substitute these values into the
equations and move the terms to the right hand side to get
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2U1 − U2 =
π2

16
cos(

π

4
) + 1

−U1 + 2U2 − U3 =
π2

16
cos(

π

2
))

−U2 + 2U3 =
π2

16
cos(

3π

4
)− 1

Writing these three equations as a linear system gives 2 −1 0
−1 2 −1

0 −1 2

 U1

U2

U3

 =

 1.4362
0.0

−1.4362

 .

Solving this system gives U1 = 0.7181, U2 = 0 and U3 = −0.7181; the
exact solution at these interior nodes is (0.7071, 0.0,−0.7071).
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Higher order accurate scheme

To get a higher order scheme we need to include more points in the stencil

Five point stencil: ������������ ���
xi−1 xi xi+1xi−2 xi+2

−5
2

4
3

4
3− 1

12 − 1
12

u′′(x) =
1

h2

[
− 1

12
u(x − 2h) +

4

3
u(x − h)− 5

2
u(x) +

4

3
u(x + h)

− 1

12
u(x + 2h)

]
+O(h4)

where we derive this by combining Taylor series expansions for
u(x − 2h), u(x − h), u(x + h), and u(x + 2h).
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If we have uniform points xi , i = 0, . . . , n + 1, how many unknowns
do we have for a Dirichlet 2-point BVP?

What do you think the structure of the resulting matrix is?

Do we handle the boundaries in the same way as the three-point
stencil?
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Summary of FD approximations

u′(x) forward
u(x + h)− u(x)

h
O(h)

difference

u′(x) backward
u(x)− u(x − h)

h
O(h)

difference

u′(x) centered
u(x + h)− u(x − h)

2h
O(h2)

difference

u′′(x) 2nd centered
u(x + h)− 2u(x) + u(x − h)

h2
O(h2)

difference
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u′′(x) five-point
1

12h2

[
− u(x − 2h) + 16u(x + h)

stencil (1D) −30u(x) + 16u(x − h)− u(x + 2h)
]
O(h4)

Recall that for IVPs we made a LTE at each step and then the total or
global error was the accumulated error over all the time steps.

Unlike IVPs, for BVPs the total error (assuming no roundoff and using a
direct solver) is just due to the error in replacing the DE with a difference
equation.
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Calculating the numerical rate of convergence

We want to calculate the numerical rate of convergence for our simulations
as we did for IVPs. However, in this case our solution is a vector rather
than a single number. To calculate the numerical rate using the formula

r =
ln E1

E2

ln h1
h2

we need a single number which represents the error so we use a vector
norm. A commonly used norm is the standard Euclidean norm defined by

‖~x‖2 =
[ n∑

i=1

x2
i

]1/2
or ‖~E‖2 =

[1

n

n∑
i=1

E 2
i

]1/2

for a vector in ~x ∈ Rn. Other choices include the maximum norm ‖ · ‖∞ or
the one-norm ‖ · ‖1
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Structure of code for Dirichlet 1D BVP

User specifies

n, the number of interior grid points (alternately the grid spacing h);

a and b, the right and left endpoints of interval;

the boundary value at x = a and at x = b,

a routine for the forcing function f (x)

a routine for the exact solution, if known.
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Code could be structured as follows:

compute h = (b − a)/(n + 1);

compute grid points x(i), i = 0, 1, 2, . . . , n + 1;

set up the coefficient matrix and store efficiently; for example, for the
three-point stencil the matrix can be stored as two vectors;

set up the right hand side for all interior points;

modify the first and last entries of the right hand side to account for
inhomogeneous Dirichlet boundary data;

solve the resulting linear system using an appropriate solver;

output solution to file for plotting, if desired;

compute the error vector and output a norm of the error (normalized)
if the exact solution is known.
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Example 3

−u′′(x) = π2 sin(πx) 0 < x < 1
u(0) = 0, u(1) = 0

h
‖E‖2

‖u‖2
numerical rate

1
4 5.03588×10−2

1
8 1.27852×10−2 1.978

1
16 3.20864×10−3 1.994

1
32 8.02932×10−4 1.999

1
64 2.00781×10−4 2.000

() Finite Differences October 2, 2013 31 / 52



Example 4

−u′′(x) = −2 0 < x < 1
u(0) = 0, u(1) = 0

with exact solution u(x) = x2 − x .

h
‖E‖2

‖u‖2
numerical rate

1
4 3.1402×10−16

1
8 3.1802×10−16

Why are we getting essentially zero for the error?
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From the Taylor series derivation of the second centered difference

u(x + h) + u(x − h)− 2u(x) = h2u′′(x) + 2
h4

4!
u′′′′(x) +O(h5)

and for our problem the exact solution is u(x) = x2 − x .

So u′′′(x) and all higher derivatives vanish and thus the approximation is
exact.
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Systems of BVPs in 1D

As an example consider

−u′′(x) + v(x) = f (x) a < x < b
−v ′′(x) + u(x) = g(x) a < x < b
u(a) = 0 u(b) = 0
v(a) = 0 v(b) = 0 .

Using 3 point stencil we have

−Ui−1 + 2Ui − Ui+1 + Vi = f (xi )
−Vi−1 + 2Vi − Vi+1 + Ui = g(xi )

with the grid x0 = a, xn+1 = b, xi+1 = xi + h, h =
b − a

n + 1
.
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So at grid point (or node) xi we have two unknowns Ui and Vi . This
means we have a choice of how we want to number the unknowns. For
example, we could number all of the Ui , i = 1, . . . , n and then the Vi or
we could mix them up, e.g., U1,V1,U2,V2, . . ., Un,Vn. Now we will get
the same solution either way but each leads to a different matrix problem
and one may be easier to solve than the other.

First approach: Solution vector is (U1,U2, · · · ,Un,V1,V2, · · · ,Vn)T

We write all the equations for Ui in the first half of the matrix and all the
equations for Vi in the second half.

2U1 − U2 + V1 = f (x1)
−U1 + 2U2 − U3 + V2 = f (x2)

...
−Un−1 + 2Un + Vn = f (xn)

2V1 − V2 + U1 = g(x1)
−V1 + 2V2 − V3 + U2 = g(x2)

...
−Vn−1 + 2Vn + Un = g(xn) .
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Resulting 2n × 2n matrix is

A =

(
S I
I S

)
where I is the n × n identity matrix and

S =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

What is the bandwidth of this matrix?
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Second approach: Solution vector is

(U1,V1,U2,V2, · · · ,Un,Vn)T .

2U1 − U2 + V1 = f (x1)
2V1 − V2 + U1 = g(x1)

−U1 + 2U2 − U3 + V2 = f (x2)
−V1 + 2V2 − V3 + U2 = g(x2)

...
−Un−1 + 2Un + Vn = f (xn)
−Vn−1 + 2Vn + Un = g(xn) .
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The coefficient matrix is

A =



2 1 −1
1 2 0 −1
−1 0 2 1 −1

−1 1 2 0 −1
. . .

. . .
. . .

−1 0 2 1 −1
−1 1 2 0 −1

−1 0 2 1
−1 1 2


.

with a bandwidth of 5.

Moral: the way you number your unknowns can change the structure of
your coefficient matrix.
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Finite Differences for Poisson Equation in 2D

Let domain Ω = (0, 1)× (0, 1), the unit square with boundary Γ.

−∆u(x , y) = −(uxx + uyy ) = f (x , y) (x , y) ∈ Ω, u(x , y) = 0 on Γ

Step 1: Overlay domain with grid

For simplicity set ∆x = ∆y = h = 1/(n + 1) and set

x0 = 0, x1 = x0 + h, . . . , xi = xi−1 + h, . . . , xn+1 = xn + h = 1
y0 = 0, y1 = y0 + h, . . . , yj = yj−1 + h, . . . , yn+1 = yn + h = 1 .

for i , j = 0, 1, . . . , n, n + 1.
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(xi , yj)
x

h6
?

h-�
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Step 2: Determine difference quotients to replace derivatives

Ui ,j ≈ u(xi , yj) for i , j = 0, 1, 2, . . . , n + 1

To write our difference quotient for uxx we simply use the second centered
difference in x (holding y fixed)

uxx(xi , yj) ≈
Ui−1,j − 2Ui ,j + Ui+1,j

h2

and then use the analogous difference quotient in the y direction

uyy (xi , yj) ≈
Ui ,j−1 − 2Ui ,j + Ui ,j+1

h2
.
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Step 3: Write difference equations at generic point (xi , yj)

−Ui−1,j + 2Ui ,j − Ui+1,j

h2
+
−Ui ,j−1 + 2Ui ,j − Ui ,j+1

h2
= f (xi , yj) .

Multiplying by h2 and combining terms yields

−Ui−1,j +4Ui ,j−Ui+1,j−Ui ,j−1−Ui ,j+1 = h2f (xi , yj) i , j = 1, 2, . . . , n .
(7)

Clearly
U0,j = Un+1,j = 0, j = 0, 1, . . . , n + 1

and
Ui ,0 = Ui ,n+1 = 0 i = 0, 1, 2, . . . , n + 1
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Five point stencil for ∆u

kk k
k

k
xi−1 xi xi+1

yj−1

yj

yj+1

-41 1

1

1
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Step 4: Set up coefficient matrix and right hand side

4U1,1 − U2,1 − U1,2 = h2f (x1, y1)
−U1,1 + 4U2,1 − U3,1 − U2,2 = h2f (x2, y1)

...
−Un−1,1 + 4Un,1 − Un,2 = h2f (xn, y1)

4U1,2 − U2,2 − U1,3 − U1,1 = h2f (x1, y2)
−U1,2 + 4U2,2 − U3,2 − U2,3 − U2,1 = h2f (x2, y2)

...
−Un−1,2 + 4Un,2 − Un,3 − Un,1 = h2f (xn, y2),

What is the dimension of the resulting matrix?

() Finite Differences October 2, 2013 44 / 52



Ordering along each row, the unknown vector is(
U1,1,U2,1, · · · ,Un,1

∣∣∣ U1,2,U2,2, · · · ,Un,2

∣∣∣ · · · ∣∣∣ U1,n,U2,n, · · · ,Un,n

)T

A =



S −I
−I S −I

−I S −I
. . .

. . .
. . .

−I S −I
−I S


which is spd block tridiagonal and where S is an n × n matrix defined by

S =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4
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Handling Boundary Conditions

Types of BCs: Dirichlet, Neumann and Mixed

Inhomogeneous Dirichlet BCs: u(x , y) = g(x , y) 6= 0 on Γ

Approach 1

unknown at each interior node - n2 unknowns
modify the right hand side for each equation that involves a boundary
term

Approach 2

unknown at every node (including boundaries) - (n + 2)2 unknowns
at each boundary node add an equation satisfying boundary condition;
e.g., at (x0, yj) add equation U0,j = g(x0, yj). Doesn’t change structure
of matrix, just adds rows with a one on the diagonal.
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Example 8

−∆u = f (x , y) = −2 cosπy + π2(1 + x)2 cosπy 0 < x , y < 1

u(x , 0) = (1+x)2, u(x , 1) = −(1+x)2, u(0, y) = cosπy , u(1, y) = 4 cosπy

where u(x , y) = (1 + x)2 cosπy

First approach - unknowns at interior nodes Set h = 1/4, at
(x1, y1) = ( 1

4 ,
1
4 )

−U0,1 + 4U1,1 − U2,1−U1,0 − U1,2 = h2f (
1

4
,

1

4
)

which gives

+4U1,1 − U2,1 − U1,2 = h2f (
1

4
,

1

4
) + cos

π

4
+ (1 +

1

4
)2
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at (x2, y1) = ( 1
2 ,

1
4 )

−U1,1 + 4U2,1 − U3,1−U2,0 − U2,2 = h2f (
1

2
,

1

4
)

which gives

−U1,1 + 4U2,1 − U3,1 − U2,2 = h2f (
1

2
,

1

4
) + (1 +

1

2
)2

at (x3, y1) = ( 3
4 ,

1
4 )

−U2,1 + 4U3,1 − U4,1−U3,0 − U3,2 = h2f (
3

4
,

1

4
)

which gives

−U2,1 + 4U3,1 − U3,2 − U1,2 = h2f (
3

4
,

1

4
) + 4 cos

π

4
+ (1 +

3

4
)2
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Second approach - unknowns at every node

U0,0 = (1 + 0)2

U1,0 = (1 +
1

4
)2

U2,0 = (1 +
1

2
)2

U3,0 = (1 +
3

4
)2

U4,0 = (1 + 1)2

U0,1 = cos
π

4

−U0,1 + 4U1,1 − U2,1−U1,0 − U1,2 = h2f (
1

4
,

1

4
)

−U1,1 + 4U2,1 − U3,1−U2,0 − U2,2 = h2f (
1

2
,

1

4
)

−U2,1 + 4U3,1 − U2,1−U3,0 − U3,2 = h2f (
3

4
,

1

4
)

U4,1 = 4 cos
π

4
...
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Neumann Boundary Conditions

Remember that when we impose a Neumann boundary condition the
unknown itself is not given at the boundary so we have to solve for it
there.

This means that our unknowns are not just at the interior points but
also at any point where a Neumann condition is specified.

Let Ω = (0, 1)× (0, 1) and assume ∂u/∂~n = g(x , y) along the sides x = 0
and x = 1. Because the outer normal is ±~i this flux condition is just
±ux = g . This means that we have to replace ux with a difference
quotient and write this equation at the boundary node. We can use a
one-sided difference such as

ux(x0, yj) =
U1,j − U0,j

h
= g(x0, yj)

at the left boundary. The problem with this is that it is a first order
accurate approximation whereas in the interior we are using a second order
accurate approximation.
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We have seen that the centered difference approximation

ux(xi , yj) ≈
u(xi+1, yj)− u(xi−1yj)

2h

is second order accurate. But if we write this at the point (x0, yj), then
there is no grid point to its left because (x0, yj) lies on the boundary.
To see how to implement this centered difference approximation for the
Neumann boundary condition first consider the simplified case where
∂u/∂~n = 0. The finite difference equation at the point (x0, yj) is

U−1,j + 4U0,j − U1,j − U0,j+1 − U0,j−1 = h2f (x0, yj)

and the centered difference approximation to −ux = 0 at (x0, yj) is

U1,j − U−1,j

2h
= 0 =⇒ U−1,j = U1,j .

We then substitute this into the difference equation at (x0, yj) to get

U1,j + 4U0,j − U1,j − U0,j+1 − U0,j−1 = h2f (x0, yj)

or
4U0,j − U0,j+1 − U0,j−1 = h2f (x0, yj) .
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So we need to modify all the equations written at x = 0 or x = 1 where
the Neumann boundary condition is imposed.

If the Neumann boundary condition is inhomogeneous we have

U1,j − U−1,j

2h
= g(x0, yj) =⇒ U−1,j = U1,j − 2hg(x0, yj)

and we substitute this into the difference equation for U−1,j .

Of course if the domain is not a rectangle then the procedure is more
complicated because the Neumann boundary condition ∂u/∂~n does not
reduce to ux or uy .
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