
Linear Least Squares

• Suppose we are given a set of data points {(xi, fi)}, i = 1, . . . , n. These
could be measurements from an experiment or obtained simply by evaluating
a function at some points. One approach to approximating this data is to
interpolate these points, i.e., find a function (such as a polynomial of degree
≤ (n − 1) or a rational function or a piecewise polynomial) which passes
through all n points.

• However, it might be the case that we know that these data points should
lie on, for example, a line or a parabola, but due to experimental error they
do not. So what we would like to do is find a line (or some other higher
degree polynomial) which best represents the data. Of course, we need to
make precise what we mean by a “best fit” of the data.



• As a concrete example suppose we have n points

(x1, f1), (x2, f2), · · · (xn, fn)

which we expect to lie on a straight line but due to experimental error, they
don’t.

•We would like to draw a line and have the line be the best representation of
the points in some sense. If n = 2 then the line will pass through both points
and so the error is zero at each point. However, if we have more than two
data points, then we can’t find a line that passes through the three points
(unless they happen to be collinear) so we have to find a line which is a good
approximation in some sense.

• An obvious approach would be to create an error vector ~e of length n where
each component measures the difference

ei = fi − y(xi) where y = a1x + a0 is line fitting data.

Then we can take a norm of this error vector and our goal would be to find
the line which minimizes the norm of the error vector.

• Of course this problem is not clearly defined because we have not specified
what norm to use.



• The linear least squares problem finds the line which minimizes this error vector
in the ℓ2 (Euclidean) norm.

• In some disciplines this is also called linear regression.

Example We want to fit a line p1(x) = a0 + a1x to the data points

(1, 2.2), (.8, 2.4), (0, 4.25)

in a linear least squares sense. For now, we will just write the overdetermined
system and determine if it has a solution. We will find the line after we investigate
how to solve the linear least squares problem. Our equations are

a0 + a1 · 1 = 2.2
a0 + a1 · .8 = 2.4
a0 + a1 · 0 = 4.25 (1)

Writing this as a matrix problem A~x = ~b we have


1 1
1 0.8
1 0




(
a0
a1

)
=




2.2
2.4
4.25






Now we know that this over-determined problem has a solution if the right hand
side is in R(A) (i.e., it is a linear combination of the columns of the coefficient
matrix A). Here the rank of A is clearly 2 and thus not all of IR3. Moreover,
(2.2, 2.4, 4.25)T is not in the R(A), i.e., not in the span{(1, 1, 1)T , (1, 0.8, 0)T}
and so the system doesn’t have a solution. This just means that we can’t find a
line that passes through all three points.

If our data had been

(1, 2.1) (0.8, 2.5) (0, 4.1)

then we would have had a solution to the over-determined system. Our matrix

problem A~x = ~b is 

1 1
1 0.8
1 0




(
a0
a1

)
=



2.1
2.5
4.1




and we notice that in this case, the right hand side is in R(A) because


2.1
2.5
4.1


 = 4.1



1
1
1


− 2




1
0.8
0






and thus the system is solvable and we have the line 4.1 − 2x which passes
through all three points.

But, in general, we can’t solve the over-determined system so our approach is
to find a vector ~x such that the residual ~r = ~b − A~x (or equivalently, the error
vector) is as small as possible. The residual is a vector and so we take the norm.
The linear least squares method uses the ℓ2-norm.

Linear Least Squares Problem Let Az = b be an over-determined
system where A is m×n with m > n. The linear least squares problem
is to find a vector ~x which minimizes the ℓ2 norm of the residual, that
is

~x = min
z∈IRn

‖~b− A~z‖2

We note that minimizing the ℓ2 norm of the residual is equivalent to minimizing
its square. This is often easier to work with because we avoid dealing with square
roots. So we rewrite the problem as



Find a vector ~x which minimizes the square of the ℓ2 norm

~x = min
~z∈IRn

‖~b− A~z‖2
2

Example For our example where we want to fit a line p1(x) = a0 + a1x to the
data points

(1, 2.2), (.8, 2.4), (0, 4.25)

we can calculate the residual vector and then use techniques from Calculus to
minimize ‖~r‖2

2
.

~r =




2.2
2.4
4.25


−



1 1
1 0.8
1 0




(
z1
z2

)
=




2.2− z1 − z2
2.4− z1 − 0.8z2

4.25− z1




To minimize ‖~r‖2
2
we take the first partials with respect to z1 and z2 and set

them equal to zero. We have

f = ‖~r‖2
2
= (2.2− z1 − z2)

2 + (2.4− z1 − .8z2)
2 + (4.25− z1)

2



and thus
∂f

∂z1
= −4.4+2z1+2z2− 4.8+2z1+1.6z2− 8.5+2z1 = 17.7+6z1+3.6z2 = 0

∂f

∂z2
= −4.4 + 2z1 + 2z2 − 3.84 + 1.6z1 + 1.28z2 = −8.24 + 3.6z1 + 3.28z2 = 0

So we have to solve the linear system
(

6 3.6
3.6 3.28

)(
z1
z2

)
=

(
−17.7
8.24

)

whose solution is (4.225,−2.125)T .

We now want to determine

1. Does the linear least squares problem always have a solution?

2. Does the linear least squares problem always have a unique solution?

3. How can we efficiently solve the linear least squares problem?



Theorem The linear least squares problem always has a solution. It
is unique if A has linearly independent columns. The solution of the
problem can be found by solving the normal equations

ATA~y = AT~b .

Before we prove this, recall that the matrix ATA is symmetric because

(ATA)T = AT (AT )T = ATA

and is positive semi-definite because

~xT (ATA)~x = (~xTAT )(A~x) = (A~x)T (A~x) = ~yT~y ≥ 0 where ~y = A~x

Now yTy is just the square of the Euclidean length of ~y so it is only zero if
~y = ~0. Can ~y ever be zero? Remember that y = A~x so if ~x ∈ N (A) then
~y = ~0. When can the rectangular matrix A have something in the null space
other than the zero vector? If we can take a linear combination of the columns of
A (with coefficients nonzero) and get zero, i.e., if the columns of A are linearly
dependent. Another way to say this is that if the columns of A are linearly
independent, then ATA is positive definite; otherwise it is positive semi-definite



(meaning that xTATAx ≥ 0). Notice in our theorem we have that the solution
is unique if A has linearly independent columns. Another equivalent statement
would be to require N (A) = 0.

Proof First we show that the problem always has a solution. Recall that R(A)
and N (AT ) are orthogonal complements in IRm. This tells us that we can write
any vector in IRm as the sum of a vector in R(A) and one in N (AT ). To this

end we write ~b = ~b1 +~b2 where ~b1 ∈ R(A) and ~b2 ∈ R(A)⊥ = N (AT ). Now
we have the residual is given by

~b− A~x = (~b1 +~b2)− A~x

Now ~b1 ∈ R(A) and so the equation A~x = ~b1 is always solvable which says the
residual is

~r = ~b2

When we take the ‖~r‖2 we see that it is ‖~b2‖2; we can never get rid of this term

unless ~b ∈ R(A) entirely. The problem is always solvable and is the vector ~x

such that A~x = ~b1 where ~b1 ∈ R(A).

When does A~x = ~b1 have a unique solution? It is unique when the columns of



A are linearly independent or equivalently N (A) = ~0.

Lastly we must show that the way to find the solution ~x is by solving the normal
equations; note that the normal equations are a square n× n system and when
A has linearly independent columns the coefficient matrix ATA is invertible with
rank n. If we knew what ~b1 was, then we could simply solve A~x = ~b1 but we
don’t know what the decomposition of ~b = ~b1+~b2 is, simply that it is guaranteed
to exist. To demonstrate that the ~x which minimizes ‖~b − A~x‖2 is found by

solving ATA~x = AT~b we first note that these normal equations can be written
as AT (~b − A~x) = ~0 which is just AT times the residual vector so we need to
show AT~r = 0 to prove the result. From what we have already done we know
that

AT (~b− A~x) = AT (~b1 +~b2 − A~x) = AT (~b2)

Recall that ~b2 ∈ R(A)⊥ = N (AT ) which means that AT~b2 = ~0 and we have
that

AT (~b− A~x) = ~0 =⇒ ATA~x = AT~b

The proof relies upon the fact that R(A) and N (AT ) are orthogonal comple-
ments and that this implies we can write any vector as the sum of a vector in



R(A) and its orthogonal complement.

Example We return to our previous example and now determine the line which
fits the data in the linear least squares sense; after we obtain the line we will
compute the ℓ2 norm of the residual.

We now know that the linear least squares problem has a solution and in our case
it is unique because A has linearly independent columns. All we have to do is
form the normal equations and solve as usual. The normal equations

(
1 1 1
1 0.8 0

)

1 1
1 0.8
1 0




(
a0
a1

)
=

(
1 1 1
1 0.8 0

)


2.2
2.4
4.25




are simplified as (
3.0 1.8
1.8 1.64

)(
a0
a1

)
=

(
8.85
4.12

)

which has the solution (4.225,−2.125) giving the line y(x) = 4.225− 2.125x. If



we calculate the residual vector we have


2.2− y(1)
2.4− y(0.8)
4.25− y(0)


 =




0.1
−0.125
0.025




which has an ℓ2 norm of 0.162019.

We said that we only talk about the inverse of a square matrix. However, one
can define a pseudo-inverse (or generalized inverse or Moore-Penrose inverse) of
a rectangular matrix. If A is an m×n matrix with linearly independent columns
then a pseudo-inverse (or sometimes called left inverse ofA ) isA† = (ATA)−1AT

which is the matrix in our solution to the normal equations

~x = (ATA)−1AT~b

It is called the pseudo-inverse of the rectangular matrix A because[
(ATA)−1AT

]
A = (ATA)−1(ATA) = I

Note that if A is square and invertible the pseudo-inverse reduces to A−1 because

(ATA)−1AT = A−1(AT )−1AT = A−1 .



We can also find a polynomial of higher degree which fits a set of data. The
following example illustrates this.

Example State the linear least squares problem to find the quadratic polynomial
which fits the following data in a linear least squares sense; determine if it has a
unique solution; calculate the solution and calculate the ℓ2 norm of the residual
vector.

(0, 0) (1, 1) (3, 2) (4, 5)

In this case we seek a polynomial of the form p(x) = a0+ a1x+ a2x
2. Our over

determined system is 


1 0 0
1 1 1
1 3 9
1 4 16






a0
a1
a2


 =




0
1
2
5






So the linear least squares problem is to find a vector ~x in R3 which minimizes
∥∥∥∥∥∥∥∥




0
1
2
5


− A



z1
z2
z3




∥∥∥∥∥∥∥∥

2

2

for all ~z ∈ R3 where A is the 4 × 3 matrix given above. We see that A has

linearly independent columns so its rank is 3 and thus the linear least squares
problem has a unique solution. The normal equations are



1 1 1 1
0 1 3 4
0 1 9 16







1 0 0
1 1 1
1 3 9
1 4 16






a0
a1
a2


 =



1 1 1 1
0 1 3 4
0 1 9 16







0
1
2
5




leading to the square system



4 8 26
8 26 92
26 92 338






a0
a1
a2


 =




8
27
99






Solving this we get a0 = 3/10, a1 = 7/30, a2 = 1/3. Our residual vector is

~r =




0− p(0)
1− p(1)
2− p(3)
5− p(4)


 =




0.3
0.6
0.6
0.3




and the square of its ℓ2 norm is

‖~r‖2
2
= .32 + .62 + .62 + .32 = 0.9

Now it seems as if we are done because we know when the solution is unique
and we have a method for determining the solution when it is unique. What else
do we need? Unfortunately, finding the normal equations works well for hand
calculations but is not the preferred method for computations. Why is this?

To form the normal equations we must compute ATA. This can cause problems
as the following result tells us.



Lemma Let A have linearly independent columns. Then

K2

2
(A) = K2(A

TA)

where
K(A) = ‖A‖ ‖A†‖

Thus when we form ATA we are squaring the condition number of the original
matrix. This is the major reason that solving the normal equations is not a pre-
ferred computational method. A more subtle problem is that the computed ATA
may not be positive definite even when A has linearly independent columns so
we can’t use Cholesky’s method. Of course, forming ATA is O(nm2) operations
before we solve the n× n system.

Can we use any of our previous results from linear algebra to help us solve the
linear least squares problem? We looked at three different decompositions: LU
and its variants, QR and the SVD. We use a variant of LU to solve the normal
equations. Can we use QR or the SVD of A? In fact, we can use both.



Recall that an m×n matrix with m > n and rank n has the QR decomposition

A = QR = Q

(
R1

0

)

where Q is anm×m orthogonal matrix, R is anm×n upper trapezoidal matrix,
R1 is an n × n upper triangular matrix and 0 represents an (m − n) × n zero
matrix.

Now to see how we can use the QR decomposition to solve the linear least
squares problem, we take QT~r where ~r = ~b− A~x to get

QT~r = QT~b−QTA~x = QT~b−QTQ

(
R1

0

)
~x .

Now Q is orthogonal so QTQ = I so if we let QT~b = (~c, ~d)T , we have

QT~r = QT~b−

(
R1

0

)
~x =

(
~c
~d

)
−

(
R1~x
0

)
=

(
c−R1~x

d

)

Now also recall that an orthogonal matrix preserves the ℓ2 length of any vector,
i.e., ‖Q~y‖2 = ‖~y‖2 for Q orthogonal. Thus we have

‖QT~r‖2 = ‖~r‖2



and hence
‖~r‖2

2
= ‖QT~r‖2

2
= ‖~c−R1~x‖

2

2
+ ‖~d‖2

2

So to minimize the residual we must find ~x which solves

R1~x = ~c

and thus the minimum value of the residual is ‖~r‖2
2
= ‖~d‖2

2
.

Alternately, one could use the QR decomposition of A to form its pseudoinverse
(you did this for homework) and arrive at the same linear system to solve but
this way demonstrates the residual.

In conclusion, once we have a QR decomposition of A with linearly in-
dependent columns then the solution to the linear least squares problem
is the solution to the upper triangular n × n system R1~x = ~c where ~c
is the first n entries of QT~b and the residual is the remaining entries of
QT~b.



Now we want to see how we can use the SVD to solve the linear least squares
problem. Recall that the SVD of an m× n matrix A is given by

A = UΣV T

where U is an m×m orthogonal matrix, V is an n× n orthogonal matrix and
Σ is an m × n diagonal matrix (i.e., Σij = 0 for all i 6= j). Note that this also
says that UTAV = Σ. For the linear least squares problem m > n so we write
Σ as

Σ =

(
Σ̃ 0
0 0

)

where Σ̃ is a square invertible n× n diagonal matrix. The following result gives
us the solution to the linear least squares problem.



Theorem Let A have the singular value decomposition A = UΣV T .
Then the vector ~x given by

~x = V

(
Σ̃−1 0
0 0

)
UT~b = V Σ̃−1~c1

minimizes ‖~b − A~z‖2, i.e., ~x is the solution of the linear least squares

problem. Here UT~b = (c1, c2)
T .

We compute our residual and use the fact that V V T = I to get

~r = ~b− A~x = ~b− AV V T~x

Now once again using the fact that an orthogonal matrix preserves the ℓ2 length
of a vector, we have

‖~r‖2
2
= ‖~b− AV V T~x‖2

2
= ‖UT (~b− AV V T~x)‖2

2

= ‖UT~b− (UTAV )V T~x)‖2
2
= ‖UT~b− ΣV T~x)‖2

2



Writing UT~b = (~c1,~c2)
T and V T~x = (~z1, ~z2)

T we have

‖~r‖2
2
=

∥∥∥∥
(
c1
c2

)
−

(
Σ̃ 0
0 0

)(
z1
z2

)∥∥∥∥
2

2

=

∥∥∥∥
(
c1 − Σ̃~z1

c2

)∥∥∥∥
2

2

So the residual is minimized when c1 − Σ̃~z1 = 0; note that ~z2 is arbitrary so we
set it to zero. We have

V T~x = ~z =

(
Σ̃−1c1
0

)
⇒ ~x = V

(
Σ̃−1c1
0

)
⇒ ~x = V

(
Σ̃−1 0
0 0

)
UT~b

because UT~b = (~c1,~c2)
T .

So once we have the SVD decomposition of A we form UT~b and set ~c1 to the
first n components; divide each component of c1 by the corresponding nonzero
singular value and multiply the resulting n-vector by V . Once again, we could
have used the SVD to form the pseudo-inverse of A.


