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SUMMARY 

This paper presents summaries of the works of several authors associated with the invention of the analysis 
technique now referred to as the finite element method. It stresses the notion of first development from which 
subsequent ideas evolved and gives what is believed to be an accurate record of the historical sequence of 
published papers in the international literature. 
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INTRODUCTION 

The purpose of this paper is to trace the development of the ideas which led to the method of 
analysis in which the field equations of mathematical physics are approximated over simple 
regions (triangles, quadrilaterals, tetrahedrons, etc.), and then assembled together so that equilib- 
rium o r  continuity is satisfied at the interconnecting nodal points of the domains. The technique 
thus realized is now referred to as the finite element method (FEM). It is natural to assume that if 
the size of the approximating domains becomes infinitely small, the solutions so obtained tending 
to this limit by successive mesh refinement converge towards the analytic solution. It is also noted 
that the subdivision should in addition reproduce the constant function space (e.g. strain, 
curvature, potential), since the representation of this state must be independent of mesh size (i.e. 
a larger mesh is obtained from a smaller one by simple magnification, but the function field 
remains constant). There are five groups of papers which may be considered in the development of 
the FEM and in one of these the name originated. They are the papers by Courant,' Argyris,' 
Turner et ~ l . , ~  C l o ~ g h ~ - ~  and Zienkiewicz.' The present paper examines the contribution of each 
of these five groups of papers and attempts to put them in their place in the history of the FEM. 

In this survey of the papers the motivation is to examine the contributions by the following 
criteria: 

(1) Is the discretization technique clearly explained so that the reader will be capable of 
implementing it to model any practical problem with complex geometry and loading? 
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Figure 1. Square hollow shaft 

Figure 2. Stress function, 4, with slopes 4.x, 4,y 

(2) Has the paper explained how the solution convergence may be achieved? 
( 3 )  Can the presentation in the paper be adapted routinely to automatic comput ti n? 

DISCUSSION OF THE ORIGINAL CONTRIBUTIONS 

This section contains detailed discussions and reviews of the various individual contributions of 
the above five groups of papers. 

Courant 

Courant’ developed the idea of the minimization of a functional using linear approximation 
over subregions, with the values being specified at  discrete points which in essence become the 
node points of a mesh of elements. In his paper, Courant shows the mesh subdivision with 1,2,3, 
5 and 9 approximating points used to solve the St Venant’s torsion of a square hollow box of 
(2 x 2) with wall thickness of 4, Figure 1. Courant notes that the St Venant’s torsion problem can 
be solved using a stress function 4 which has a zero value on the external boundary, and constant 
value on any closed internal boundary. The shear stresses (tsx, r Z g )  in the shaft are given as the 
first derivatives of the stress function 4, such that, see Figure 2, 

84 
- 4,y; tzy = - - = - 4,x a4 

aY dX 
t,, = - - 
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with d, = 0 on an external boundary and d, = constant on the internal boundary. 
The strain energy V for the shaft Figure 2 is given by (see Reference 8) 

+ z:,,) dx dy = - [I(+: + d,:,) dx dy 
1 1 

2G 2G 
V = - 

The torque T is found from the integral 

Integrating over the region gives the torque 

T = 2 j [4 dx dy = 2 x volume under d, surface 

The potential energy U of the system, for a twist per unit length 8, is given by 

U = - TO = - 2 ((4 dx dy 6 
J J  

The condition of stationary potential energy is expressed as 

That is, 

If 4 is described in terms of a number of discrete parameters ai ,  the stationary condition (7) leads 
to the set of linear equations (8); 

= o  a(v + U )  
aai 

In the Appendix of his paper, Courant applies the above theory to the solution for the stress 
function 4 for a (2 x 2) hollow square shaft, with an opening of (l* x 14) as shown in 
Figure 1. In Figure 1, the quadrilateral ABCD represents of the tube, and if this surface is 
assumed to be planar, only 4 = a, the value along AD, is unknown. Courant thus starts to explore 
the Rayleigh-Ritz method, first using the approximation 

(9) 4 = a(1 - x) 

for which, with a = 0-44045, 

From the theory of elasticity, it is known that the shear stresses are zero at the external corner C, 
and have a singularity at  the internal corner D. It is evident that the d, function should have zero 
slopes at C, and infinite slopes at D, and that the function in equation (9) does not satisfy these 
conditions. Courant then goes on with the Rayleigh-Ritz method with a second functional with 
two unknowns, 

(11) 4 = a(1 - x)[1 + a(x - 3/4)y] 
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(a) 0.344 (b) 0.352 (c) 0.353 (d) 0.353 
Figure 3. Cross-section subdivisions 

A careful examination of this functional shows that it is little better than that in equation (9). Not 
surprisingly, the value for the torsion siffness obtained by Courant is now 0.340, a slight 
improvement. It is then that Courant changes his approach and introduces the idea of linear 
approximation to 4 over triangular areas as shown in Figure 3 of the paper. These triangular 
areas are shown in Figures 3(a)-3(d). The values for the torsion stiffness are given in the Figure 3, 
and we see that there is a modest improvement. Courant gives the following explanation of the 
procedure: 

'These results were checked with those obtained by our generalized method of finite differences 
where arbitrary triangular nets are permitted. The diagrams are self-explanatory. Unknown are 
the net point values, ui(c = uo). In the net triangles our functions were chosen as linear, so that the 
variational problem results in linear equations in the ui. These results show in themselves, and by 
comparison, that the generalized methods of nets seems to have advantages. It was applied with 
similar success to the case of a square with four holes, and is obviously adaptable to any type of 
domain, much more so than the Rayleigh-Ritz procedure in which the construction of admissible 
functions would usually offer decisive obstacles.' 

Courant goes on: 

'In a separate publication it will be shown how the method can be extended also to problems of 
plates and to other problems involving higher derivatives.' 

Since this work appears never to have been published, we must presume that it was never 
completed. One might speculate that the solution of the Poisson equation, V z 4  = constant, for 
the stress function 4 in the torsion problem, is perhaps the most simple two-dimensional 
continuum problem, whereas the solution of the biharmonic equation in plate bending is a more 
formidable task. May be Courant found either its formulation or the solution of the large number 
of linear equations required beyond the computational power at that time. 

It is also worthwhile to examine the Courant meshes shown in Figures 3(a)-(d). As pointed out 
previously, the 4 surface has derivative singularities at the reentrant corner D, and also zero 
values at C. Thus along the diagonal DC there must be a marked variation from linearity. Also, 
along AB, the shear stress zZy varies nearly linearly, so that 4,x will also be linear, implying that 
there is a nearly parabolic variation on 4 along AB. Thus the set of triangles shown in Figure 3(a) 
is a poor choice as it really does not reflect any of these features. The meshes (b) and (c) are slightly 
better, but (d) gives no further advantages. We conclude that the meshes chosen show little 
understanding of the physics of the problem and certainly do not represent a study of conver- 
gence of the solution. 
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Since Courant has not given any of the mathematical details of his piecewise linear approxima- 
tion to the 4 surface all that we can say is that he indicated a procedure which could apparently 
be used in the minimization of the total potential energy of the torsion problem. 

In Reference 9, Felippa gives an interesting overview of the Courant paper with some insights 
into Courant’s life and with his observations that in the Courant paper, ‘Flares of brilliance are 
interwoven with expanses of flat material’. 

Argyris 

The series of papers under the title, ‘Energy Theorems and Structural Analysis’ by Argyris2 is 
a significant landmark in the history of structural mechanics. This paper develops the matrix 
theory of structures for the discrete elements and then goes on to show that this is only 
a particular case of the general continuum in which stresses and strains have been specified. This 
innovation leads to the concept of flexibility and stiffness: 

Flexibility: [ F ]  = [bIT[f][b] dV 

Stiffness: [ K ]  = jvol [ ~ ] ~ [ k ] [ a ]  dV 

LI 
in which [ f ]  and [k] are material constitutive equations and [b] and [ a ]  are stress-force and 
strain-displacement relationships, respectively. These equations have become standard formula- 
tions in structural mechanics. Argyris recognizes the concept of duality between equilibrium and 
compatibility. That is, if equilibrium between nodal forces {R} and member forces {S} is 
expressed by the linear transformation, 

{ S )  = C b l { R )  (14) 

it follows automatically that the corresponding displacements are related by the transposed 
expression, 

Alternatively if compatibility of deformations is expressed as 
(4  = CblTC4 (15) 

(4 = Cal{r> (16) 

it follows automatically that equilibrium is expressed by 

{ R }  = [ a l T { s >  

The four equations (14)-( 17) are given completely by Argyris2 in their infinitesimal forms, relating 
stresses and strains to loads and displacements. Argyris then applies the theory to the displace- 
ments of the rectangular panel (d, I) shown in Figure 4, for the case of nodal displacements which 
vary linearly along the edges of the element thus calculating its stiffness matrix. He thus develops 
the first element using serendipity interpolation functions. 

The paper determines the stiffness kjk of the panel shown in Figure 4, for unit displacements in 
the z- and s-directions. The stiffness is an 8 x 8 matrix. Argyris notes: ‘Assume that the displace- 
ments vary linearly between nodal points. This assumption offends against the equilibrium 
conditions but its effect upon stiffness is not pronounced as long as we keep the unit panels 
reasonably small.’ From this quote we see that Argyris anticipates convergence with mesh 
refinement, although his examples do not explicitly prove the point. 
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J, 
63 3 

(b) ( C )  

Figure 4. Rectangular plane stress panel: (a) nodal displacements; (b) unit displacements V,; (c) unit displacement U, 

Consider the state of strain and stress arising from a unit displacement, 

v 3  = 1 (18) 

Following our assumption, the internal displacements are given, using (, i for the s, z-co- 
ordinates, by 

uj =o;  w3 = $ ( I  1 - S )  
Note: From this, when < = d ,  w 3  = 0, and when < = 0 [ = 1; then w 3  = u 3 ,  so that Argyris has 
developed the concept of linear displacement interpolation along the element boundaries (i.e. it is 
a displacement compatible element). 

The strains q, and stresses oj at any point, using the notation of the Argyris paper, are given by 

E Z Z 3  =-=-( I  aw 1 -$); Ozz3 =$(I  -:) 
a i  1 

c,,3 = 0; oss3 = VE’ (1 - $) 
1 

where E’ = E/(1 - v’); E ,  v and G are Young’s modulus, Poisson’s ratio and shear modulus, 
respectively. 
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Argyris then makes use of the developed matrix theory using the following expression for the 
stiffness coefficients: 

in which t is the thickness of the panel. Hence for example 

The total stiffness matrix for shear and direct strain is written as 

where 

with 

CKSI = G t [  Ksll Ks12 ] 
Ks21 K s 2 2  

- 1  2 
- 1  - 2  1 2 

d 1  
CKs221 =- 6 l l - 2  

and 

1 - 1  1 - 2  2 1  

Argyris writes: 'Naturally the grid does not have to be restricted to this definition and we can always 
choose a finer one i f  the stifeners are widely spaced so that the assumption of linear variation 
between adjacent nodal points can represent adequately the displacement pattern.' 
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Thus Argyris has developed the rectangular panel stiffness matrix in the state of plane stress 
from the point of view of element interpolation functions in terms of nodal displacements. 

Turner 

This pioneering paper by Turner et aL3 starts with a discussion of the truss member and derives 
the stiffness matrix in global co-ordinates: 

A 2  - A 2  

I p  - I p  p2 - p 2  
(30) 

- A 2  ,I2 - 1:: 
- I p  I p  - p 2  p2 

[ K ]  =- 

where 1, p are member direction cosines, L is the member length and A its area of cross-section. 
After some discussion on rectangular plate elements it then turns to triangular elements and 

writes: ‘The triangle is not only simpler to handle than the rectangle but later it will be used as the 
basic ‘building block’ for calculating stifness matrices for plates of arbitrary shape’. 

The triangular element is shown in Figures 5(a) and 5(b). It is interesting to note that, although 
the transformation in equation (30) is used for the bar element from its local axis to global axes, 
no attempt is made to connect 5(a) and 5(b) in this way. The paper starts by assuming constant 
strains 

1 au 
E ax E,  = a = - (a, - vcy) = - 

y = c = - ( z  1 )=-+-  au av 
G xy  a y  ax XY 

Integrating we find the displacements to be 

u = ax + A y  + B 

0 = by  + ( c  - A ) x  + c 
where (A, B, C) are constants of integration which define rigid body translation and rotation of 
the triangle. Hence, the triangle can displace as a rigid body in its own plane and undergo uniform 

Y y l  

Figure 5. Triangular element, co-ordinate reference frames 
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straining according to equations (31). Displacements at the nodes can be determined by inserting 
applicable node co-ordinates into equations (32). In this way six equations occur which are just 
sufficient for uniquely determining the six constants in equations (32). 

Thus let ul ,  u 2 ,  u3 be the x-displacements of nodes 1,2,3 respectively; then from equation (32a), 

X I  Y l  1 
x2 Y2 1 
x3 Y3 1 

Solving these equations, we get 

Y2 - Y3 Y3 - Y1 

x3 - x2 x1 -x3 
x2y3 - x3Y2 x3YI - xlY3 

. I  

and for 21 

so that 

x2 y' - - y 2 ] {  x1 Etj 
X l Y Z  - x2y1 

[{ Ei} + E:} 
Hence the three straining constants are calculated to be 

Now, using the equations (31), the stresses are expressed as 

r 
bl 

Vbl 
1 - v  
2 

E l  
1 -v22A 

L 

a1 
1 - v  
2 a2 

b2 

vb2 
1 - v  
2 a3 

a2 

1 - v  
2 - bl 

(33) 

(34) 

(36) 

(37) 

b3 

Vb3 
1 - v  
- 62 2 

where bl = y2 - y3, a, = x3 - x2, etc., in cyclic permutation. Thus for example comparing our 
equation (38) with equation (18a) of Turner et al. 

for the triangle shown in Figure 5(a). 
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Qx - 
c 

c 

c 

c 

Q X  

Figure 6. Stress components on sides of triangle 

Writing equation (38) in matrix symbolic form 

To obtain the nodal force-displacement relationship reference is made to the statics argument 
used by Turner et al. 

From Figure 6 the statically equivalent nodal forces can be calculated by first principles: 

That is, 

Similarly 

Y3 - Y1 Y2 - Y l  
ayt - ~ Z,yt + 2 7 , y t  x2 - ayt + ___ F , ,  = - 2 x3 - x 1  

2 2 

x3 - x2 Y2 - Y3 a1 b l  ~ , ~ t  = - 0,r + - ~ , ~ t  apt +- FYI = ~ 

2 2 2 2 (43) 

If we use equation (17) of Argyris, noting that the integral of a constant over the area is simply the 
area of the triangle, the expressions in (41), (43) come directly from the transpose of the first 
column in equation (37). Thus we see that either from the statics argument presented in Figure 6, 
or from the integral of the transposed relationship in equation (37), the nodal forces are obtained 
as 
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Figure 7. Nodes and supports for clamped rectangular plate: (a) solution (3); (b) solution (4); (c) solution (5); (d) solution (6) 

Table I 

Solution U1 u2 u3 u4 us 01 v 3  v4 
No. Method Figure (multiply all values by 

1 Relaxation 13 2.703 2607 2.703 1.391 1.248 0.686 - 0685 0.562 
2 Simple theory 13 2.721 2.721 2.721 1.460 1.360 0.635 - 0,635 

4 Plate K-matrix 13(b) 2.692 2.578 2.692 1.355 1.199 0.680 - 0680 0.568 
3 Plate K-matrix 13(a) 2.595 2.59 5 0.740 - 0'740 

5 Plate K-matrix 13(c) 2.718 2.697 0.686 - 0.717 
6 Plate K-matrix 13(d) 2-714 2.712 0.688 - 0.691 

Noting that in Figure 5(a), x1 = y l  = y, = 0, equation 20(a) of the Turner paper is obtained from 
equation (44). Turner writes equation (44) as 

(45) 

CK1= [TICS1 (46) 

{ F )  = C T l b I  = CTlCSI{~) 
The element stiffness matrix is then given as 

which is equivalent to equation (13), developed independently by Argyris. The Turner paper uses 
the above element in the study of the deflections of a plate showing that for an irregular mesh, 
composed of quadrilaterals, each made of four triangles, the errors tend to disappear as the mesh 
is refined. Thus the Turner paper addresses the question of convergence. The Turner meshes are 
shown in Figure 7 and the results in Table I. 

Clough 

In his most interesting paper4 Professor Clough outlines the research programme undertaken 
at  the Boeing Company in 1952-1953 for the calculation of flexibility coefficients for low aspect 
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ratio wing structures for dynamic analysis. Clough gives full credit to Jon Turner for the 
invention of the triangular plane stress element in a state of constant stress which has been 
outlined in this paper. Clough’s own contribution at Berkeley is significant because of his 
extension of Turner’s work from 1957 onwards to the calculation of stresses and the verification 
that for known geometries and loading these stresses converged to the corresponding analytic 
solution. Clough outlines how he first invented the name finite element method in References 
5 and 6 because he wished to show the distinction between the continuum analysis and the matrix 
methods of structural analysis. Thus the choice of name is reserved for Professor Clough. 

Zienkiewicz and Cheung 

The development of the non-structural applications by means of minimization of the total 
potential energy of a system is developed systematically, for the first time in the paper by 
Zienkiewicz and Cheung,’ in which heat transfer and St Venant’s torsion of prismatic shafts are 
analysed. In this paper, the approximation to the functional in terms of the nodal values of the 
triangular domain, into which the region is subdivided, is set up. Following the paper by C l ~ u g h , ~  
the approximation is now referred to as the finite element method. Using the notation developed 
by Zienkiewicz, the approximation to the function 4 (see equation (2)) is given for one triangle by 
the expression 

4 = “I’ @I 
in which {$}’ = [41, 42r 43], are the nodal values and 

(47) 

In this equation, (al ,  a2,  a 3 )  represent the rigid body motion of the Turner paper (A ,  B, C) and 
disappear when first partial derivatives with respect to x and y are taken. From equation (47), 
derivatives with respect to x are written as 

and hence 

Similarly, 

Taking derivatives with respect to the c$ values which are now to be chosen to make the 
functional a minimum, 
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From equation (51), 

If follows that for the whole domain, integration of each triangle and minimization leads to 

The summation takes place over all triangles. Because each triangle contributes to only three 
nodes the summation in equation (56) evidently leads to sparse equations, which, as noted by 
Zienkiewicz, can be highly banded. Thus the notion of the topology of the system has also now 
been introduced. The concept of continuity of the function along common element boundaries is 
also discussed. 

CONCLUSION 

A careful examination of the paper by Courant’ shows that he has apparently used a finite 
element type of procedure in a potential energy minimization of a functional for the torsion stress 
function using grid point values as the unknown parameters. We use the word ‘apparently’ with 
caution because no details of the calculations were given. There is no indication that the 
calculation of the mesh integrals could be made in a repetitive fashion using the mesh topology. 
From an examination of the meshes used in Figure 3, there appears to have been little thought 
given to the choice of nodal points so as to achieve a refinement of the approximation to the 
4 surface. Because of this lack of any guidance as to how the procedures were carried out we find 
it difficult to attribute the origin of the FEM to Courant. 

The Argyris paper’ is in a different category. Here the numerical techniques necessary for the 
application of the principles of virtual displacements and forces are set out in consistent matrix 
form. These matrix methods can become the basis for nearly all stress analysis applications of the 
FEM. Argyris successfully demonstrates how the method may be applied to a rectangular planar 
elasticity element for which inter-element displacement compatibility is assured by the choice of 
functions linear along element edges. The publication, ‘Energy Theorems and Structural Analysis’ 
is a significant work in the development of structural mechanics. However Argyris does not 
undertake convergence studies on his rectangular element, although the notion is anticipated in 
his paper when he writes: 

‘Naturally the grid does not have to be restricted to this definition and we can always choose 
a finer one if the stiffeners are widely spaced so that the assumption of linear variation between 
adjacent nodal points can represent adequately the displacement pattern.’ 

Argyris also gave lecture courses on his methods in the early 1950s. 
The triangular element stiffness matrix was developed independently by Turner et aL3 An 
important feature of this paper is the study of the displacement convergence characteristics of 
planar elements, comparing the new approach with simple theory and the relaxation method, for 
the deflections of a cantilever beam. This pioneering paper was published in 1956. Clough in 
Reference 4 acknowledges the Turner contribution when he writes: 
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‘Also it should be recognized that the principal credit for conceiving the procedure should go to 
M. J. Turner, who not only led the developmental effort for the two critical years of 1952-1953, 
but who also provided the inspiration to use assumed strains to define the stiffness of triangular 
plane stress elements.’ 

Clough’s contribution was to continue convergence studies on stress components and to popular- 
ize the ideas by giving the name finite element method. Clough also gave lectures on the method 
in the spring of 1958. 

The function minimization techniques, referred to so obliquely by Courant, were finally 
clarified by Zienkiewicz in 1965 and opened the way to the analysis of field problems by the FEM. 
The first text book popularizing FEM” was published by Zienkiewicz in 1957 and contained 
some 270 pages. The current edition of this book is in two volumes and is 1400 pages long.’ ’ 
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