
Numerical Solution of Ordinary Differential Equations (ODEs)

• It is often the case when modeling some phenomena that we know something
about the rate of change of the quantity of interest, that is, its derivative.

• For example, in Calculus I you probably looked at exponential growth and
decay laws. One application of this is to model the decay of a sample of
a radioactive isotope by saying that the rate of decay is proportional to
the amount present at any time. For example, if Q(t) denotes the amount
present at time t then

dQ

dt
= kQ

• Recall that the general solution of this problem is Q(t) = Cekt for some
constant C since Q′(t) = Ckekt = CQ(t)

• In order to uniquely determine the solution then we must be given an initial
condition such as Q(0) = Q0 which gives us the unique solution Q(t) =
Q0e

kt.



• We call the following ODE a first order initial value problem.

Initial Value Problem (IVP)

dy

dt
= f(t, y) t0 < t ≤ T

y(t0) = y0

Here f(t, y) is a given function of t, y and y0 is the given initial data.

• We will also use the shorthand notation y′(t) = f(t, y).

• We call this IVP a time dependent problem and our goal will be to

– determine an accurate solution at some time T

– and/or determine the time evolution of the solution.

• The information we have to determine the solution is the



– the initial value of y

– the slope of y given by f(t, y), i.e., how y changes with time.

• For example, if
dy

dt
= 1 and y(0) = 2 then this says that the slope is a

constant value one and y is initially two so we know that y(t) = t + 2.

• Our model IVP is a first order ODE, that is, the highest derivative in the
equation is first order.

• There are also higher order ODES, i.e., with derivatives greater than one.
Later, we will look at second order boundary value problems (BVPs) which
are defined over some interval where a boundary condition is given at each
endpoint of the interval.

• Systems of DEs often occur in practice too.



Uniqueness of the Solution of an Initial Value Problem

• Before we approximate the solution of a differential equation in general, we
should ask ourselves if it has a unique solution.

• For example, if you were asked to write a code to approximate the solution
of y′(t) = sin t you would not be able to. The reason is that this problem
does not have a unique solution but rather its solution is given by y(t) =
− cos t + C for some arbitrary constant C. The problem is, of course, that
we have not provided an initial condition.

• We might ask ourselves, however, if every IVP has a solution; that is for any
f(t, y).

• The answer to this is no. We have to require a certain amount of smoothness
of the function f(t, y).

• Standard texts on ODEs discuss conditions which guarantee existence and
uniqueness of a solution to our IVP.



• As an example, consider the IVP

y′(t) =
√

y, y(0) = 0

This problem does not have a unique solution. In fact both

y = 0 and y =
1

4
t2

are solutions.

• Recall that to verify a given function is a solution to the IVP we simply show
that it satisfies the DE and the initial condition. In our example y = 1

4
t2 is

a solution to our IVP since

y′ =
1

2
t =

√
1

4
t2 =

√
y

Clearly it satisfies the initial condition y(0) = 0

• In the sequel, we will assume that our IVP has a solution which is unique.



Approximating Derivatives by Difference Quotients

• One standard approach is approximating the solution of a DE is to replace
the derivatives with difference quotients.

• You have already used difference quotients in calculus. For example, you
have approximated the derivative of y with respect to t by the change in
y over the change in t. This is a difference quotient because you have the
difference in y divided by a difference in t; i.e.,

y(t + ∆t) − y(t)

∆t

• An easy way to derive difference quotients is through the use of Taylor’s
series.

• Recall that a Taylor’s series for y(t) in the neighborhood of t is given by

y(t + ∆t) = y(t) +
∆t

1!

dy

dt
+

∆t2

2!

d2y

dt2
+

∆t3

3!

d3y

dt3
+ · · · +

∆tn

n!

dny

dtn
+ · · ·



• We assume this expansion is valid near t; i.e., when ∆t is small. Note that
we expect the terms to decrease in size as n increases because each term is
a factor of ∆t to a higher power.

• If we keep two terms on the right hand side of this expansion then we have

y(t + ∆t) ≈ y(t) +
∆t

1!

dy

dt

which implies

y′(t) ≈ y(t + ∆t) − y(t)

∆t

• This is called a forward difference because we are sitting at the point t and
differencing ahead to t + ∆t.

• If we consider the Taylor series

y(t−∆t) = y(t)− ∆t

1!

dy

dt
+

∆t2

2!

d2y

dt2
− ∆t3

3!

d3y

dt3
+ · · ·+ (−1)n

∆tn

n!

dny

dtn
+ · · ·

then keeping the first two terms on the right gives

y(t − ∆t) ≈ y(t) − ∆t

1!

dy

dt
⇒ y′(t) ≈ y(t) − y(t − ∆t)

∆t



This is called a backward difference because we are sitting at the point t and
differencing backwards in time to t − ∆t.

• We can also obtain another approximation to y′(t) by keeping the first three
terms on the right side of each expansion and then combining them. We
have the two approximations

y(t + ∆t) ≈ y(t) +
∆t

1!

dy

dt
+

∆t2

2!

d2y

dt2

y(t − ∆t) ≈ y(t) − ∆t

1!

dy

dt
+

∆t2

2!

d2y

dt2

and subtracting gives

y(t + ∆t) − y(t − ∆t) ≈ 2
∆t

1!

dy

dt
⇒ dy

dt
≈ y(t + ∆t) − y(t − ∆t)

2∆t

This is called a centered difference approximation to y′(t).

• We can also obtain approximations to higher order derivatives. For example,
to approximate y′′(t) we add the expansions (so that the terms for y′(t)
disappear) for y(t + ∆t) and y(t − ∆t) to get



y(t + ∆t) + y(t − ∆t) = 2y(t) + ∆t2y′′(t) + O(∆t4)

so that

y′′(t) ≈ y(t + ∆t) − 2y(t) + y(t − ∆t)

∆t2

This is called a second centered difference. We will return to this difference
quotient when we look at a second order equation.

• How do we know which approximation to y′(t) to use?

• All are useful in particular problems so the type of the problem is important.
For example, we will see there is a difference in choice of differences for an
IVP and a BVP.

• Another way to choose between two difference quotients which work for your
particular problem is the accuracy of the approximation.



Errors in difference approximations

• We would expect the centered difference to be more accurate than either
the forward or backward difference. Why?

• When we obtained our forward or backward difference we kept two terms
on the right hand side. The next term (which dominates the others on the
right) is order (∆t)2. Let’s keep this term and look again at the derivation

y(t + ∆t) ≈ y(t) +
∆t

1!

dy

dt
+

∆t2

2!

d2y

dt2

which implies

y′(t) ≈ y(t + ∆t) − y(t)

∆t
− ∆t

2

d2y

dt2

• So we say that the error is order ∆t and denote as O(∆t) which means a
constant times ∆t.

• Clearly a backward difference has the same accuracy, i.e., O(∆t).

• Let’s look at the centered difference. Recall that we kept three terms on
the right side to derive the difference approximation. To derive the error we



keep the next term.

y(t + ∆t) ≈ y(t) +
∆t

1!

dy

dt
+

∆t2

2!

d2y

dt2
+

∆t3

3!

d3y

dt3

y(t − ∆t) ≈ y(t) − ∆t

1!

dy

dt
+

∆t2

2!

d2y

dt2
− ∆t3

3!

d3y

dt3

Recall that we subtracted these two expansions to get our approximation so
we have

y(t + ∆t) − y(t − ∆t) ≈ 2∆t
dy

dt
+ 2

∆t3

3!

d3y

dt3

which implies

y′(t) ≈ y(t + ∆t) − y(t − ∆t)

2∆t
− ∆t2

6

d3y

dt3

and thus

y′(t) =
y(t + ∆t) − y(t − ∆t)

2∆t
+ O(∆t)2



• We see that this approximation to y′(t) has a smaller error than either the
forward or backward difference.

• These three differences are the most commonly used for approximations to
the first derivative. We summarize them here.



Forward Difference Approximation to y′ at t

y′(t) ≈ y(t + ∆t) − y(t)

∆t

Backward Difference Approximation to y′ at t

y′(t) ≈ y(t) − y(t − ∆t)

∆t

Centered Difference Approximation to y′ at t

y′(t) ≈ y(t + ∆t) − y(t − ∆t)

2∆t

• We call the forward and backward approximations first order and the centered
difference a second order approximation. We will make this more precise
shortly.



Approximating the Solution to our IVP

• Recall that we are given the value of y at some initial t; for simplicity we
take t = 0 and the value of y at zero to be y0. We want to find y at later
times. This was represented by our general IVP

dy

dt
= f(y, t) y(0) = y0

where f is a given function of t and y.

• The strategy to approximating an IVP is to use the initial value y0 at t = 0
and the slope (i.e., f) to predict the solution at time t = ∆t. Then to use
the solution at t = ∆t and the slope (or perhaps both the solution at t = ∆t

and t = 0) to predict the solution at t = 2∆t, etc.

• If we do everything correctly, then we expect that as ∆t → 0 our discrete
solution at ∆t, 2∆t, 3∆t, · · · will approach the actual solution of the IVP at
these times.

• This strategy can be generalized to spatial approximations too.



• So the question is, how do we use the solution at t = 0 and the slope to get
an approximate solution at t = ∆t?

• The way we obtain an approximate solution clearly has to be related to the
DE.

• In the DE we replace the derivative with a difference quotient and evaluate
the right hand side at the appropriate time level.

• Recall that the forward difference operator is an approximation to y′(t) using
the time values at t and t + ∆t. Let’s substitute this into our DE

y(t + ∆t) − y(t)

∆t
≈ f(y(t), t)

This equation could be solved for y(t + ∆t) in terms of y at t; i.e.,

y(t + ∆t) ≈ y(t) + ∆tf(y(t), t)

Now everything on the right hand side is known when t = 0 so we could get
an approximation to y(∆t).



• Compare this with the backward difference operator which is an approxima-
tion to y′(t) using the time values at t and t−∆t. Let’s substitute this into
our DE

y(t) − y(t − ∆t)

∆t
≈ f(y(t), t)

In this case, if t = 0 we don’t know y(−∆t) so we can’t solve. If we take
t = ∆t and solve for y(t) = y(∆t) then this is in terms of y(0) which we
know but also in terms of f(y(∆t), ∆t) which is unknown. So a backward
difference operator doesn’t work; intuitively, this is the case because we are
moving forward in time.

• Notation We will use Y to denote our discrete (approximate) solution.
We will add a superscript to denote the time it corresponds to. Consequently

Y n ≈ y(tn)

where y(t) is the exact solution to our IVP. We take Y 0 = y0 the initial
value at t = 0.

• Then our difference approximation to our IVP becomes



Forward Euler Method for IVP

y′(t) = f(y(t), t), y(0) = y0

Y n+1 = Y n + ∆tf(Y (tn), tn) n = 0, 1, 2, . . .

Y 0 = y0

• The name Euler is often used for these first order difference equations.

• The way to remember that it is a forward difference scheme is that we are
sitting at the time t and differencing forward in time to t + ∆t whereas in
a backward Euler we are sitting at the point t and differencing backward in
time to t = t − ∆t.



t − ∆t t t + ∆t

Example

Consider the IVP

dy

dt
= y + t y(0) = 2

whose exact solution is y = 3et − t− 1 since y′ = 3et − 1 = (3et − t− 1) + t =
y(t) + t and y(0) = 3e0 − 1 = 2. Approximate the solution at t = 1 using a
Forward Euler approximation with ∆t = .2 and calculate the error.

Note that to get the approximate solution at t = 1 we need to get the solution
at t = .2, .4, .6, .8 first. In our example f(y, t) = t + y. We will denote Y 1 as
our approximation to y(.2), Y 2 as our approximation to y(.4), etc.

y(.2) ≈ Y 1 = Y 0 + ∆t(0 + Y 0) =⇒ Y 1 = 2 + .2(2) = 2.4

y(.4) ≈ Y 2 = Y 1 + ∆t(.2 + Y 1) =⇒ Y 2 = 2.4 + .2(.2 + 2.4) = 2.922.88

y(.6) ≈ Y 3 = Y 2 + ∆t(.4 + Y 2) =⇒ Y 3 = 3.584



y(0.8) ≈ Y 4 = Y 3 + ∆t(.6 + Y 3) =⇒ Y 4 = 4.4208

y(1.0) ≈ Y 5 = Y 4 + ∆t(.8 + Y 4) =⇒ Y 5 = 5.46496

The exact solution at t = 1 is e1 = 6.15485 so our error is 0.68989 which is quite
large.

If we repeat the calculation reducing ∆t then we get the following results

∆t n, Y n error
the number of steps

0.2 5 5.46496 0.689885
0.1 10 5.78123 0.373618
0.05 20 5.95989 0.194952
0.025 40 6.05519 0.099654
0.0125 80 6.10445 0.0503907



• So as ∆t becomes smaller, our error becomes smaller.

• One thing to note about this example (which is true in general) is that as
time increases our error grows. For example, in the above calculations the
error at t = .6 is much smaller than the error at t = 1.

• This is because we are actually make two types of errors.

• We are making one type of error because we are replacing a derivative with
a difference quotient. We know that this error is O(∆t).

• However, after calculating Y 1 we are making another error. When we calcu-
late Y 1 we are using the exact value of Y 0 = y0 whereas when we calculate
Y 2 we are using our approximate value for y(∆t) given by Y 1. This is
repeated in subsequent steps and our error grows.

• We will return to looking at this error after we implement the method and
consider both a local error and a global error.



Implementing Forward Euler

• The implementation should be clear from our previous example.

• We need to know
– y0

– the final time
– the number of steps (from which we can determine ∆t)
– a function routine for determining the right hand side f(y, t)

• As far as storage goes we could either store our approximation at every time
or we could overwrite.

• Typically we will overwrite and write our solution to a file for graphing.

• So basically we just have to loop over the number of steps and implement
our algorithm; in our loop we have

t = t + deltat

ynew = yold + deltat * rhs(yold, t)



where rhs is our function for the right hand side and t has been initially set
to zero and deltat computed from the final time and the number of steps.

• We would then write off the time and ynew and to get ready for the next
step we set yold = ynew since we are overwriting.

• For classwork you will write a function to get ynew from the values yold,
t, dt and test it on our example we did where the rhs was y+t. In addition
to calculating an error, you can plot the exact solution and its approximation
too.



Local and Global Errors for Forward Euler

Local truncation error

• The local truncation error is the error that we would make in one step if we
start with the exact solution.

• Lets take Y n = y(tn) (i.e., the exact solution at time tn) and perform one
step of our method. We take our approximation for Y n+1 and combine it
with our Taylor’s Series. We have our difference equation with Y n = y(tn)

Y n+1 = y(tn) + ∆tf(t, y(tn)) = y(tn) + ∆ty′(tn)

and the Taylor series

y(tn + ∆t) = y(tn) + ∆ty′(tn) +
∆t2

2
y′′(ξn) tn < ξn < tn + ∆t

where we have used the remainder form of the Taylor’s series. Subtracting



gives the local truncation error

y(tn + ∆t) − Y n+1 =
∆t2

2
y′′(ξn) = O(∆t2)

• This error is due to the fact that we are approximating the derivative by a
difference quotient.

• A method is called order k if the local truncation error is O(∆tk+1).

• Consequently Euler’s method for our IVP is called first order.

Global error

• Separate from the local truncation error is the global error which is the actual
difference in our exact solution at tn and our approximate solution at this
time.

• Of course this is the error we are most interested in.

• This error is found by accumulating the errors that we make at each of the
steps before tn.

• It turns out that under certain conditions we can control the local truncation
error (by adjusting ∆t) to get a desired global error.



• In fact, under certain conditions one can prove that

global error at tn ≤
n∑

k=1

LTEk

where LTEk represents the local truncation error at step k.

• So in our case the global error at time tn is bounded by
n∑

k=1

Ci

∆t2

2

where we let Ci = |y′′(ξi)|. Now if C is the maximum of Ci then
n∑

k=1

Ci

∆t2

2
≤ 1

2

[
C∆t2+C∆t2+· · ·+C∆t2

]
=

C

2
(n∆t)∆t =

C

2
tn∆t = C̃∆t

Thus we say our global error is O(∆t) since C
2
tn is a constant.

• The condition that guarantees that we can control the global error by con-
trolling the local truncation error is tied to the concept of stability which
basically means that small changes in the initial data produce small changes
in the IVP solution. We will assume we can control the global error by
controlling the LTE.



How can we control the local truncation error to guarantee a global error less
than some tolerance?

• Suppose we want the global error at T = n∆t to be less than tol.

• Assume we have a bound M for the second derivative of our solution, i.e.,

|y′′(t)| ≤ M 0 ≤ t ≤ n∆t = T

and our local truncation error at each step satisfies

|LTEk| ≤ M
∆t2

2
• If we can bound the global error at T by the accumulated LTE then

|y(T ) − Y n| ≤
n∑

k=1

M

2
∆t2 =

M

2
T∆t

• If we want the global error at time T to be less than some tolerance, i.e.,

|y(T ) − Y n| ≤ tol

then we can determine the number of steps (and thus ∆t) which guarantees
this.



• To make the global error less than our tolerance we simply require

M

2
T∆t ≤ tol

then we are guaranteed that

|y(tn) − Y n| ≤ tol

• Consequently, we choose the number of steps n (and thus ∆t) to be the
smallest integer that satisfies

M

2

T 2

n
≤ tol ,

where we have written ∆t = T
n
.

• Consequently

n =
MT 2

2 · tol
• Of course the only way we can use this is if we have a bound on y′′.



• Example

Consider the IVP

dy

dt
= sin t y(0) = −1

where we want to approximate the solution at T = 2 with an error tolerance
of 0.01.

Now y′ = sin t so y′′ = cos t and thus |y′′(t)| ≤ 1 for all t. Using the
expression

MT 2

2n
≤ tol

yields

1 · 22

2n
≤ 0.01 =⇒ 2

n
≤ 0.01 =⇒ n ≥ 2

0.01
= 200

Below is a summary of the errors at t = 2 using a range of steps. Note
that our estimate does NOT guarantee that this is the smallest number of
steps you can take to get the desired error. Rather it says that if you choose
this number of steps, you are guaranteed that the error will be less than the



prescribed tolerance. Note that in our case choosing n = 100 actually has
the global error less than our tolerance.
n error

25 0.037127
50 0.01837
100 0.00914
150 0.006083
200 0.00456

• How can you incorporate this estimate into a code?

• You need to input your final time, your tolerance and a bound for y′′(t).
Then you can use the intrinsic function

ceiling(a)

which gives the smallest integer ≥ a.

• For example

n = ceiling ( M * T * T / ( two * tol ) )



Higher Order Taylor Series Methods

• We can derive more accurate methods based on the Taylor Series by keeping
more terms.

• For example, we used the Taylor Series expansion

y(t + ∆t) = y(t) + y′(t)∆t + O(∆t2)

to derive Euler’s method.

• If we keep another term in the series we have

y(t + ∆t) = y(t) + y′(t)∆t + y′′(t)
∆t2

2
+ O(∆t3)

• In order to solve this for y′(t) we need an expression for y′′(t).

• In some cases this is easy to obtain since

y′(t) = f(t, y) =⇒ y′′(t) =
d

dt
(f(t, y) =

df

dt

dt

dt
+

df

dy

dy

dt
= ft + fyy

′

where we have used the chain rule.



• For example, if dy

dt
= ty then

y′′(t) = 1 ∗ y + y′t = y + t2y = (1 + t2)y

• Thus we would have

y(t + ∆t) = y(t) + y′(t)∆t +
(
ft + fyy

′)∆t2

2
+ O(∆t3)

• In our example this would be

y(t + ∆t) = y(t) + y′(t)∆t +
(
(1 + t2)y(t)

)∆t2

2
+ O(∆t3)

and we would solve for y′(t).

• Methods determined in this way are not too practical because they rely on
us being able obtain y′′(t) and higher derivatives. For example, the function
f(y, t) might not even possess higher order derivatives.

• For this reason, higher order Taylor series are not practical.

• In the next two lectures we will look at other ways to derive higher order
schemes.



Using Euler’s Method to Solve a System of ODEs

• Sometimes we have a system of ODEs. For example,

u′(t) = f(t, u, v) v′(t) = g(t, u, v)

u(0) = u0 v(0) = v0

• Systems of first order ODEs can arise by taking a higher order equation and
reducing it to a system of first order ODEs.

• For example, if we have the equation

y′′ + y′ − 2y = f

Then we can let u = y′ and substituting gives u′ + u − 2y = f so that we
have two coupled first order equations for u and y.

• Note that the equations are coupled through the right hand sides and so we
can not solve them separately.

• The application of Euler’s Method to this system is straightforward. Given



U 0 = u0, V 0 = v0, we have

Un+1 = Un + ∆tf(tn, Un, V n)

V n+1 = V n + ∆tg(tn, Un, V n)

Example

u′ = v v′ = −2

t
v

u(1) = 10 v(1) = 1

Then to estimate the solution at 1 + ∆t = 1.1 we have

u(1.1) ≈ U 1 = U 0+∆tf(1, U 0, V 0) = U 1 = U 0+∆tV 0 = 10+.1(1) = 10.1

v(1.1) ≈ V 1 = V 0+∆tg(1, U 0, V 0) = V 1 = V 0+∆t
−2

1
V 0 = 1+.1(−2)·1 = 0.8

• Your first homework in this part is to implement Euler’s method for a system
of ODEs which arise from modeling a nonlinear pendulum.


