
Chapter 1

Triangular Factorization

This chapter deals with the factorization of arbitrary matrices into products of
triangular matrices. Since the solution of a linear n × n system can be easily
obtained once the matrix is factored into the product of triangular matrices, we
will concentrate on the factorization of square matrices. Specifically, we will show
that an arbitrary n × n matrix A has the factorization PA = LU where P is an
n× n permutation matrix, L is an n× n unit lower triangular matrix, and U is an
n×n upper triangular matrix. In connection with this factorization we will discuss
pivoting, i.e., row interchange, strategies. We will also explore circumstances for
which A may be factored in the forms A = LU or A = LLT . Our results for a square
system will be given for a matrix with real elements but can easily be generalized
for complex matrices.

The corresponding results for a general m × n matrix will be accumulated in
Section 1.4. In the general case an arbitrary m× n matrix A has the factorization
PA = LU where P is an m × m permutation matrix, L is an m × m unit lower
triangular matrix, and U is an m× n matrix having row echelon structure.

1.1 Permutation matrices and Gauss transformations

We begin by defining permutation matrices and examining the effect of premulti-
plying or postmultiplying a given matrix by such matrices. We then define Gauss
transformations and show how they can be used to introduce zeros into a vector.

Definition 1.1 An m ×m permutation matrix is a matrix whose columns con-
sist of a rearrangement of the m unit vectors e(j), j = 1, . . . , m, in RI m, i.e., a
rearrangement of the columns (or rows) of the m×m identity matrix.

The rows of an n × n permutation matrix consist of a rearrangement of the

transposes (e(j))
T
, j = 1, . . . , n, of the n unit vectors in RI n. The effect of premul-

tiplying (postmultiplying) a matrix A by a permutation matrix P is to rearrange
the rows (columns) of A into the same order as the rows (columns) of the identity
matrix are ordered in P . For integers j and k such that 1 ≤ j ≤ k ≤ m, we denote
by P(j,k) the special class of permutation matrices that result from the interchange

1

2 1. Triangular Factorization

of the j-th and k-th columns of the identity matrix, i.e.,

P(j,k) =
(

e(1), · · · , e(j−1), e(k), e(j+1), · · · , e(k−1), e(j), e(k+1), · · · , e(m)
)

.(1.1)

These permutation matrices, which are often referred to as elementary permutation
matrices , have many useful properties such as

P(j,k) = PT
(j,k) = P−1

(j,k) .(1.2)

Of course, P(j,j) = I.
We now define a special class of matrices that are rank one perturbations of the

identity matrix and that can be used to introduce zeros into a vector.

Definition 1.2 For an integer j such that 1 ≤ j < m, let µ ∈ RI m such that
µ1 = µ2 = · · · = µj = 0. The m×m matrix

M (j) = I − µ(e(j))T(1.3)

is known as a Gauss transformation. Here I denotes the m×m identity matrix.
Clearly M (j) is a unit lower triangular matrix, i.e., a lower triangular matrix

with 1’s on the diagonal. Also, off the main diagonal, M (j) has zero entries ev-
erywhere except in the j-th column. The following proposition shows that Gauss
transformations can be used to introduce zeros into a vector. Specifically, for a
given nonzero x ∈ RI m, it shows how to choose an integer p and a µ ∈ RI m such that
M (1)P(1,p)x has a nonzero entry only in its first component.

Proposition 1.1 Given x = (x1, x2, . . . , xm)T ∈ RI m such that x 6= 0. Choose any
integer p such that 1 ≤ p ≤ m and xp 6= 0. Define µ ∈ RI m by

µj =



































0 if j = 1

x1

xp
if j = p and p 6= 1

xj

xp
if j = 2, . . . , m, j 6= p .

Then
M (1)P(1,p)x = xpe

(1) .

Proof. The result follows from

M (1)P(1,p)x = P(1,p)x− µ(e(1))T P(1,p)x = P(1,p)x−















0
µ2xp

µ3xp

...
µmxp















=















xp

0
0
...
0















.

1.1. Permutation matrices and Gauss transformations 3

2

Note that if x1 6= 0, then one may choose p = 1. Also, note that p, 1 ≤ p ≤ m,
can be any index such that xp 6= 0 so that there is not a unique Gauss transformation
which transforms x into a constant times e(1); this is illustrated by the following
example.

Example 1.1 Let x= (0,−3, 4)T . If p = 2 and µ = (0, 0,−4/3)T , then

M (1) =





1 0 0
0 1 0

4/3 0 1





and M (1)P(1,2)x = (−3, 0, 0)T . On the other hand, if p = 3 and µ = (0,−3/4, 0)T ,
then

M (1) =





1 0 0
3/4 1 0
0 0 1





and M (1)P(1,3)x = (4, 0, 0)T .

We can also use Gauss transformations to introduce zeros in any contiguous
block of a vector. For example, given x ∈ RI m and integers k and q, 1 ≤ k < q ≤ m,
such that xj , j = k, . . . , q, are not all zero, suppose we want to choose a Gauss
transformation that zeros out the (k + 1)-st through q-th components of P(k,p)x.
Again, an integer p, k ≤ p ≤ q, is chosen so that xp 6= 0. We set

µj =



































0 if j = 1, . . . , k or j = q + 1, . . . , m

xk

xp
if j = p and p 6= k

xj

xp
if j = k + 1, . . . , q, j 6= p

(1.4)

so that, from (1.3),

M (k) =





























Ik−1

1
−µk+1

...
−µq Im−k

0
...
0





























(1.5)

4 1. Triangular Factorization

and

M (k)P(k,p)x =







































x1

...
xk−1

xp

0
...
0

xq+1

...
xm







































.

We end this section by showing how an elementary permutation matrix which
premultiplies a Gauss transformation “passes through” the Gauss transformation
to produce another Gauss transformation postmultiplied by the same permutation
matrix.

Proposition 1.2 Let M (k) be a Gauss transformation and let j and p be indices
such that k < j < p. Then there exists a Gauss transformation M̂ (k) such that

P(j,p)M
(k) = M̂ (k)P(j,p) .(1.6)

Proof. The proof is by direct multiplication; M̂ (k) is the matrix obtained by inter-
changing the (j, k) and (p, k) entries of M (k). 2

1.2 Triangular factorizations of an n× n matrix

The goal of this section is to prove that any n × n matrix A has the factorization
PA = LU where P is an n × n permutation matrix, L is an n × n unit lower
triangular matrix, and U is an n×n upper triangular matrix. We will first show how,
through the use of elementary permutation matrices and Gauss transformations, a
given n× n can be reduced to an upper triangular matrix U . We remark that the
construction given in the proof of the following proposition is exactly the classical
Gaussian elimination algorithm expressed in matrix notation; we will examine this
connection further in the next section.

Proposition 1.3 Let A be a given n × n matrix. Then there exist an integer ℓ,
0 ≤ ℓ ≤ n − 1, Gauss transformation matrices M (k), k = 1, . . . , ℓ, and elementary
permutation matrices P(k,pk), k = 1, . . . , ℓ, k ≤ pk ≤ n, such that

U = A(ℓ+1) = M (ℓ)P(ℓ,pℓ) · · ·M (2)P(2,p2)M
(1)P(1,p1)A(1.7)

is an n× n upper triangular matrix.

1.2. Triangular factorizations of an n × n matrix 5

Proof. Starting with A(1) = A and the integer counter σ1 = 1, we assume that at
the start of the k-th stage, k ≥ 1, of the procedure we have a matrix of the form

A(k) =

(

U (k) a(k) B(k)

0 c(k) D(k)

)

,

where U (k) is an (k − 1) × (σk − 1) upper triangular matrix,, a(k) ∈ RI k−1, c(k) ∈
RI n−k+1, B(k) is (k− 1)× (n−σk) and D(k) is (n− k +1)× (n−σk). If c(k) = 0, we
increment σk by one and move on to the next column, continuing to so increment
σk until either c(k) 6= 0 or σk > n. In the latter case we are finished since then A(k)

is upper triangular. In the former case we use (1.4) with

x =

(

a(k)

c(k)

)

and q = m to choose an integer pk ≥ k and construct a Gauss transformation M (k)

such that the components of M (k)P(k,pk)x with indices j = k + 1, . . . , m vanish. If

we write M (k) in the block form
(

Ik−1 0

0 M̃ (k)

)

,

then M̃ (k) is an (m− k + 1)× (m− k + 1) Gauss transformation formed by setting
x = c(k) in Proposition 1.1. We have that

A(k+1) = M (k)P(k,pk)A
(k) =















U (k) a(k) B(k)

0 c
0 0
...

... M̃ (k)D̂(k)

0 0















,

where c denotes the (pk− k +1)-st component of c(k) and D̂(k) denotes the matrix
D(k) after rows k and pk have been interchanged. Then

A(k+1) =

(

U (k+1) a(k+1) B(k+1)

0 c(k+1) D(k+1)

)

,

where a(k+1) and c(k+1) are the first columns of B(k) and M̃ (k)D̂(k), respectively,
U (k+1) is the k × (σk+1 − 1) matrix given by

U (k+1) =

(

U (k) a(k)

0 c

)

,

and σk+1 = σk + 1. Clearly U (k+1) has upper triangular structure and A(k+1) has
the same structure as A(k) with the index k augmented by one so that the inductive

6 1. Triangular Factorization

step is complete. The total number of stages ℓ cannot exceed (m− 1) or n and may
be less than both if σk > k for some k. 2

The process of row interchanges is often referred to as row pivoting. Since, for
the most part, we will not consider column interchanges, we will henceforth refer
to row pivoting as simply pivoting. The (k, σk) entry in the matrix A(k) defined in
the above proof is referred to as the pivot element and (k, σk) itself is referred to as
the pivot position. The pivot element is the denominator appearing in the vector µ

that determines the Gauss transformation M (k) used at the k-th stage. Thus, an
interchange of rows is, in theory, only necessary whenever a pivot element vanishes.
The row interchange process, i.e., premultiplication by the elementary permutation
matrix P(k,pk), is invoked so that a nonzero entry is brought into the pivot position.

Proposition 1.3, coupled with Proposition 1.2, allows us to prove the major
result of this section.

Theorem 1.4 Given any n×n matrix A there exists an n×n permutation matrix
P , an n× n unit lower triangular matrix L, and an n× n upper triangular matrix
U such that

PA = LU .(1.8)

Furthermore, rank(U) = rank(A).

Proof. By Proposition 1.3 we have that

A(ℓ+1) = M (ℓ)P(ℓ,pℓ)M
(ℓ−1)P(ℓ−1,pℓ−1) · · ·M (2)P(2,p2)M

(1)P(1,p1)A

is upper triangular. The inverse of a square unit lower triangular matrix is also unit
lower triangular so that the proof will be complete if we can show that M (ℓ)P(ℓ,pℓ) · · ·M (1)P(1,p1) =
MP for some unit lower triangular matrix M and permutation matrix P . Since
pk ≥ k, from Proposition 1.2 we note that for k = 2, . . . , ℓ

P(k,pk)M
(k−1) = M

(k−1)
1 P(k,pk) ,

where M
(k−1)
1 is a unit lower triangular matrix. Of course, if no row interchanges

are required, then P(k,pk) = I and M
(k−1)
1 = M (k−1). Thus we have

A(ℓ+1) = M (ℓ)M
(ℓ−1)
1 P(ℓ,pℓ)M

(ℓ−2)
1 P(ℓ−1,pℓ−1) · · ·M (1)

1 P(2,p2)P(1,p1)A .

Again we use Proposition 1.2 to show that for k = 3, . . . , ℓ

P(k,pk)M
(k−2)
1 = M

(k−2)
2 P(k,pk) ,

where M
(k−2)
2 is a unit lower triangular matrix. Continuing in this manner, we have

that
U = A(ℓ+1) = MPA ,

where
M = M (ℓ)M

(ℓ−1)
1 M

(ℓ−2)
2 · · ·M (2)

ℓ−2M
(1)
ℓ−1

1.2. Triangular factorizations of an n × n matrix 7

and
P = P(ℓ,pℓ) · · ·P(2,p2)P(1,p1) .

Here M is the product of unit lower triangular matrices and thus M itself is unit
lower triangular. Furthermore, P is the product of permutation matrices and thus
P is a permutation matrix as well. Also, since M and P are invertible, clearly
rank(U) = rank(A). If A is real, then the above process involves only real arithmetic
so that the end products L and U are real. 2

Let r = rank(U) = rank(A) denote the number of nonzero rows of U . It is, of
course, possible for r < n, e.g., if the rows of A are linearly dependent. If r < n,
the PA = LU factorization of the n× n matrix A may be partitioned in the form

PA =
(

L1 L2

)

(

U1

0

)

= L1U1 ,(1.9)

where L1 is an n × r unit lower trapezoidal matrix, L2 is n × (n − r), and U1 is
an r × n full rank upper triangular matrix. Thus (1.34) shows that an arbitrary
n × n matrix with n > r can be factored into the product of an n × r unit lower
trapezoidal matrix and an r × n upper triangular matrix. Note that L2 plays no
essential role in the PA = LU factorization of A. Also, if r = n, i.e., A has full
column rank, then U1 is an n× n square, nonsingular, upper triangular matrix.

Example 1.2 Let

A =





0 0 4
2 1 −1
6 3 1



 .

To form the factorization PA = LU we could have the following steps:

M (2)M (1)P(1,2)A =





1 0 0
0 1 0
0 −1 1









1 0 0
0 1 0
−3 0 1









0 1 0
1 0 0
0 0 1









0 0 4
2 1 −1
6 3 1





=





2 1 −1
0 0 4
0 0 0



 = U .

This gives that

PA =





0 1 0
1 0 0
0 0 1









0 0 4
2 1 −1
6 3 1



 =





1 0 0
0 1 0
3 1 1









2 1 −1
0 0 4
0 0 0



 = LU .

Note that if we partition L and U as in (1.34) then

L1 =





1 0
0 1
3 1



 , L2 =





0
0
1



 , and U1 =

(

2 1 −1
0 0 4

)

.

8 1. Triangular Factorization

Note that, in general, the PA = LU factorization of a matrix A is not unique.
In the first place, if r < n so that the partitioning of (1.34) holds, then obviously L2

may be chosen to be any n× (n− r) matrix such that L = (L1 L2) is a unit lower
triangular matrix. Moreover, at any stage of the process described in the proof of
Proposition 1.3, one may need to interchange rows, i.e., premultiply A(k) by P(k,pk).
The index pk, k ≤ pk ≤ n, is not uniquely determined; one may in fact choose any
such index such that the (pk − k + 1)-st component of c(k) is nonzero. In view of
these observations we have the following uniqueness result.

Proposition 1.5 Given an n×n matrix A. Partition its PA = LU factorization as
in (1.34) where U1 has full row rank and L1 is unit lower trapezoidal. Then, once
the row interchange strategy is fixed, i.e., the permutation matrix P is fixed, the
matrices L1 and U1 appearing in the factorization (1.34) are uniquely determined.
If r = rank(A), the number of rows in U1, then L2 may be chosen to be any n×(n−r)
matrix such that L = (L1 L2) is a unit lower triangular matrix.

Proof. Let PA = LU = L̃Ũ be two factorizations of A using the same row inter-
change strategy. Then, U = L−1L̃Ũ . Further partition L into the form

L =

(

L11 0
L21 L22

)

,(1.10)

where L11 is an r × r unit lower triangular matrix, L22 is an (n− r)× (n− r) unit
lower triangular matrix, and L21 is (n− r) × r. Note that

L1 =

(

L11

L21

)

and L2 =

(

0
L22

)

.(1.11)

We will use the analogous partitioning for L̃. Then

L−1L̃ =

(

L−1
11 L̃11 0

−L−1
22 L21L

−1
11 L̃11 + L−1

22 L̃21 L−1
22 L̃22

)

.(1.12)

Then, since U = L−1L̃Ũ , we have that

U1 = L−1
11 L̃11Ũ1 ,(1.13)

where we have partitioned U and Ũ as in (1.34). In (1.13), the matrix on the left
is upper triangular, while the matrix on the right is the product of the unit lower
triangular matrix L−1

11 L̃11 and the upper triangular matrix Ũ1. By equating the
elements to the left of the first nonzero entry in the rows on both sides of (1.13),
we conclude that the lower triangular matrix L−1

11 L̃11 is a diagonal matrix; since it
is also a unit lower triangular matrix, we conclude that L−1

11 L̃11 = I, or L11 = L̃11.
Then, (1.13) also yields that U1 = Ũ1.

1.2. Triangular factorizations of an n × n matrix 9

The relation U = L−1L̃Ũ , (1.12), and the partitioning of U and Ũ of (1.34) also
yield that

L−1
22 L21L

−1
11 L̃11 = L−1

22 L̃21 .

Then, since L11 = L̃11, we have that L21 = L̃21, and, from (1.11), L1 = L̃1. 2

If A has full row rank, i.e., if r = n, then U = U1 and L = L1 so that in this case
we have that, once the row interchange strategy is fixed, the factorization of PA
into the product of a unit lower triangular matrix and an upper triangular matrix
is unique. In particular, this is the case when A is square and invertible.

There are numerous variants to the factorization PA = LU ; the most important
is considered in Section 1.2.1. Another variant is found by applying Theorem 1.4
to A∗ which leads to the following result. Given any n × n matrix A there exists
an n× n permutation matrix P̃ , an n× n unit upper triangular matrix Ũ , and an
n×n lower triangular matrix L̃ such that AP̃ = L̃Ũ . In fact, L̃ is such that L̃∗ has
row echelon structure.

Another variant of the basic factorization (1.33) is given by

PA = LDÛ ,(1.14)

where P is an n×n permutation matrix, L is an n×n unit lower triangular matrix,
Û is an n × n unit upper triangular matrix, and D is an n × n diagonal matrix.
If A has full row rank, i.e., rank (A) = n, then, for j = 1, . . . , n, dj,j is equal to

the first nonzero entry in the j-th row of U and Û = D−1U , where U denotes the
upper trapezoidal matrix of (1.33); D−1 exists by virtue of A being full rank. If
rank (A) = r < n, then, for j = 1, . . . , r, dj,j is equal to the first nonzero entry

in the j-th row of U and for j > r, dj,j may be chosen arbitrarily. Of course, the

nontrivial rows of Û may be determined from those of U by dividing the rows of
the latter by the corresponding first nonzero entry. The PA = LDÛ factorization
in the case of r < n is illustrated by the following example.

Example 1.3 Let

A =





0 0 4
2 1 −1
6 3 1



 .

Then, from Example 1.2, P(1,2)A has the LU factorization

P(1,2)A =





2 1 −1
0 0 4
6 3 1



 =





1 0 0
0 1 0
3 1 1









2 1 −1
0 0 4
0 0 0



 .

Even though A is singular, P(1,2)A also has the factorization LDÛ given by

P(1,2)A =





2 1 −1
0 0 4
6 3 1



 =





1 0 0
0 1 0
3 1 1









2 0 0
0 4 0
0 0 d3









1 1/2 −1/2
0 0 1
0 0 0



 .

10 1. Triangular Factorization

Note that Û is in row echelon form and that the (3, 3) entry of D may be set
arbitrarily since the third row of U contains only zero entries.

1.2.1 Triangular factorizations without row interchanges

The appearance of the permutation matrix P in (1.33) results from the need to pivot,
i.e., to perform row interchanges, whenever a zero pivot element is encountered. If
row interchanges are not required, we may set P = I and then A = LU . The
following example gives factorizations for two nonsingular matrices. The first has
an LU factorization, i.e., no pivoting is necessary. The second matrix fails to have
an LU factorization unless pivoting is performed.

Example 1.4 Let

A =





2 −1 0
4 −5 3
6 −6 −2



 .

Then A has the LU factorization

A = LU =





1 0 0
2 1 0
3 −1 1









2 −1 0
0 −3 3
0 0 1



 .

Let

B =





0 4 1
2 −1 3
−4 14 −2



 .

Then, since the first pivot element, i.e., b1,1, vanishes, B fails to have an LU
factorization, i.e., we can’t write B = LU . However, if we interchange the first and
second rows we see that P(1,2)B has the LU factorization

P(1,2)B = LU =





1 0 0
0 1 0
−2 3 1









2 −1 3
0 4 1
0 0 1



 .

A characterization of matrices for which zero pivot elements are not encountered,
and thus of matrices A that possess a factorization of the form A = LU , is given
in the following result. Here, given a matrix A with elements ai,j , i = 1, . . . , n and
j = 1, . . . , n, the k-th leading principal submatrix Ak, k ≤ n, is the k × k matrix
with elements ai,j , i = 1, . . . , k and j = 1, . . . , k.

Proposition 1.6 Given an n × n matrix A, denote its leading principal k × k
submatrices by Ak for k = 1, . . . , n. If Ak is nonsingular for k = 1, . . . , ℓ = n− 1,
then there exists an n × n unit lower triangular matrix L and an n × n upper
triangular matrix U such that

A = LU ,(1.15)

1.2. Triangular factorizations of an n × n matrix 11

where U = A(ℓ+1) and L is given explicitly by

L = (L1 L2) , where L1 =

































1

µ
(1)
2 1

µ
(1)
3 µ

(2)
3

. . .

1
...

... µ
(ℓ)
ℓ+1
...

µ
(1)
m µ

(2)
m · · · µ

(ℓ)
m

































(1.16)

and where L2 is any n × (n − ℓ) matrix such that L = (L1 L2) is an unit upper
triangular matrix. Here A(k), k = 1, . . . , (ℓ+1), is defined in the proof of Proposition
(1.3) and

µ
(k)
j =

a
(k)
j,k

a
(k)
k,k

.(1.17)

Moreover, ui,i 6= 0 for i = 1, . . . , n− 1. If A is real then U and L may be chosen to
be real as well.

Proof. The proof is merely a specialization of the proofs of Proposition 1.3 and
Theorem 1.4. Starting with A(1) = A, suppose we have completed the (k − 1)-st
stage of the reduction procedure without having encountered any vanishing pivots,
i.e., in the proof of Proposition 1.3 we have that P(j,pj) = I for j = 1, . . . , k − 1.
Thus at the start of the k-th stage we assume that we have the partially reduced
matrix

A(k) = M (k−1) · · ·M (1)A ,

where the unit lower triangular matrices M (j), j = 1, . . . , k − 1, are defined by
(1.5) with q = m and where the matrix A(k) has its first (k − 1) columns in upper
triangular form and its first (k − 1) diagonal entries do not vanish. We then have
that

A = L(k)A(k) ,

where

L(k) =
(

M (k−1) · · ·M (1)
)−1

is an n×n unit lower triangular matrix. By using the special structure of L(k) and
A(k), we may partition A = L(k)A(k) into blocks to obtain

A =

(

Ak A12

A21 A22

)

=

(

L
(k)
11 0

L
(k)
21 Im−k

)(

A
(k)
11 A

(k)
12

0 A
(k)
22

)

,

12 1. Triangular Factorization

where Ak, L
(k)
11 , and A

(k)
11 are k × k, L

(k)
11 is a unit lower triangular matrix, and

A
(k)
11 is an upper triangular matrix. We equate the upper left-hand blocks to obtain

Ak = L
(k)
11 A

(k)
11 and therefore detAk = det(L

(k)
11 A

(k)
11) = detL

(k)
11 detA

(k)
11 = detA

(k)
11 .

Since A
(k)
11 is upper triangular, we have that

detAk = a
(1)
1,1a

(2)
2,2 · · · a

(k)
k,k ,(1.18)

i.e., detAk is the product of the first k pivot elements. Now, by hypothesis,
detAk 6= 0. Also, by virtue of the assumption that A(k) is deduced from A without

encountering any vanishing pivot elements, a
(j)
j,j 6= 0 for j = 1, . . . , k − 1. Then,

from (1.18), a
(k)
k,k 6= 0 and the inductive step is complete so that we have

A(ℓ+1) = M (ℓ)M (ℓ−1) · · ·M (1)A ,

where A(ℓ+1) = U is upper triangular. The derivation of the explicit representation
of (1.36) for

L =
(

M (ℓ) · · ·M (1)
)−1

is left as an exercise. 2

Some important classes of matrices satisfy the hypotheses of this proposition;
these include positive definite and diagonally dominant matrices. We will discuss
the former in the following section.

The uniqueness of the A = LU factorization is explored in the exercises.
It is important to note that Proposition 1.12 gives sufficient conditions for a

matrix to have an LU factorization without pivoting. The following example gives
a matrix which does possess an LU factorization without pivoting but fails to satisfy
the hypotheses of Proposition 1.12.

Example 1.5 Let

A =





2 1 −1
0 0 1
0 0 1



 .

Then A has the LU factorization

A =





1 0 0
0 1 0
0 1 1









2 1 −1
0 0 1
0 0 0



 .

Note that A does not satisfy the hypotheses of Proposition 1.12.

1.2.2 Symmetric positive definite matrices

We now consider an important class of square matrices, namely symmetric positive
definite matrices. Recall that a square matrix is symmetric if AT = A and is positive
definite if xT Ax) > 0 for all x ∈ RI n such that x 6= 0.

1.2. Triangular factorizations of an n × n matrix 13

When A is positive definite, we can easily show that A can be factored in the
form A = LU by demonstrating that A satisfies the hypotheses of Proposition 1.12.
(See the first part of the proof of Proposition 1.7 below.) If A is also symmetric
then it turns out there is only one matrix involved in the factorization, i.e., we
can write A = LLT , where now L is an invertible lower triangular matrix that in
general does not have unit diagonal entries. This is the classic result known as the
Cholesky factorization of a symmetric positive definite matrix. In addition, we can
show that the converse is true, i.e., if A is symmetric and there exists an invertible
lower triangular matrix L such that A = LLT , then A must be positive definite.
The following result formalizes these observations.

Proposition 1.7 Let A be an n×n symmetric matrix. Then A is positive definite
if and only if there exists an invertible lower triangular matrix L such that

A = LLT .(1.19)

Furthermore, one can choose the diagonal elements li,i, i = 1, . . . , n, of L to be real
positive numbers. In this case the factorization (1.19) is unique. If A is real then
L is real as well and we have that A = LLT .

Proof. If A is positive definite, xT Ax > 0 for x ∈ RI n such that x 6= 0. Choose
xT = (yT ,0) for an arbitrary nonzero vector y ∈ RI k. We have that

0 <
(

yT 0
)

A

(

y

0

)

=
(

yT 0
)

(

Ak ×
× ×

)(

y

0

)

= yTAky

so that Ak, the k-th leading principal submatrix of A, is positive definite. Further-
more, since Ak is positive definite it is nonsingular. Thus from Proposition 1.12 we
have that

A = LU =











1
l2,1 1
...

. . .

ln,1 · · · ln,n−1 1





















u1,1 u1,2 · · · u1,n

u2,2 · · · u2,n

. . .
...

un,n











and, since detA =
∏n

i=1 ui,i and detA 6= 0, we have ui,i 6= 0 for i = 1, . . . , n. Let D
be the diagonal matrix diag (u1,1, u2,2, . . . , un,n) so that D−1 is well defined. Then

we can write A = LDÛ where Û = D−1U is a unit upper triangular matrix. Now
A is also symmetric so that LDÛ = ÛT DT LT , or

DÛL−T = L−1ÛT DT .(1.20)

Now the product of the matrices on the left-hand side of (1.20) is an upper triangular
matrix with diagonal entries given by those of D. The product of the matrices
on the right-hand side is a lower triangular matrix with corresponding diagonal

14 1. Triangular Factorization

entries given by those of DT . Thus both are diagonal matrices and we have that
D = DÛL−T = L−1ÛT DT = DT . Hence we have D = DT and Û = LT , i.e.,
A = LDLT with L a unit lower triangular matrix and D a diagonal matrix with real
entries. Since A is positive definite, we have that xT Ax = xT LDLTx = yT Dy > 0,
where y = LTx. Thus we conclude that the diagonal entries of D are positive.
Let D1/2 = diag (

√
d1,
√

d2, . . . ,
√

dn) and let L̂ = LD1/2. Then A = LDLT =
LD1/2D1/2LT = L̂L̂T where the diagonal elements of L̂ are real positive numbers.
If A is real only real arithmetic is used to arrive at (1.19) so that L̂ is real.

To show that the factorization is unique when the diagonal elements of L are
real positive numbers, we let A = L1L

T
1 = L2L2

T . Then

L1
−1L2 = LT

1 L2
−T .(1.21)

The product of the matrices on the left-hand side of (1.21) is lower triangular while
that on the right-hand side is upper triangular; hence L1

−1L2 = LT
1 L2

−T = G
for some diagonal matrix G. Now G = L1

−1L2 implies that gi,i = l2i,i/l1i,i and

G = LT
1 L2

−T implies that gi,i = l̄1i,i/l̄2i,i so that |l1i,i| = |l2i,i|. Since both L1 and
L2 have real positive diagonal entries this implies that l1i,i = l2i,i, or that gi,i = 1.
Hence G = I and L1 = L2.

Now assume that A is symmetric and that (1.19) holds. Then xT Ax = xT LLTx =
yT y where y = LTx. Now yT y > 0 except for y = 0 or equivalently when x = 0

since L is invertible. Thus xT Ax > 0 unless x = 0 which is, for symmetric matrices,
the definition of A being positive definite. 2

Example 1.6 Let A be given by




1 2 −1
2 13 13
−1 13 42



 .

Then A has the Cholesky factorization




1 2 −1
2 13 13
−1 13 42



 =





1 0 0
2 3 0
−1 5 4









1 2 −1
0 3 5
0 0 4



 .

1.3 Systems of algebraic equations

In this section we compare the use of triangular factorizations of a matrix with
Gaussian elimination for solving linear systems of algebraic equations. We begin
with the Gaussian elimination algorithm which makes use of elementary row op-
erations to reduce the given n × n coefficient matrix of the linear system to an
upper triangular matrix; at the same time, the elementary row operations are ap-
plied to the right-hand side of the system. If this system is consistent, it can then

1.3. Systems of algebraic equations 15

be solved by a generalized back substitution algorithm. The Gaussian elimination
algorithm we study here uses partial pivoting and implicit row scaling strategies.
Examples illustrating the need for pivoting and scaling are given. The triangular
factorization algorithms studied in the previous section, coupled with forward and
back substitution algorithms, are also used to solve linear systems.

A system of n linear algebraic equations in n unknowns is described by the
relations

n
∑

j=1

ai,jxj = bi for i = 1, . . . , n ,

where the n×n numbers ai,j and the n numbers bi are given and the n numbers xj

are to be determined. The system of equations may be expressed in matrix form as

Ax = b ,(1.22)

where A is an n× n matrix with elements ai,j , ı = 1, . . . , n, j = 1, . . . , n and x, b

are n- and m-column vectors with elements xj , j = 1, . . . , n and bi, ı = 1, . . . , n,
respectively. We will refer to the matrix A as the coefficient matrix and the vector
b as the right-hand side vector of the linear system. If A is m × n, and m > n
we refer to the system (1.22) as overdetermined whereas if m < n we refer to it as
underdetermined.

1.3.1 Pivoting and scaling

If one computes with infinite precision arithmetic, then row interchanges are nec-
essary only when a pivot element is exactly zero. However, in computations using
finite precision arithmetic, small pivot elements can have a disastrous effect on the
accuracy of the computed results. The following well known example illustrates this
point.

Example 1.7 Consider the system
(

.001 1
1 1

)(

x1

x2

)

=

(

1
2

)

whose exact solution is x1 = 1000/999 and x2 = 998/999. If one reduces this system
to triangular form without interchanging rows using base ten arithmetic rounded
to two significant digits, then one obtains the triangular system

(

.001 1
0 1000

)(

x1

x2

)

=

(

1
1000

)

.

A back substitution procedure gives the computed solution x1 = 0 and x2 = 1. On
the other hand, if we write the system by reordering the equations, i.e., interchang-
ing rows, then we have

(

1 1
.001 1

)(

x1

x2

)

=

(

2
1

)

.

16 1. Triangular Factorization

Using two-digit arithmetic one finds the computed solution to be x1 = x2 = 1,
which is also the exact solution rounded to two significant digits.

Now consider the problem

(

10 10, 000
1 1

)(

x1

x2

)

=

(

10, 000
2

)

which is obtained from the original example by multiplying the first equation by
10, 000. Invoking a partial pivoting strategy would not effect an interchange of rows.
The solution to this system using two-digit arithmetic is x1 = 0 and x2 = 1, which
is exactly the answer we obtained for the original system without pivoting. It is
thought that the trouble with the last example is that the matrix is not properly
scaled, i.e., the matrix elements vary wildly.

In determining the factorization PA = LU we pivoted, i.e., performed row

interchanges, only when a zero pivot element a
(k)
k,σk

was encountered. However,
as the previous example demonstrates, pivoting may be necessary even when a
pivot element is nonzero in order to avoid roundoff error problems. Thus some
criteria must be chosen to determine the row interchange strategy. The algorithm
we present in Section 1.3.3 for PA = LU employs implicit row scaling and partial
pivoting strategies. Here we define these strategies. We define the scale factors si

for each row i = 1, . . . , m by

si =

n
∑

j=1

|ai,j | .(1.23)

At the k-th stage of the algorithm we have a matrix A(k) whose first (k − 1)
rows and (σk − 1) columns, for σk ≥ k, have upper triangular structure. We search

the (n− k +1) entries a
(k)
i,σk

, i = k, . . . , n, of A(k) to find the first index pk such that

|a(k)
pk,σk |
spk

= max
i=k,...,n

si 6=0

|a(k)
i,σk
|

si
.(1.24)

This procedure of finding the maximal element in the column is called partial piv-
oting and the choice of scaling each element during the pivot search by the factors
si given in (1.23) is called implicit row scaling. (If the search (1.24) indicates that

a
(k)
i,σk

= 0 for i = k, . . . , n, we increment σk by one, i.e., move to the next column
and repeat the search.)

Ideally, i.e., in infinite precision arithmetic, the search (1.24) is needed only if

a
(k)
k,σk

= 0. In practice one uses finite precision arithmetic so that the search for

pk and the maximal pivot element a
(k)
pk,σk , along with the subsequent interchange

of rows k and pk, help to avoid problems due to roundoff errors. This issue was
illustrated in the example.

We note that the scale factors si, ı = 1, . . . , n, in (1.23) are determined only
once from the elements of the given matrix A and are only used in (1.24) for the

1.3. Systems of algebraic equations 17

determination of the pivoting strategy; the elements of the matrix A are never
explicitly scaled. Hence the terminology implicit row scaling.

In the search for the pivot element defined by (1.24) we only considered elements
in column σk on or below the k-th row. A more complicated process selects the
pivot element for the matrix A(k) encountered at the beginning of the k-th stage
by a search of the type

|a(k)
p,q | = max

i=k,...,n
j=k,...,n

|a(k)
i,j | ,

where for simplicity we have omitted scalings. Thus we now choose the pivot element
to be an element of maximum modulus among all elements of the (n − k + 1) ×
(n − k + 1) submatrix with entries a

(k)
i,j , i = k, . . . , n, j = k, . . . , n. This strategy

is known as full or complete pivoting. In the presence of roundoff errors the full
pivoting strategy is theoretically more stable than is the partial pivoting strategy
of (1.24); however, in the great majority of practical cases the latter appears to be
adequate with regards to the avoidance of ill effects resulting from roundoff errors.

Returning to our example, we see that if we use the implicit row scaling de-
scribed here to determine the pivoting strategy, then the row scaling would force
the interchange of the rows of the last system, i.e., one solves the system

(

1 1
10 10, 000

)(

x1

x2

)

=

(

2
10, 000

)

which, in two-digit arithmetic, yields the same good answer x1 = x2 = 1.

To prevent difficulties of the type that occur in Example 1.3.1, we incorporate
a row scaling into our algorithms. There are other types of scalings which would
have a similar effect as the implicit row scaling used here.

1.3.2 Solving linear systems using Gaussian elimination

The goal of the Gaussian elimination method is to transform the n× n coefficient
matrix A into an n×n matrix U which is upper triangular; this reduction is accom-
plished using elementary row operations, i.e., the interchange of two rows, and the
replacement of a row by the sum of that row and a scalar multiple of another row.
At the same time, the elementary row operations are applied to the right-hand side
vector b. The algorithm given here is essentially the method described in Proposi-
tion 1.3 where we transformed an n×n matrix A into an upper triangular matrix U
by premultiplication by permutation matrices and Gauss transformation matrices.
In fact, premultiplication by these matrices effect the elementary row operations
of the Gaussian elimination method, i.e., the permutation matrices effect the row
interchange operations and the Gauss transformations effect the row replacement
operations. In Gaussian elimination the elementary row operations applied to the
coefficient matrix A and right-hand side vector b result in a linear system of the
form

Ux = c ,(1.25)

18 1. Triangular Factorization

where x is the solution of (1.22), U is exactly the same matrix as that obtained in
the PA = LU factorization of A, and c is given by

c = M (ℓ)P(ℓ,pℓ) · · ·M (2)P(2,p2)M
(1)P(1,p1)b .(1.26)

Here M (k) and P(k,pk), k = 1, . . . , ℓ, are the Gauss transformations and elementary
permutation matrices, respectively, that are used to find the PA = LU factorization
of A. Thus, Gaussian elimination and triangular factorization are equivalent; in fact,
it is easy to show that c = L−1Pb so that (1.25) is equivalent to PAx = LUx = Pb.

Recall that in the algorithm for the triangular factorization of A we did not
generate L and U as in Proposition 1.2 but rather we obtained the equations for
the components of the matrices by equating entries on each side of equations such
as PA = LU . In the Gaussian elimination method we actually carry out the
steps found in the proof of Proposition 1.2 without explicitly forming the Gauss
transformations M (k) or the permutation matrices P(k,pk)

In the following algorithm we use the implicit row scaling and partial pivoting
strategies that were described above. As was the case in Algorithm 1.5, we do not
physically interchange the rows, but rather keep track of the interchanges in the
vector γ . Also, the vector σ stores the column index of the first nonzero entry
in each row and the scalar r keeps track of the number of nonzero pivot elements
encountered.

Algorithm 1.1 Gaussian elimination with implicit row scaling and partial

pivoting. Given an n× n matrix A and an n-vector b, this algorithm transforms
the system Ax = b into a system of the form (1.25), where U is overwritten onto A
and c is overwritten onto b. The algorithm uses the partial pivoting and implicit row
scaling strategies discussed in Section ?? to choose the pivot element; in particular,
the pivot search is determined by (1.24). On output, γ and σ provide the same
information as in Algorithm 1.5. In particular, if σk > n, then row k contains only
zero elements.

Set k = 1 and σ1 = 1.

For i = 1, . . . , n, set γi = i and si =

n
∑

j=1

|ai,j | .

Do while k ≤ n, σk ≤ n, and

m
∑

i=k

sγi
6= 0 :

do while max
i=k,...,n
sγi

6=0

|aγi,σk
|

sγi

= 0 :

set σk ← σk + 1 ;

1.3. Systems of algebraic equations 19

set p equal to the smallest integer such that

|aγp,σk
|

sγp

= max
i=k,...,m

sγi
6=0

|aγi,σk
|

sγi

;

if k < n

if k 6= p, interchange the contents of γp and γk and

· for i = k + 1, . . . , n set

µ = − aγi,σk

aγk,σk

,

bγi
← bγi

+ µbγk
; and

· for j = σk + 1, . . . , n, set

aγi,j ← aγi,j + µaγk,j ;

set σk+1 = σk + 1 ;

set k ← k + 1 .

For i = k, . . . , n, set σi = n + 1.

2

For some classes of matrices, e.g., square positive definite matrices, it is known
a priori that Gaussian elimination can proceed stably without the need for any row
interchanges. In such cases it is wasteful to perform the pivot search and therefore
that step is removed from the algorithm. Also, in this case there is no need to
introduce the interchange array γ , the pivot position array σ , or the scale factors
si.

A few comments should be made concerning the algorithm. First, the row
replacement loop begins in colunbyn (σk + 1) even though we are eliminating in
column σk. This avoids the computation of aγi,σk

for i = k + 1, . . . , n which are
known to vanish. If the m-th stage is reached, then we are working with the last row
and therefore we do not need to eliminate any elements. Thus if k = n we exit after
ascertaining whether or not the n-th row contains any nonzero elements and the
pivot position for the n-th row. We also note that the scale factors si, i = 1, . . . , n,
are determined once and for all from the elements of the given matrix A and are only
used in the determination of the interchange strategy; the elements of the matrix
A are not explicitly scaled. Concerning the storage required by the algorithm, we
see that through overwriting the elements of A we can implement the algorithm
with roughly the same storage as that required to store A itself. Of course, if one
overwrites then the matrix A will be destroyed during the computations. Once
again we remark that other pivoting strategies could be incorporated such as a full
pivoting strategy discussed in Section ??.

20 1. Triangular Factorization

A variant of the above algorithm, known as Gauss-Jordan elimination, explicitly
scales rows so that the pivot element is set to unity and one eliminates above as well
as below the pivot position. The outcome of Gauss-Jordan elimination is a matrix
which is in row reduced echelon form; such a matrix is a row echelon matrix whose
entries in a column containing a pivot element all vanish excepting, of course, for the
pivot element itself. In particular, if the given matrix A is square and of full rank,
i.e., invertible, the result of Gauss-Jordan elimination is simply the identity matrix.
Although Gauss-Jordan elimination is of substantial theoretical importance, it is
not as efficient to use as the above version of Gaussian elimination for solving linear
systems.

In the following examples the partial pivoting strategy of Algorithm 1.1 is used
to reduce the given systems to the form (1.25).

Example 1.8 Let A be the nonsingular matrix

A =





2 1 3
0 −2 7
4 4 5



 and b =





1
2
4



 .

The reduction of the system to the form (1.25) using the pivoting strategy of Algo-
rithm 1.1 gives the following sequence of matrices




2 1 3 | 1
0 −2 7 | 2
4 4 5 | 4



 →





4 4 5 | 4
0 −2 7 | 2
2 1 3 | 1



→





4 4 5 | 4
0 −2 7 | 2
0 −1 1

2 | −1





→





4 4 5 | 4
0 −2 7 | 2
0 0 −3 | −2



 ,

where we have augmented the coefficient matrix with the right-hand side vector.
If the storage scheme of Algorithm 1.1 is used then the resulting upper triangular
matrix is stored as





0 0 −3
0 −2 7
4 4 5



 .

Example 1.9 Consider the system Ax = b where

A =





1 −2 1 −4
1 3 7 2
1 −12 −11 −16



 and b =





1
1
1



 .

The reduction of the system to the form (1.25) using the pivoting strategy of Algo-
rithm 1.1 gives the following sequence of matrices





1 −2 1 −4 | 1
1 3 7 2 | 1
1 −12 −11 −16 | 1



 →





1 −2 1 −4 | 1
0 5 6 6 | 0
0 −10 −12 −12 | 0





1.3. Systems of algebraic equations 21

→





1 −2 1 −4 | 1
0 −10 −12 −12 | 0
0 0 0 0 | 0



 ,

where we have augmented the coefficient matrix with the right-hand side.

Using Algorithm 1.1 we can reduce any n × n linear system to one of the form
(1.25). The case of most interest is when the square matrix A is invertible. In
this case the unique solution of the upper triangular system (1.25) may be easily
determined by a back substitution procedure. In this procedure we simply solve for
the unknowns xi, i = 1, . . . , n, in reverse order. However, if A is not invertible (or if
it is rectangular) we may still use a back substitution procedure to find a particular
solution of (1.22) or (1.25). Of course, for a solution to exist these systems must be
consistent, i.e., the given right-hand side vector b must belong to the column space
of A or equivalently, must satisfy zT b = 0 for all n-vectors z such that AT z = 0.
(See Appendix I.) The consistency of the system (1.25) is easily determined since
the system Ax = b is consistent if and only if the sytem Ux = c is consistent.
Indeed, one must only check if ck = 0 for all values of k such that the k-th row of
U contains only zero entries, i.e., such that σk > n. Obviously, if ck 6= 0 for such a
row, the system is inconsistent.

Once the consistency of the system has been verified, one may proceed with the
back substitution process. The components of x which correspond to columns of U
which do not contain a pivot element may be set to any arbitrary value; we call these
variables free variables. Starting with the last such row, the non-trivial rows of U
are used to determine the value of the remaining components of x which we call pivot
variables . Specifically, a non-trivial row, say row k, is used to determine the value
of the component xσk

, where σk gives the pivot position of the k-th row. The other
components xi, i > σk, which can possibly appear in the equation corresponding to
the k-th row of (1.25) are either free variables or have been previously determined
from the equations corresponding to rows of (1.25) below the k-th row. Clearly,
the number of pivot variables equals the rank of A and the number of free variables
is n − rank(A). In the algorithm which follows we set the free variables to unity;
other choices for the values of the free variables are also easily implemented.

We give the generalized back substitution algorithm in the notation of the gener-
alized Gaussian elimination algorithm 1.1. Here ai,j , bi, σk and γk refer to results
of the Gaussian elimination process.

Algorithm 1.2 Generalized back substitution. Given the linear system Ax =
b, where A is an n×n matrix and b is an n−vector. Assume that Algorithm 1.1 has
been used to reduce the system to the form Ux = c where U and c are overwritten
onto A and b respectively. Also let γ and σ denote the vectors generated in
Algorithm 1.1. This algorithm finds a particular solution to the system Ux = c or
equivalently, Ax = b, if it is consistent; all free variables are set to unity.

Set k = n and set xj = 1 for j = 1, . . . , n.

22 1. Triangular Factorization

Do while k ≥ 1:

if σk > n then:

if bγk
6= 0, exit and indicate that the system is inconsistent;

else: set

xσk
=

1

aγk,σk

(

bγk
−

n
∑

σk+1

aγk,jxj

)

;

set k ← k − 1

2

Thus the combination of Algorithm 1.1 and the generalized back substitution
given in Algorithm 1.2 enables one to find a particular solution of any consistent
linear system of algebraic equations.

Example 1.10 Consider the system Ax = b of Example 1.3.2 which has been
reduced to the upper triangular system





1 −2 1 −4
0 −10 −12 −12
0 0 0 0













x1

x2

x3

x4









=





1
0
0



 .

This is a consistent system so that in the generalized back substitution algorithm
we set x4 = x3 = 1 and solve for x2 and then x1. Thus a particular solution is
x1 = − 4

5 , x2 = − 12
5 , x3 = 1, and x4 = 1.

1.3.3 Solving linear systems using triangular factorizations

In this section we first present algorithms for determining triangular factorizations
of the types PA = LU , A = LU , and A = LLT . Then we see how these algorithms
can be employed to solve linear systems.

Triangular factorizations without pivoting

The elements of the matrices L and U appearing in (1.35) may be obtained as one
proceeds through the reduction process of Proposition 1.12, e.g., L is defined by
(1.36) and U = A(ℓ+1) is the end product of the process. However, the elements of
L and U may also be obtained directly by equating, element by element, the left-
and right-hand sides of the equation A = LU . We have that

ai,j =

K
∑

k=1

li,kuk,j , i = 1, . . . , n and j = 1, . . . , n ,(1.27)

1.3. Systems of algebraic equations 23

where K = min(i, j), i = 1, . . . , n and j = 1, . . . , n. Noting that li,i = 1 for i =
1, . . . , n, we see that (1.27) represents n2 equations for the n2 nontrivial unknowns
li,k and uk,j where k = 1, . . . , n, i = k + 1, . . . , n and j = k, . . . , n, i.e., those which
are not known a priori to be one or zero. From (1.27) explicit formulas for these
unknowns are easily found and are given in the following algorithm for triangular
factorization without pivoting. This algorithm is known as the Doolittle reduction
of a matrix into triangular factors.

Algorithm 1.3 Triangular factorization without pivoting. Let A be an n×n
matrix which possesses an LU factorization A = LU such that uk,k 6= 0 for k =
1, . . . n − 1. This algorithm computes the factors L and U whenever no pivoting,
i.e., no interchange of rows, is necessary. All elements of L and U that are not
explicitly computed vanish. (The algorithm fails if uk,k = 0 for some k such that
1 ≤ k ≤ n− 1; see Example 1.4.)

For k = 1, . . . , n, set lk,k = 1.

For j = 1, . . . , n, set u1,j = a1,j .

For i = 2, . . . , n, set li,1 = ai,1/u1,1.

For k = 2, . . . , n, set

uk,j = ak,j −
k−1
∑

ℓ=1

lk,ℓuℓ,j for j = k, . . . , n

li,k =
1

uk,k

(

ai,k −
k−1
∑

ℓ=1

li,ℓuℓ,k

)

for i = k + 1, . . . , n .

2

An examination of the algorithm reveals that one first solves the equations
corresponding to the first row of A, then those corresponding to the first column,
then the second row, then the second column, etc. Note that uk,k 6= 0 for k =
1, . . . , min(m − 1, n) is a sufficient condition for the algorithm to proceed without
row interchanges; these are exactly the denominators needed in the computations
of the elements of L.

The operation count for Algorithm 1.3 for is approximately n3/2−n3/6 = n3/3
multiplications and a like number of additions.

As mentioned in Section 1.2, there are several variants to the factorization
A = LU given in Proposition 1.12 and algorithms analagous to the Doolittle re-
duction can be generated for these variants. For example, in the Crout reduction
algorithm we choose U to be unit upper triangular and L to be lower triangular in
the decomposition A = LU . To generate the equations for L and U in this case
we solve for a column before solving for the corresponding row. Another variant is
discussed in Exercise 3.15.

24 1. Triangular Factorization

For the sake of clarity, in Algorithm 1.3 we have kept distinct the roles of the
elements of A, L and U . If we do not wish to save the matrix A then the results of the
decomposition of A into triangular factors may be written over the corresponding
element of A. For example, we have, after the k-th stage, the following storage
scheme:





























u1,1 u1,2 · · · u1,k u1,k+1 · · · u1,n

l2,1 u2,2 · · · u2,k u2,k+1 · · · u2,n

l3,1 l3,2 · · · u3,k u3,k+1 · · · u3,n

...
...

...
...

...
...

...
lk,1 lk,2 · · · uk,k uk,k+1 · · · uk,n

lk+1,1 lk+1,2 · · · lk+1,k ak+1,k+1 · · · ak+1,n

...
...

...
...

...
...

...
lm,1 lm,2 · · · lm,k am,k+1 · · · am,n





























.

Of course, li,i = 1 need not be stored at all.
In the case where A is symmetric and positive definite, the elements of the

Cholesky factor L may be computed by the following algorithm for the Cholesky
factorization of a positive definite symmetric matrix.

Algorithm 1.4 Cholesky factorization of a positive definite symmetric

matrix. Let A be an n × n positive definite symmetric matrix. The following
algorithm generates the factor L in the factorization A = LLT .

Set l1,1 =
√

a1,1 and, for i = 2, . . . , n, set li,1 = ai,1/l1,1.

For k = 2, . . . , n set

lk,k =

(

ak,k −
k−1
∑

ℓ=1

|lk,ℓ|2
)1/2

and

for i = k + 1, . . . , n set

li,k =
1

lk,k

(

ai,k −
k−1
∑

ℓ=1

li,ℓ l̄k,ℓ

)

.

2

Because of the square roots involved, it is sometimes preferable to use the LDLT

factorization for a symmetric positive definite matrix instead of the Cholesky factor-
ization LLT . (The former factorization may be effected without any square roots.)

If one attempts to apply the Cholesky Algorithm 1.4 to a symmetric matrix A
which is not positive definite, then for some k the argument of the square root will
be non-positive. Thus, either lk,k = 0 or lk,k will be imaginary. This can serve as a
test of whether or not a given symmetric matrix is positive definite.

1.3. Systems of algebraic equations 25

We note that the operation count for the Cholesky factorization is approximately
half of the count for the factorization A = LU , i.e., for an n×n matrix the leading
term is n3/6 multiplications and a like number of additions.

From Algorithm 1.4 we see that for any k = 1, . . . , n,

k
∑

ℓ=1

|lk,ℓ|2 = ak,k

so that
|lk,i|2 ≤ ak,k for i = 1, . . . , k .

Thus the elements of the Cholesky factor L are bounded in terms of the square roots
of the diagonal elements of the given matrix A. This fact has important implications
regarding the numerical stability of the Cholesky factorization (1.19).

Triangular factorizations with pivoting

We now consider the direct computation of the factorization PA = LU given in
Theorem 1.4. Since the pivoting strategy is not known at the start of the computa-
tion, i.e., we do not know which pivot elements will vanish or be small, we cannot
simply factor the matrix PA. Indeed, the pivoting strategy is determined as one
proceeds through the reduction procedure. We obtain the following algorithm for
the Doolittle reduction with partial pivoting and implicit row scaling.

Algorithm 1.5 Triangulation factorization with partial pivoting and im-

plicit row scaling. Let A be an n×n matrix. This algorithm computes the factors
L and U and the permutation matrix P in the factorization PA = LU and also the
rank r of the matrix A. The algorithm uses partial pivoting and implicit row scaling
as discussed in Section ??.

Set k = 1, σ1 = 1, and r = 0.

For i = 1, . . . , n, set γi = i and si =

n
∑

j=1

|ai,j | .

Do while k ≤ n, σk ≤ n, and

n
∑

i=k

sγi
6= 0 :

set c = 0 ;

do while c = 0 :

for i = k, . . . , n, set dγi
= aγi,σk

−
k−1
∑

t=1

lγi,tuγt,σk
;

set c = max
i=k,...,n
sγi

6=0

|dγi
|

sγi

;

26 1. Triangular Factorization

set σk ← σk + 1 ;

set p = smallest integer such that
|dγp
|

sγp

= c ;

set r ← r + 1 ;

if k 6= p, interchange the contents of γp and γk ;

set uγk,σk
= dγk

;

for j = σk + 1, . . . , n, set

uγk,j = aγk,j −
k−1
∑

t=1

lγk,tuγt,j ;

for i = k + 1, . . . , n, set

lγi,k =
dγi

dγk

;

set σk+1 = σk + 1 ;

set k ← k + 1 .

For i = k, . . . , n, set σi = n + 1.

2

Note that the algorithm does not involve the physical interchange of rows of the
partially reduced matrices; the pivoting strategy is recorded in the integer γk. At
any stage, γi = j indicates that the i-th row of the partially determined matrices
L and U are found in the j-th row of storage. The integers σk are used to keep
track of the columns in which the pivot elements, i.e., the leading nonzero entries,
appear in any row. For the k-th row, the pivot element is in column σk. Again,
in Algorithm 1.5, we have kept distinct the roles of the elements of A, L, and
U . However, once again one may overwrite the elements of A with the nontrivial
elements of L and U , e.g., by using the overwriting scheme

dγi
→ (γi, k + σk) position in storage, i = k, . . . , n ,

uγk,j → (γk, j) position in storage, j = k + σk, . . . , n ,

lγi,k → (γi, k + σk) position in storage, i = k + 1, . . . , n .

In particular, no extra storage is required for the dγi
’s and thus Algorithm 1.5 has

storage requirements the same as that for the original matrix A, plus two integer
arrays of length m for the γi’s and the σi’s, and, if scaling is used, another array of
length m for the scale factors si.

These points are illustrated by the following example.

Example 1.11 Let A be an n×n matrix for which we are using Algorithm 1.5 to
obtain its PA = LU factorization. We illustrate the storage at the end of the third
stage of reduction, i.e., after the calculations with k = 3 are carried out. Suppose

1.3. Systems of algebraic equations 27

the pivoting strategy of the three steps is found to be p1 = 3, p2 = 5 and p3 = 5 so
that γ1 = 3, γ2 = 5, γ3 = 2, γ4 = 4 γ5 = 1, and γi = i for i > 5. Also, assume that
σ1 = 1, σ2 = 3, and σ3 = 4 so that the columns containing the pivot elements in
first three rows have indices 1, 3, and 4, respectively. We then have the following
storage scheme at the beginning of the fourth step:



























l5,1 l5,2 l5,3 ⊕ a5,5 · · · a5,n

l3,1 l3,2 × u3,4 u3,5 · · · u3,n

u1,1 u1,2 u1,3 u1,4 u1,5 · · · u1,n

l4,1 l4,2 l4,3 × a4,5 · · · a4,n

l2,1 × u2,3 u2,4 u2,5 · · · u2,n

l6,1 l6,2 l6,3 ⊕ a6,5 · · · a6,n

...
...

...
...

...
...

...
ln,1 ln,2 ln,3 an,5 · · · an,n



























.

The elements denoted by the symbol ⊕ will be filled in later with the elements of
the fourth column of L. The elements denoted by the × symbol should be zero
due to the fact that σk > k for k ≥ 2. In Algorithm 1.5 these zeros are not always
actually computed (this would be wastefull), so that these locations in storage do
not necessarily contain zeros. However, in any subsequent use of the factorization
effected by Algorithm 1.5, these storage locations are never accessed.

We note that it is sometimes recommended that the dγi
’s be accumulated in

double precision in order to minimize the effects of roundoff error.

After completing Algorithm 1.5, a pivoting strategy is known so that a posterori
we may form the matrix PA. Interestingly, if we proceed to factor PA using Al-
gorithm 1.3 (suitably amended as indicated in Exercise 1.17), it can be shown that
the factorization so obtained, i.e., the L and the U , is the same as that obtained
from Algorithm 1.5. Thus if one knew a good pivoting strategy beforehand, and re-
ordered the rows of the original matrix A following that strategy, then the reordered
matrix can be factored without invoking row interchanges.

We note that the leading term in the operation count for the factorization PA =
LU is the same as that for A = LU . This is due to the fact that the extra work
required for the pivot search is of the order n2 − n2/2 which is of lower order
than the leading term in the operation count for the factorization. The process of
row interchanges is often referred to as row pivoting. Since, for the most part, we
will not consider column interchanges, we will henceforth refer to row pivoting as
simply pivoting. The (k, σk) entry in the matrix A(k) defined in the above proof is
referred to as the pivot element and (k, σk) itself is referred to as the pivot position.
The pivot element is the denominator appearing in the vector µ that determines
the Gauss transformation M (k) used at the k-th stage. Thus, an interchange of
rows is, in theory, only necessary whenever a pivot element vanishes. The row
interchange process, i.e., premultiplication by the elementary permutation matrix
P(k,pk), is invoked so that a nonzero entry is brought into the pivot position.

28 1. Triangular Factorization

Using triangular factorizations to solve linear systems

The algorithms for triangular factorizations described above can also be used for
solving linear systems. In fact, triangular factorization algorithms are the most
efficient algorithms for solving a sequence of several systems of equations having
the same coefficient matrix but having different right-hand side vectors. In this
situation one computes the factorization of the coefficient matrix once and then
performs two solves (a backward and forward) for each right-hand side. This is
in contrast to Algorithm 1.1 in which the modifications to the right-hand side are
performed at the same time the matrix is being reduced.

As an immediate consequence of Theorem 1.4, we have the following proposition.

Proposition 1.8 Let A be a given n × n matrix A and b an n-vector. Then the
linear system Ax = b is equivalent to the linear system

LUx = Pb ,(1.28)

where the matrices L, U , and P are defined by the factorization PA = LU in
Theorem 1.4.

Once P , L, and U are determined in the factorization PA = LU , we may solve
the system LUx = Pb, or equivalently Ax = b, by applying a a forward solve to

Ly = Pb(1.29)

to determine y and then determining x by applying a back solve to

Ux = y(1.30)

using Algorithm 1.2. The forward solve is given by the following algorithm where
we assume that L has been generated by Algorithm 1.5.

Algorithm 1.6 Forward substitution procedure. Let L be an n×n unit lower
triangular matrix generated by Algorithm 1.5 and let b ∈ RI n. Then this algorithm
solves the unit lower triangular system Ly = Pb where the row interchange infor-
mation is stored in the vector γ , which is output from Algorithm 1.5.

Set y1 = b1.

For i = 2, . . . , n, set yi =



bγi
−

i−1
∑

j=1

lγi,jyj



.

2

We note that if no pivoting was performed to calculate the LU factorization
then P = I and this forward solve algorithm is still valid since in this case γi = i.
However, this algorithm is not valid for the Cholesky factorization LLT since in this

1.3. Systems of algebraic equations 29

case L is not unit lower triangular. The modifications to Algorithm 1.6 for the case
of L being an arbitrary lower triangular matrix is left as an exercise.

Example 1.12 Consider the system Ax=b where

A =





2 −1 0
4 −5 3
6 −6 −2



 and b =





1
2
−2



 .

From Example 1.2.1, A has the LU factorization

A = LU =





1 0 0
2 1 0
3 1 1









2 −1 0
0 −3 3
0 0 −5



 .

We thus solve the system Ly = b to obtain y= (1, 0,−5)T and the system Ux=y

to obtain the solution x= (1, 1, 1)T .

Operation counts

We now turn to the operation counts for solving linear systems. We stated that the
LU factorization required approximately (n3)/3 multiplications and a like number
of additions. The number of operations for the Gaussian elimination algorithm is
the same as for the LU factorization except we must also include the work required
to transform the right-hand side. However, this requires (n2 + n)/2 multiplications
and a like number of additions so that it does not affect the leading term. The
back substitution requires another (n2 − n)/2 multiplications and a like number of
additions. Thus the total to solve an n × n system by Gaussian elimination is ap-
proximately (n3)/3 multiplications and a like number of additions. To solve a linear
system using the LU factorization we see that we need to do both a forward and
back solve. However, the forward solve requires approximately n2/2 multiplications
and the back solve approximately n2/2 so that the leading term in the operation
count is the same, which, of course, is what we expect.

At the beginning of this section we mentioned that using triangular factorizations
for solving linear systems is especially useful when one wants to solve a sequence
of linear systems having the same coefficient matrix. Consider finding x(k) such
that Ax(k) = b(k) for k = 1, . . . , K, where {b(k)} denotes a sequence of right-hand
side vectors that are not known a priori. For example, the right-hand side vector
b(k) for the k-th linear system could be a function of the solution vector x(k−1)

of the (k − 1)-st linear system. Then, for example, if A is a square matrix, re-
eliminating for every k requires, for large n approximately Kn3/3 multiplications
and a like number of additions or subtractions in order to determine the sequence
{x(k)}. However, if we compute the factors L and U and the pivoting strategy P
and then solve for x(k) by Ly(k) = Pb(k) and Ux(k) = y(k), k = 1, . . . , K, the
multiplication or addition count reduces to approximately n3/3 + Kn2, the first
term accounting for the determination of the unchanging factors L and U and the
second term accounting for the K forward and backward solves.

30 1. Triangular Factorization

1.3.4 Calculation of determinants

The determinant of a matrix may be computed as a by-product of triangular fac-
torization or the Gaussian elimination algorithm. From the factorization PA = LU
where L is unit lower triangular, we see that det(PA) = detU . But det(PA) is
either equal to det A or equal to − detA since interchanging two rows of a matrix
changes only the sign of the determinant. Then it follows that

detA = (−1)ξ detU = (−1)ξ
n
∏

i

ui,i ,(1.31)

where ξ denotes the total number of row interchanges performed in transforming
the matrix A into the matrix U . The value of ξ may be easily accumulated during
the elimination procedure. Of course, if A = LU , i.e., no row interchanges were
performed, then

detA =

n
∏

i=1

ui,i .

Also we note that if A is a Hermitian positive definite matrix then as a byproduct
of the Cholesky factorization A = LL∗ we have

detA = |l1,1|2|l2,2|2 · · · |ln,n|2 ,

where li,j are the entries of the matrix L.
Similarly, in the Gaussian elimination algorithm the detA is given by (1.31)

since we have obtained U by applying elementary row operations to A. The only
effect of a row interchange is to change the sign of the determinant while a row
replacement operation, i.e., the replacement of a row by the sum of that row and
multiple another row, does not change the value of the determinant.

1.4 Triangular factorizations for m× n matrices

In this section we state the results for an m × n matrix where its entries can be
complex, analogous to those proved in Section 1.2 for a square matrix. The proofs
are left to the exercises.

We will refer to certain matrices as having the following special structure.

Definition 1.3 A matrix is said to have row echelon structure if it differs from a
row echelon matrix only in that the first nonzero entry of any row need not be a 1.

A matrix having row echelon structure is clearly upper trapezoidal; the converse
is not necessarily true.

The goal of this section is to give the result that any m × n matrix A has the
factorization PA = LU where P is an m×m permutation matrix, L is an m×m
unit lower triangular matrix, and U is an m×n matrix having row echelon structure.
The first results show show, through the use of elementary permutation matrices
and Gauss transformations, a given m× n matrix A can be reduced to a matrix U
having row echelon structure .

1.4. Triangular factorizations for m × n matrices 31

Proposition 1.9 Let A be a given m × n matrix. Then there exist an integer ℓ,
0 ≤ ℓ ≤ min(m − 1, n), Gauss transformation matrices M (k), k = 1, . . . , ℓ, and
elementary permutation matrices P(k,pk), k = 1, . . . , ℓ, k ≤ pk ≤ m, such that

U = A(ℓ+1) = M (ℓ)P(ℓ,pℓ) · · ·M (2)P(2,p2)M
(1)P(1,p1)A(1.32)

is an m× n matrix having row echelon structure.

The following result provides the general factorization.

Theorem 1.10 Given any m × n matrix A there exists an m × m permutation
matrix P , an m×m unit lower triangular matrix L, and an m×n matrix U having
row echelon structure such that

PA = LU .(1.33)

Furthermore, rank(U) = rank(A) and if A is real, then L and U may be chosen to
be real as well.

Let r = rank(U) = rank(A) denote the number of nonzero rows of U . It is, of
course, possible for r < m, e.g., if m > n or in other cases for which the rows of A
are linearly dependent. If r < m, the PA = LU factorization of the m× n matrix
A may be partitioned in the form

PA =
(

L1 L2

)

(

U1

0

)

= L1U1 ,(1.34)

where L1 is an m× r unit lower trapezoidal matrix, L2 is m× (m − r), and U1 is
an r × n full rank matrix having row echelon structure. Thus (1.34) shows that an
arbitrary m×n matrix with m > r can be factored into the product of an m×r unit
lower trapezoidal matrix and an r×n matrix with row echelon structure. Note that
L2 plays no essential role in the PA = LU factorization of A. Also, if r = n, i.e.,
A has full column rank, then U1 is an n× n square, nonsingular, upper triangular
matrix; if r = m, i.e., A has full row rank, then L = L1 and U = U1.

Proposition 1.11 Given an m×n matrix A. Partition its PA = LU factorization
as in (1.34) where U1 has full row rank and L1 is unit lower trapezoidal. Then, once
the row interchange strategy is fixed, i.e., the permutation matrix P is fixed, the
matrices L1 and U1 appearing in the factorization (1.34) are uniquely determined. If
r = rank(A), the number of rows in U1, then L2 may be chosen to be any m×(m−r)
matrix such that L = (L1 L2) is a unit lower triangular matrix.

The following results considers the case when we can perform the decomposition
without row interchanges.

Proposition 1.12 Given an m × n matrix A, denote its leading principal k × k
submatrices by Ak for k = 1, . . . , min(m, n). If Ak is nonsingular for k = 1, . . . , ℓ =

32 1. Triangular Factorization

min(m − 1, n), then there exists an m ×m unit lower triangular matrix L and an
m× n upper trapezoidal matrix U such that

A = LU ,(1.35)

where U = A(ℓ+1) and L is given explicitly by

L = (L1 L2) , where L1 =

































1

µ
(1)
2 1

µ
(1)
3 µ

(2)
3

. . .

1
...

... µ
(ℓ)
ℓ+1
...

µ
(1)
m µ

(2)
m · · · µ

(ℓ)
m

































(1.36)

and where L2 is any m × (m − ℓ) matrix such that L = (L1 L2) is an unit upper
triangular matrix. Here A(k), k = 1, . . . , (ℓ+1), is defined in the proof of Proposition
(1.3) and

µ
(k)
j =

a
(k)
j,k

a
(k)
k,k

.(1.37)

Moreover, ui,i 6= 0 for i = 1, . . . , min(m − 1, n). If A is real then U and L may be
chosen to be real as well.

Exercises

1.1 Let P(k,ℓ) be defined by (1.1). Show that (1.2) holds.

1.2 It is not efficient to store an entire m×m permutation matrix P on a computer.
Describe an efficient way to give sufficient information to describe a permutation
matrix.

1.3 Show that if M (j) is given by (1.3), then

(

M (j)
)−1

= I + µ(e(j))T .

Given that M (j) and M (ℓ) have the form (1.5) with possibly different values of q,
determine (M (j))−1(M (ℓ))−1 for j < ℓ.

1.4 Show that a permutation matrix is unitary. Show that the inverse of a permu-
tation matrix is a permutation matrix. Show that the product of two permutation
matrices is a permutation matrix.

1.4. Triangular factorizations for m × n matrices 33

1.5 Give an example of a nontrivial matrix that fails to have a unique LU factoriza-
tion even if the factorization can be obtained without any row interchanges. Prove
or disprove the assertion that if a square matrix A has an A = LU factorization,
then A is invertible.

1.6 Suppose an m×n matrix A has an A = LU factorization. State and prove the
most general uniqueness result for the factors L and U .

1.7 Prove that if A has the factorization A = LU and A is nonsingular then the
factorization is unique.

1.8 Show that if an m× n matrix A has an A = LU factorization, then L is given
by (1.36).

1.9 Write down the equations for the Crout factorization A = LU where U is unit
triangular and L is lower trapezoidal.

1.10 Let A be a n×n Hermitian matrix all of whose leading principal matrices are
nonsingular. Prove that there exists a unique unit lower triangular matrix L and a
real diagonal matrix D such that A = LDL∗.

1.11 Let A be an n × n positive definite matrix. Prove that there exists a unit
lower triangular matrix L, a unit upper triangular matrix U , and a diagonal matrix
D such that A = LDU where the diagonal entries of D have positive real parts and
L, D, and U are uniquely determined.

1.12 Write down an algorithm for the LDL∗ decomposition of a Hermitian matrix.

1.13 Write down an algorithm of the LDU decomposition of a positive definite
matrix.

1.14 Derive a storage scheme for Algorithm 1.4 that takes advantage of the Her-
mitian structure of A and of its Cholesky factors.

1.15 Proposition 1.12 gives sufficient conditions for a matrix to have an LU de-
composition without pivoting. Give necessary conditions on the matrix A so that
is has a factorization A = LU . Modify Algorithm 1.3 to handle the general case.

1.16 Let A be an m × n matrix. Verify the operation count for the factorization
A = LU for the case m > n. Determine the operation count for the case m < n.

