
Introduction to OpenMP

Programming

John Burkardt: burkardt@vt.edu
Advanced Research Computing

Virginia Tech
17 March 2017

Slides available at
https://secure.hosting.vt.edu/www.arc.vt.edu/class note/

1 / 47

OVERVIEW: Coverage

This course shows:

many science problems include parallel opportunities;

shared memory threads make a simple model of parallelism;

OpenMP enables shared memory threads for C/C++/Fortran;

loops can be easy to parallelize;

OpenMP programs can run on your laptop, or an ARC system;

it’s easy to check whether your program runs faster.

No prior knowledge of OpenMP is assumed.

Experience writing or using C, C++ or Fortran programs is useful.

2 / 47

OVERVIEW: A Parallel Model

A simple model of parallelism is called SIMD, for “Single Instruction,
Multiple Data”.

On an ancient galley, each time the drum was struck, each prisoner had
to carry out a stroke of the oar.

In SIMD parallelism, a fixed sequence of operations is to be carried out
repeatedly, on a set of data. We assume several “cores” are available,
each of which can simultaneously process a distinct subset of the data.

It is natural to hope for a great speedup in execution, if the cores can
cooperatively divide up the tasks, carry out their work without interfering
with each other, and combine their results at the end.

The results should be the same as if a single core had done the work in
the ordinary, sequential fashion.

3 / 47

PARALLEL: Parallel Problems Obviously Exist

Many problems can be handled with some parallel approach:

search for a matching item in a list, such as protein sequences;

find the maximum value in an array;

sort a set of items;

smooth or sharpen or filter pixels in an image;

iterative solution of linear equations;

approximation of PDE solutions;

4 / 47

HARDWARE: Multicore Memory Processors

OpenMP is inspired by the development of chips containing a single
chunk of memory and several processors or cores.

These cores could be running independent programs, in which case the
memory is split into separate unshared regions.

But a single program could run, use all of the memory, and somehow
orchestrate the cores to cooperate on one calculation.

Thus, OpenMP has a hardware restriction: how many cores share a single
memory address space?

(Lovers of OpenMP have tried to get around this restriction by
constructing NUMA machines, in which multiple chips are strung
together and tricked into behaving like one object with enormous memory
and thousands of cores.)

5 / 47

LOOP: OpenMP Concentrates on FOR and DO Loops

There are several ways that OpenMP allows you to create parallel
programs. The simplest way in which OpenMP can implement parallelism
is to change the way a loop is executed in a C/C++/Fortran program.

The idea is that:

a loop can represent a lot of work (many iterations or many
instructions, so parallelization is effective);

each loop iteration is the same instructions, so parallelization is easy;

if each loop iteration is independent, parallelization is correct.

If these items are true, then the loop iterations can be split into multiple
threads and executed in parallel.

6 / 47

LOOP: Loop Iterations Are Divided Among Threads

For example, we might imagine that the sequential loop:

for (i = 0; i < 1000; i++)

{

x[i] = x[i] + s * y[i];

}

could be split into two threads as:

Thread #0 | Thread #1

|

for (i = 0; i < 500; i++) | for (i = 500; i < 1000; i++)

{ | {

x[i] = x[i] + s * y[i]; | x[i] = x[i] + s * y[i];

} | }

It’s easy to extend this to more threads.

7 / 47

LOOP: Indexing Can Be More Complicated

When multiple threads can interfere with each other.

for (i = 1; i <= 1000; i++)

{

x[i] = x[i] + sqrt (y[i-1]); <-- This is OK
}

for (i = 1; i <= 1000; i++)

{

x[i] = x[i] + x[i-1]; <-- This will fail!
}

for (i = 0; i <= 1000; i = i + 2)

{

z[i] = sin (i * pi);

z[i+1] = cos (i * pi); <-- This is OK
}

One test: does the sequential version of the loop work exactly the same if
we do the iterations in reverse order?

8 / 47

LOOP: “Left Hand Side” Variables Can Conflict

Problems occur if more than one loop iteration tries to write or modify
the same variable, which occurs on the left hand side of a statement.

Here, we have a y vector; we’d want to add half of each entry to the
corresponding “left” entry in x and half to the right.

for (i = 1; i < n - 1; i++)

{

x[i-1] = x[i-1] + 0.5 * y[i];

x[i+1] = x[i+1] + 0.5 * y[i];

}

Even in our simple two-thread model, this code will have the potential of
conflicts. Suppose that n=1000. Thread #0 might try to execute the
second addition for i = 499 while thread #1 is executing the first
addition for i = 501.

9 / 47

LOOP: “Left/Right Hand Side” Variable Problems

Sometimes a variable occurs on both the left and right hand side.
Since this means that the variable’s value changes during the loop
execution, it means we can’t safely run it in parallel.

This code is overwriting x by its cumulative sums:

for (i = 1; i < n; i++)

{

x[i] = x[i] + x[i-1];

}

Note that if we try to compute
x[2] = x[2] + x[1],
the value will depend on whether we have already executed the statement
x[1] = x[1] + x[0].

10 / 47

LOOP: Another Example of Side Effects

Another dangerous practice involves temporary variables that are
updated during the loop iteration.

For example, let’s plot the function y = x2 between 0 and 1, by
evaluating the function at 1001 equally spaced points:

x = 0.0;

for (i = 0; i <= 1000; i++)

{

y[i] = x * x;

x = x + 0.001;

}

The above loop can’t execute correctly in parallel, but we can easily fix it:

for (i = 0; i <= 1000; i++)

{

x = i * 0.001;

y[i] = x * x;

}

11 / 47

LOOP: A Summation

Here’s a similar example, (approximating an integral) which is actually
important enough that we will see how to fix it later:

n = 1000;

q = 0.0;

for (i = 0; i < n; i++)

{

x = i / (double) n;

q = q + x * x;

}

q = q / n;

In this loop, x is not the problem, it’s q, which is being modified on every
iteration. In our two thread parallel version, would we have two separate
variables called q? If so, what do we do with them at the end? If there’s
just one variable, and the threads have to share it, then how do we avoid
conflicts?

12 / 47

LOOP: Another Example of Left/Right Variables

Problems can occur if data appears on both the left and right hand
side, and so is changed during the calculation.

Here is a sort of Gauss-Seidel iteration (for the -1,2,-1 matrix) for solving
a linear system.

x[0] = (b[0] + x[1]) / 2.0;

for (i = 1; i < n - 1; i++)

{

x[i] = (b[i] + x[i-1] + x[i+1]) / 2.0;

}

x[n-1] = (b[n-1) + x[n-2]) / 2.0;

Can you see that this loop will not get the same results if it is run in
parallel by, say, two threads?

13 / 47

LOOP: Simple Rules for Parallel Loops

In summary,

If we plan to run a loop in parallel, it should be written in such a
way that the loop iterations would get the same results, even if they
were executed in the reverse order, or any order;

We need to avoid cases in which the same variable is modified by
two different iterations of the loop;

Some loops, like the integral approximation, use a single variable to
collect results from all the iterations. If we want to use such
methods, we need to come up with a special approach.

14 / 47

MODEL: OpenMP Enables Helper Threads

When part of a computational problem can be done in parallel,
OpenMP can be used to “annotate” the corresponding computer
program.

Parallel parts of the program are indicated by a parallel block.

Inside the parallel block, an OpenMP directive may be used to indicate
that one or more loops should be handled by multiple threads.

By default, OpenMP assumes that all data is shared in common.

But in order for the threads to run different iterations, they each need
their own separate loop index variable. Such a variable is said to be
private.

15 / 47

SAXPY: Add a multiple of one vector to another

Now we are ready to consider how OpenMP can be used to parallelize
a simple programming task.

Our example starts with an n-vector called x and adds to it the vector y,
multiplied by the scalar s:

~x ← ~x + s · ~y

We assume that the values of x and y are set by some formula, about
which we don’t really care that much.

Multiple threads can carry out this task, as long as they each know what
index range to handle, can read values of s, x, and y, and can write
updated values of x without interfering with each other.

16 / 47

SAXPY: C Example (Before)

int main ()
{

int i, n = 1000;
double s = 1.23, x[1000], y[1000];

for (i = 0; i < n; i++)
{

x[i] = (double) ((i + 1) % 17);
y[i] = (double) ((i + 1) % 31);

}

for (i = 0; i < n; i++)
{

x[i] = x[i] + s * y[i];
}

return 0;
}

17 / 47

SAXPY: C Example (After)

int main ()
{

int i, n = 1000;
double s = 1.23, x[1000], y[1000];

pragma omp parallel private (i) <-- Allow parallelism.
{ Variable i is private
pragma omp for <-- Execute this loop using threads

for (i = 0; i < n; i++)
{

x[i] = (double) ((i + 1) % 17);
y[i] = (double) ((i + 1) % 31);

}

pragma omp for <-- Execute this loop using threads
for (i = 0; i < n; i++)
{

x[i] = x[i] + s * y[i];
}

} <-- End parallelism
return 0;

}

18 / 47

COMMENT: FORK/JOIN Parallelism

OpenMP uses a kind of parallelism called fork/join. A single “master”
thread is active until a parallel region is entered.

Inside a parallel region, all the threads will execute all the statements...
which is NOT what you want, unless you tell them to split up the work!,
using the statement

pragma omp for

This tells the threads to split up the loop iterations of the next for loop,
and execute them in parallel. This is where the main speedup of
OpenMP comes from.

When a parallel region is exited, the helper threads become inactive and
the master thread continues on its own (a “join”).

19 / 47

COMMENT: Private Data

If multiple threads are executing different loop iterations at the same
time, there is a potential for disaster.

Start with the loop counter i; each thread relies on the value of this
variable to tell it what to do next. To avoid problems, we need to ensure
that each thread gets a private copy of this variable that the other
threads can’t see or change.

By default, most variables will be shared, but it is the user’s responsibility
to specify, as part of the parallel statement, which variables in the
parallel region should have the special private attribute.

I list the attributes of all variables in the region, just to be clear.

Typically, operations on vectors and arrays don’t cause too many
problems inside a loop, and such data can be shared. But often certain
scalar calculations have to be handled specially so as not break
parallelism.

20 / 47

COMMENT: Private Data

Suppose we wish to carry out a rotation operation on vectors X and Y:

[C S] * [X0 X1 X2 ... Xn-1]

[-S C] [Y0 Y1 Y2 ... Yn-1]

A natural way to write this is:

for (i = 0; i < n; i++)

{

t = c * x[i] + s * y[i];

y[i] = -s * x[i] + c * y[i];

x[i] = t;

}

We need the temporary variable t to hold the new value of x[i], until
we’ve had time to use the old value of x[i] to update y[i].

21 / 47

COMMENT: Private Data

To do this loop in parallel, t must be made private.

pragma omp parallel \

private (i, t) \

shared (c, s, x, y)

{

pragma omp for

for (i = 0; i < n; i++)

{

t = c * x[i] + s * y[i];

y[i] = -s * x[i] + c * y[i];

x[i] = t;

}

}

22 / 47

NESTING: Jacobi

Assume the vector x is initialized. How can we parallelize the following
Jacobi iteration for solving A ∗ x = b?

for (k = 0; k < 1000; k++) <-- Sequential

{

y[0] = (b[0] + x[1]) / 2.0;

for (i = 1; i < n - 1; i++) <-- Can be parallel

{

y[i] = (b[i] + x[i-1] + x[i+1]) / 2.0;

}

y[n-1] = (b[n-1) + x[n-2]) / 2.0;

for (i = 0; i < n; i++) <-- Can be parallel

{

x[i] = y[i];

}

}

23 / 47

NESTING: Jacobi

for (k = 0; k < 1000; k++)

{

pragma omp parallel private (i) shared (n, b, x, y)

{

y[0] = (b[0] + x[1]) / 2.0;

pragma omp for

for (i = 1; i < n - 1; i++)

{

y[i] = (b[i] + x[i-1] + x[i+1]) / 2.0;

}

y[n-1] = (b[n-1) + x[n-2]) / 2.0;

pragma omp for

for (i = 0; i < n; i++)

{

x[i] = y[i];

}

}

}
24 / 47

DENOISE: Salt and Pepper Noise

25 / 47

DENOISE: Salt and Pepper Noise

We propose to repair the damage to the image using a NEWS
(North/East/West/South) media filter.

Each pixel has been assigned R, G and B values between 0 and 255.

For each component (R, G or B), compare the central pixel’s value with
those of its N, E, W and S neighbors, and replace by the median.

Not a perfect repair, but considerable improvement!

26 / 47

DENOISE: Salt and Pepper Noise

27 / 47

DENOISE: Original coding

for (i = 1; i < m - 1; i++)
{

for (j = 1; j < n - 1; j++)
{

p[0] = color[i-1+ j *m]; <-- north
p[1] = color[i+1+ j *m]; <-- south
p[2] = color[i +(j+1)*m]; <-- east
p[3] = color[i +(j-1)*m]; <-- west
p[4] = color[i + j *m]; <-- central

qsort (p, 5, sizeof (int), int_cmp);

color2[i+j*m] = p[2]; <-- replace by median
}

}

for (i = 1; i < m - 1; i++)
{

for (j = 1; j < n - 1; j++)
{

color[i+j*m] = color2[i+j*m];
}

}

28 / 47

DENOISE: recoding with OpenMP

pragma omp parallel \
private (i, j, p) shared (m, n, color, color2)

{
pragma omp for
for (i = 1; i < m - 1; i++)
{

for (j = 1; j < n - 1; j++)
{

p[0] = color[i-1+ j *m]; <-- north
p[1] = color[i+1+ j *m]; <-- south
p[2] = color[i +(j+1)*m]; <-- east
p[3] = color[i +(j-1)*m]; <-- west
p[4] = color[i + j *m]; <-- central

qsort (p, 5, sizeof (int), int_cmp);

color2[i+j*m] = p[2]; <-- replace by median
}

}
pragma omp for
for (i = 1; i < m - 1; i++)
{

for (j = 1; j < n - 1; j++)
{

color[i+j*m] = color2[i+j*m];
}

}
} 29 / 47

DENOISE: Timing on HokieSpeed

export OMP_NUM_THREADS=1 (or 2 or 4 or 8 or 16)

t1 = omp_get_wtime ();

filter R, G and B
t2 = omp_get_wtime ();

print t2-t1 seconds

Threads Filter Time (seconds)

1 0.2564

2 0.1354

4 0.0699

8 0.0372

16 0.0395

30 / 47

REDUCTION: Integral

When we estimate an integral, the summation variable crosses the line
between private and shared.

include <stdlib.h>
include <stdio.h>

double f (double x);

int main ()
{

double a = 1.0, ai, b = 100.0, bi, q, x;
int i, n = 1000;

q = 0.0;
for (i = 0; i < n; i++)
{

ai = ((n - i) * a + (i) * b) / n;
bi = ((n - i - 1) * a + (i + 1) * b) / n;
x = 0.5 * (ai + bi);
q = q + (bi - ai) * f (x);

}
printf ("Integral estimate = %g\n", q);

return 0;
}

31 / 47

REDUCTION: Integral
q is treated as a “reduction” variable. Each thread works on a private

copy; on loop completion these are all summed to a single shared copy.
include <stdlib.h>
include <stdio.h>

double f (double x);

int main ()
{

double a = 1.0, ai, b = 100.0, bi, q, x;
int i, n = 1000;

pragma omp parallel private (ai, bi, i, x)
{

pragma omp for reduction (+ : q)

q = 0.0;
for (i = 0; i < n; i++)
{

ai = ((n - i) * a + (i) * b) / n;
bi = ((n - i - 1) * a + (i + 1) * b) / n;
x = 0.5 * (ai + bi);
q = q + (bi - ai) * f (x);

}
}
printf ("Integral estimate = %g\n", q);

return 0;
} 32 / 47

RUN: Compiler Switches Activate OpenMP

GNU:

gcc -fopenmp myprog.c

g++ -fopenmp myprog.cpp

gfortran -fopenmp myprog.f

gfortran -fopenmp myprog.f90

Intel:

icc myprog.c -openmp -parallel

icpc myprog.cpp -openmp -parallel

ifort myprog.f -openmp -parallel -fpp

ifort myprog.f90 -openmp -parallel -fpp

Portland Group:

pgcc myprog.c -mp

pgc++ myprog.cpp -mp

pgf77 myprog.f -mp

pgf95 myprog.f90 -mp

33 / 47

RUN: Threads Versus Processors

OpenMP knows how many processors (cores) are available on the
system.

However, when you want to run in parallel, you actually specify how
many threads you want; this is the number of parallel tasks to be carried
out at one time, and usually means how you want to “slice up” your loop.

Using 1 thread means sequential execution.

Asking for 2 threads means the work will be split into two chunks, and it
will be done in parallel if there are at least two processors available.

Similarly, we can ask for 8 threads, but we might only have four
processors. In that case, each processor will handle two threads.

It usually makes sense to ask for the number of threads to be the number
of processors; occasionally you can get a speedup by having twice the
number of threads.

34 / 47

RUN: Specifying the Number of Threads

When we run a program whose OpenMP directives have been activated,
then OpenMP looks for the value of an environment variable called
OMP NUM THREADS to determine the default number of threads.

You can query this value by typing:

echo $OMP_NUM_THREADS

A blank value is the same as 1. Usually, however, it’s set to a sensible
value, such as the number of cores available.

You can reset this environment variable using a command like:

export OMP_NUM_THREADS=4 <-- (No spaces around equal sign!)

and this new value will hold for any programs you run interactively.

35 / 47

RUN: Trying Different Numbers of THreads

Changing the number of threads is easy, and can be done at run time.

export OMP_NUM_THREADS=1

./myprog

export OMP_NUM_THREADS=2

./myprog

export OMP_NUM_THREADS=4

./myprog

export OMP_NUM_THREADS=8

./myprog

It’s legal, but usually pointless, to define more threads than the number
of available cores.

36 / 47

RUN: ARC Systems Available

You can run OpenMP jobs on ARC systems.

Since an OpenMP job requires shared memory, it can typically only use
one node of a system.

System Nodes Cores per node Comment
Cascades 196 32
DragonsTooth 48 24
NewRiver 134 24
BlueRidge 408 16
BlueRidge/mic 130 120 MIC coprocessors
HokieSpeed 204 12 (shuts down after May!)
HokieOne 1* 492 (shuts down after May,

maximum 192 cores per user.)

See, for instance,
https://secure.hosting.vt.edu/www.arc.vt.edu/computing/cascades/

37 / 47

RUN: Running OpenMP on ARC Systems

You need to request an account on a system, such as Dragonstooth.

You need to transfer your program file using sftp or scp.

sftp username@dragonstooth1.arc.vt.edu

put myprog.c

You can log into the login nodes dragonstooth1 or dragonstooth2 and
run a small, short job interactively:

gcc -o myprog myprog.c -fopenmp <-- Compile the program

export OMP_NUM_THREADS=24 <-- Set number of threads

./myprog <-- Run the program

38 / 47

RUN: Running OpenMP on ARC Systems

For production jobs, you must write a batch script, perhaps
“myprog.sh”, that sends your job for execution on a non-interactive
compute node. This must also be copied to dragonstooth1 or
dragonstooth2.

In order to run the job, you should be logged into dragonstooth, and you
should be in the same directory as your program “myprog.c” and the
script “myprog.sh”.

To submit the job for execution, type:

qsub myprog.sh
122989.dt-scheduler.dt.arc.internal <-- system response

<-- Job number is 122989

Now you must wait, a short time or a long time, for the scheduler to
decide when to run your job, and then for the job to run.

checkjob -v 122989 <-- to check status of job

qdel 122989 <-- to kill the job

showq -u username <-- to show all your queued jobs

39 / 47

RUN: A Batch Script

The script myprog.sh might look something like this:

#! /bin/bash

#PBS -l walltime=00:05:00 <-- 5 minutes max

#PBS -l nodes=1:ppn=24 <-- request 1 node, all cores

#PBS -W group_list=dragonstooth

#PBS -q open_q <-- Use small ‘‘free’’ queue

cd $PBS_O_WORKDIR <-- Move to directory from

which job was submitted.

module purge <-- Unload all modules

module load gcc <-- Load the gcc compiler

gcc -o myprog myprog.c -fopenmp <-- Compile program

export OMP_NUM_THREADS=24 <-- Specify threads

time ./myprog <-- Run program and

report required time

40 / 47

RUN: Running OpenMP on ARC Systems

Once your job has executed, the output will appear in the directory
associated with the job, with a name constructed from the batch file
name and the job number.

In our example this would be:

myprog.sh.o122989 <-- the output file

myprog.sh.e122989 <-- the error file

Since I would prefer to get just one output file, I often add to my batch
file the following command to merge the two:

#PBS -j oe <-- join the output and error files

in which case, all my information would be in one file:

myprog.sh.o122989 <-- the output AND error file

41 / 47

TIME: Simple Performance Analysis

The reason to use OpenMP is so your program runs faster. It’s
important to be able to reliably measure your program’s speed as you ask
for more and more threads.

A simple was to do this uses the time command:

export OMP_NUM_THREADS=1

time ./myprog

export OMP_NUM_THREADS=2

time ./myprog

export OMP_NUM_THREADS=6

time ./myprog

The output includes the total time, plus a breakdown into user time
(your fault) and sys time (the system’s fault). Usually, the lump sum
value is good enough.

42 / 47

TIME: Output from TIME:

Here’s an example of what time told me for a sample calculation:

Run sequentially (Compiled without OpenMP option.)
real 0m5.499s
user 0m5.492s
sys 0m0.004s

Run with 1 thread. (Compiled with OpenMP option.)
real 0m6.704s
user 0m6.694s
sys 0m0.009s

Run with 2 threads.
real 0m3.418s
user 0m6.823s
sys 0m0.009s

Run with 6 threads.
real 0m0.988s
user 0m5.902s
sys 0m0.015s

43 / 47

TIME: Is My Program Running Faster?

Plot the number of threads T as the X axis, and the ratio (time with 1
thread)/(time with T threads) on the Y axis, which is your speedup.

44 / 47

TIME: Alternative

While the time command is a good first tool for measuring program
speed, it can only time the entire program.

You might be interested in finer measurements

How long did this single function take to execute?

Did this loop run faster after I parallelized it?

To answer such questions, there is a special OpenMP function called
omp get wtime()

seconds = omp_get_wtime ();

operations to time;

seconds = omp_get_wtime () - seconds;

45 / 47

CONCLUSION

This presentation has focused exclusively on the most common issues
that arise in OpenMP parallelization:

recognizing parallelizable applications;

recognizing loops that are candidates for parallelism;

spotting variable usage that can hinder parallelism;

modifying loops in a C code with OpenMP directives;

how to run a job on ARC systems.

how to use time to time your program;

For more advanced and interesting cases, check the references, or take
the NLI class Intermediate OpenMP Programming.

46 / 47

CONCLUSION: References

Parallel Programming in OpenMP, Chandra, et al;

Using OpenMP; Chapman, et al;

Parallel Programming in C with MPI and OpenMP, Quinn;

OpenMP Tutorial, Blaise Barney,
https://computing.llnl.gov/tutorials/openMP/

47 / 47

