TAKE MPI FOR A TEST DRIVE

Networked Learning Initiatives Class

John Burkardt: burkardt@vt.edu
Advanced Research Computing
Virginia Tech
10 April 2017

Slides available at:
https://secure.hosting.vt.edu/www.arc.vt.edu/class_note

Take a Test Drive on Our New Model Cluster!

2/43

Coverage

Come with me for an hour, and take a test drive on one of ARC's shiny
new computer clusters, called NewRiver.

I'll show you how to drive a program that runs in parallel, using MPI.

For our test drive, MPI is all under the hood, making the parallel engine
run super-fast, without us worrying about the details of programming.

Taking MPI for granted, we'll concentrate on how you can get access to
ARC, what sort of MPI programs are available, how they are run, and
how you give them input and collect the output.

Many of our most satisfied customers use the ARC cluster in this way,
without having to do any programming.

If you like what you see, you may be able to drive home with an MPI
program that solves problems in your research area.

Coverage

This course shows:

some scientific problems have a natural parallelism;

multiple programs can cooperate, via MPI,

many scientific programs already use MPI;

a cluster organizes many computers to run an MPI program;
a laptop computation can be transferred to the cluster;;
how an MPI program can be run, and the results recovered,;

This class is not interested in MPI programming itself, only in how to run
an MPI program that someone else has already written.

This class assumes little or no knowledge of MPI or programming.

A little experience with Linux, computing on remote computers, or
scripting will all be helpful, but is not assumed.

What is Parallel Computing?

A single computer processor has reached a physical speed limit.

To solve problems that are bigger, or to solve them faster, now requires
some kind of parallel computing.

To take advantage of parallel computing, a user program must be
revised, to identify tasks that can be worked on simultaneously.

The program modifications will depend on the parallel program
environment available.

To some extent, this means we can't think only about software and
algorithms, but must worry about memory accesses, network bandwidth,
and hardware design (multicore machines, multinode clusters, very large
shared memory, general purpose GPU's, other hardware accelerators).

MPI has been the top choice for parallel programming for 20 years.

Parallel Programming Choices

@ GNU Parallel: execute commands or small scripts on separate
computers;

@ Posix Threads, (“pthreads”): allows a program to create and control
multiple threads of work;

e OpenMP: annotate C/C++/Fortran program for shared memory
parallelism;

@ MPI: run multiple communicating instances of a program on
multiple machines;

e CUDA, OpenCL, OpenACC: allow CPU to offload work onto GPU;

@ OpenHMMP: general “heterogeneous” parallel computing (GPU's or
other accelerators);

e Hadoop, Spark: parallel processing of big data.

A Perfectly Parallel Problem

Suppose we have received a list of the sequence of chain of amino
acids forming each of 10,000 proteins. Each of the 23 amino acids is
represented by a unique letter, and each list is long.

#1: ANNPERHVWQBBCNZKG. ..
#2: WFRGEQRRMYZLAKVSS...
#3:

The weight of the protein is found by looking up and adding the weight
of each amino acid in the sequence.

If we had 10,000 computers, we could do just one problem on each.

We will assume all the results are printed on a single output device, and
that we don't care about the order in which this happens.

The programs don't have to start at the same time, nor communicate.

In order to distribute the problems, though, we probably have to specify
each file name as input, or assign each computer an ID number that
allows it to figure out the problem it is to solve.

Almost Perfectly Parallel Problem

But suppose we need the maximum of all the weights we computed.

Then we must wait til all the programs are done, and then we still have a
task of scanning the list of weights and finding the maximum.

It would be preferable if the 10,000 programs could somehow bring all
their results together and reduce them to the single result we are
interested in.

This requires all the programs to run at the same time (synchronization),
and be able to send results to a single computer (communication) which
determines the maximum.

This is the kind of computation MPI facilitates:

@ a big problem is divided into similar subproblems;

@ the subproblems are mainly solved on separate computers;

@ occasionally, the computers communicate small amounts of data to
complete the task.

A Practical Parallel Problem Example

Here is a more realistic problem that MPI can help parallelize.

A sheet of metal is heated by a source field F(x,y,t). We observe the
temperature at a MxN array of points at regular time intervals.

Let T;j« represent the temperature at location (/,J) and time step K.

A simple model of the process predicts the values at time K+1 from the
value at time K of the point (I,J) and its 4 neighbors:

Tiok+1=T14k + Fik
At

+ QE(TI+1,J,K + Ti—1gk+ Tigrak+ Tro—1k — 4% Ti yk)

where « is the thermal diffusivity (how fast heat spreads in space).

Without parallelism, we simply set up a triple iteration, for all time steps
k, for all vertical coordinates j, for all horizontal coordinates i.

Each Process Works on a Subregion; Occasional Messages

So how could we do this in parallel?

Time is sequential, but space can be split among P computers (or
“processes”), and treated in parallel.

A given process P can advance the temperature for every point in its
subregion, if that point's 4 neighbors are also available. But that means
the points along the boundary have incomplete data.

But MPI allows any process to ask any other process for information; the
missing data can be requested, received, and the update done.

As long as the number and size of messages are small, the computation
can proceed in parallel at a rate that is almost P times faster.

10/43

Ghost Cells: Information on Boundaries Must be Shared

11/43

Some Complete MPI Programs Are Ready For You

As you can imagine, it takes some programming effort to identify
opportunities for parallelism, and to rewrite a program to use the MPI
library in the right way.

In cases where the entire program has already been written, you are
excused from having to learn how to program in MPI. In fact, you are
even excused from having to learn how to program at all.

So if an MPI program exists for your problem, two tasks remain:

@ how to use the program (what input to give, what to do with output)
@ how to use the program in parallel on a remote cluster.

Item 1 depends on what program you're interested in,
item 2 involves ideas and skills that we can all usefully practice today.

12/43

Take a Test Drive on an ARC Cluster

Today we will take an MPI program out for a spin, getting a test drive
that allows us to pick up the skills needed to work on a modern computer
cluster such as provided by ARC.

We will use canned input files, and won't be too interested in the results.

We will focus on:

@ getting access to ARC;

getting basis information about the program we want to use;
preparing your input;

how things relate: laptop, network, login nodes, compute nodes;
the ways we move around: ssh, sftp, gsub;

how we configure our computation: job files, module commands;
MPI: compilers, mpirun command, timing, multiple processes.

13/43

How to Get an ARC Account

ARC clusters include BlueRidge, Cascades, DragonsTooth,
Huckleberry, NewRiver.

NewRiver is quite suitable for running MPI applications.

Any faculty member or postdoc can apply for an account on any ARC
cluster. Students need a faculty member to sponsor their applications.

To request an account, you go to the web page:
https://secure.hosting.vt.edu/www.arc.vt.edu/
and select the menu choices

USER INFO / Submit a Request / Account.

14/43

The Online ARC Account Request Form

Q¢

[< I < <]

A Little Bit about LAMMPS:

The program we are going to run is called LAMMPS; it's a molecular
modeling program. It simulates the behavior of thousands of atoms,
something like tracking the motion of many billiard balls over time.

For our exercise, all we really need to know is that LAMMPS:
@ expects to read a single input file;
@ is available on NewRiver;
@ can run faster by using MPI.

16/43

LAMMPS Problems Are Big:

A LAMMPS computation is a little bit like making a movie. We start
with a single frame of data, knowing the positions and velocities of each
particle at a starting time.

Each particle experiences an acceleration, or change in velocity, which is
the sum of the force exerted on it by every other particle, along with,
possibly, the effects of externally applied forces, such as gravity or applied
electromagnetic fields.

The inter-particle forces depend on distance, so to compute the force on
a particle, we need to know where all the other particles are.

Using the position, velocity, and acceleration, the position and velocity at
the next time step can be estimated, so we have our next frame.

A typical calculation involves millions of particles, millions of time steps.

17/43

LAMMPS Problems Are Parallelizable:

It is easy to see opportunities for parallelism in LAMMPS.

To compute the next frame of data, the system “stands still” while every
particle's information is updated.

This means that if we have P processors available, we can divide the
updates among them, and hope to run faster.

There is a substantial amount of communication, since a processor needs
to have updated information about the locations of all the particles, in
order to work out the forces to be applied to its subset of particles.

For a very large problem, this communication cost could substantially
reduce the benefit of having P processes.

18/43

Getting the Example Files

To use an MPI program on the cluster, you typically have an input file
of data, and a job control file. Both of these might initially be created on
your laptop, with an editor you prefer.

For our MPI test drive, we will just copy an input file and job file to our
laptops, and pretend we created them.

| should be able to give you a copy of the files from a USB drive:
o colloid.in, an input file;
@ colloid.sh, a job control file.

These are both text files, so you can type them, or look at them with an
editor, search, modify or copy them.

If you can log into NewRiver, then you can copy them from there instead:

cp “burkardt/demo_mpi/x

19/43

LAMMPS Can Run on a Laptop

The lammps program can be installed on your laptop after downloading
it from http://lammps.sandia.gov

The program could be run right on your laptop, with a command like
lammps < colloid .in
if you happen to be running a version of Linux or Mac OSX.

If your laptop has multiple cores (2, 4, maybe 8) and an MPI compiler,
you can even run lammps with a mild degree of parallelism.

The reason for running lammps on a cluster is to be able to take
advantage of much higher degrees of parallelism.

The rest of the class concentrates on making lammps < colloid.in
happen fast on a big cluster.

20/43

A Map of You and the NewRiver Cluster

newriver3, 4, 5, 6...

Job Scheduler

-

newriverl newriver2

21/43

Getting Around on the Cluster

So now let us assume that the program you want to run, which today is
lammps, is available on the cluster compute nodes.

Your input files are sitting on your laptop, where you probably prefer to
do editing and visualization.

The cluster login nodes are a halfway place; you can login there; you can
transfer files there; from the login nodes you can send jobs to the
compute nodes, and receive their output.

We need to learn how to communicate with the login nodes, and how to
manage our work there.

22/43

Connect Linux or OSX Laptop to Login Nodes

From Mac OSX, or Linux, you log into your ARC account using ssh, and
you transfer files back and forth with sftp.

You'll probably want to open two terminals on your laptop, one for
interaction and one for file transfer.

In the interactive terminal:
ssh -X PID@newriverl.arc.vt.edu
(The optional -X switch ensures that graphics and emacs work correctly.)

In the file transfer terminal, first move to the laptop directory where you
have files you want to transfer. Then type:

sftp PID@newriverl.arc.vt.edu

In both cases, you will be prompted for a password to complete the login.
But in the ssh window, you'll now be talking directly with the NewRiver
node, while in the sftp window you'll be talking to the sftp program
about which files to move.

23/43

Connect Windows Laptop to Login Nodes

From Windows, the putty program enables logging in and file transfer.
If you don't have it installed already, you can go to
http://www.chiark.greenend.org.uk/ sgtatham/putty/

putty can be run either by clicking on its icon, or from the Windows
command line.

If you are using the graphic interface, then in the dialog box fill in the
HostName field with newriverl.arc.vt.edu, and the ConnectionType
with ssh and then choose Open,

or, from the command line, type:

putty.exe -ssh PID@newriverl.arc.vt.edu

24/43

From Window Laptop to Login Nodes

The putty package includes psftp, a file transfer program, which can
only be operated from the Windows command line.

To run psftp, you need to tell Windows the name of the directory where
putty and psftp are stored. This is done by a command like:

set PATH=C:\path to putty directory;,PATH,

If you give the location correctly, you can then set up a file transfer
session with the command:

psftp PID@newriverl.arc.vt.edu

EXERCISE 1: Transfer the Example Files to a Login Node

Here's how we might transfer the example files to NewRiver.

The sftp session starts in the laptop directory with the example files.

SSH session SFTP session

ssh -X PID@newriverl.arc.vt.edu
sftp PID@newriverl.arc.vt.edu
mkdir colloid

cd colloid
put colloid.sh
put colloid.in
cd colloid
Is

quit <— Don't do this today!

logout <— Don't do this today!

26 /43

Useful ssh Commands

ARC systems use the LINUX operating system; you need a few LINUX
commands for any interactive session with ssh:

o Is to list files;
cd to move to a new directory;
cd .. move “up” one level,
pwd what directory am | in now?;
mkdir to make a new directory;
mv to rename a file;
rm to delete a file;
logout to terminate the ssh session.
command run a command or program.
command < infile run a command or program with input.
command > outfile run a command or program saving output.
command < infile > outfile use this input, save that output.
mpirun -np 4 command run an MPI program using 4 processes.
mpirun -np 4 command < infile same, but with input.

27/43

Useful sftp Commands

The sftp command can “talk” to both the remote (ARC) system and the
local laptop system. This can be confusing! It uses many commands
similar to ssh when talking to the remote system. For the local system,
the commands are modified with an initial letter L:

put file to copy a local file to the remote system;

get file to copy a remote file back to the local system;
Is or lls to list files;

cd or lcd to move to a new directory;

mkdir or Imkdir to make a new directory;

pwd or Ipwd to show the current location;

mv to rename a file;

rm to delete a file;

quit to terminate the sftp session.

28/43

Software Installed on ARC Systems

There are about 250 software packages installed on the ARC systems.

A package may be installed on only some systems; several versions may
be available on a system.

The current software list is given at
https://secure.hosting.vt.edu/www.arc.vt.edu/software/

3995

3995 3995
lame lame

17NOV16 17NOV16 AUGL2 27AUG12 27AUG12
lammps Large-scale
Atomic/Molecular
Massively Parallel 10AUG15 1FEB14 10AUG15

Simulator

3995

17NOV16

10AUG15

LBPMWIA Lattice Boltzmann

simulator

29/43

Some Executable MPI Programs on NewRiver:

ABAQUS: finite element analysis;

ABYSS: de novo biological sequence assembler;

ANSYS: engineering simulation;

EXAML: phylogenetic inference using maximum likelihood;
GROMACS: biomolecular molecular dynamics package;
HMMER: hidden Markov models for biological sequence analysis;
LAMMPS: molecular modeling;

LS-DYNA: general purpose finite element program;
MOTHUR_MPI: bioinformatics data processing;

MPIBLAST: genomic sequence database search;

MRBAYES: Bayesian inference, phylogenetic/evolutionary models;
NAMD: molecular dynamics for large biomolecular systems;
OPENFOAM: fluid dynamics;

QUANTUM ESPRESSO: electronic structure;

VASP: atomic scale material modeling;

WANNIER90: maximally localized Wannier functions;

WREF: weather research and forecasting model.

30/43

Hardware: Clusters/Nodes/Processors/Cores

In order to take advantage of MPI, it will be helpful to understand the
somewhat complicated structure of a typical computer cluster.

A cluster is, roughly speaking, a connected bunch of stripped-down
laptops; but we call them nodes. The ARC cluster called NewRiver
includes a general subsystem consisting of 100 nodes.

A node consists of processors, and memory shared by the processors.
Each NewRiver node has 2 Haswell processors, sharing 128 gigabytes of
memory. Nodes are named newriverl, newriver2, and so on.

Users can ssh to either login node newriverl and newriver2; the
remaining compute nodes are only accessible using a queueing sytem.

Each processor has local memory, and, on NewRiver, 12 Haswell cores.
Each core is an efficient, stripped down computing device.
An MPI computation can use each core as a separate parallel computer.

An MPI job that grabbed all of NewRiver could effectively have
100 * 2 * 12 = 2,400 processes.

31/43

Software: MPI “processes”

When we run our program in parallel, we have to say how many copies of
the program we want to run. MPI calls each program a process. For a
big run of lammps, we might want to run tens or hundreds of processes.

We will not have trouble with this issue today, but keep in mind that
there is a difference between the software MPI processes (program
copies) and the hardware cores that will run the programs.

For large problems, it is necessary to keep these ideas distinct, because
the way you request cores depends in part on knowing how many you can
get on any one node...

32/43

Modules Set up the Environment

Programs installed on NewRiver expect a particular environment,
including compilers, the MPI version, and other features.

The module command allows a user to specify exactly how the
environment should be set up, before a program is run.

When you login, a few modules are loaded (active) by default. If you
want a customized environment, you start by clearing out the defaults:

module purge

then researching the preferred enviroment for your program:
module spider lammps

and follow this up by a full specification:

module spider lammps/10Auglb

33/43

Module Requirements for LAMMPS

module spider lammps/10Augl5

lammps: lammps/10Auglb

Description:
Large-scale Atomic/Molecular Massively Parallel Simulator

You will need to load all module(s) on any one of the lines
below before the "lammps/10Augl5" module is available.

gcc/4.7.2 openmpi/1.6.4
gcc/4.7.2 openmpi/1.8.5

Help:
LAMMPS is a classical molecular dynamics code that models
an ensemble ofparticles in a liquid, solid, or gaseous
state. It can model atomic, polymeric, biological, metallic,
granular, and coarse-grained systems using a variety of
force fields and boundary conditionms.

followed by stuff we don't care about.

34/43

Exercise 2: Check the LAMMPS Module Requirements

Even though we aren’t going to run lammps interactively, we can go
through the motions of setting up the environment with the appropriate
module commands. In fact, this is a good test.

Use ssh to log into newriverl
Issue the following commands:

module purge

module load gcc/4.7.2
module load openmpi/1.8.5
module load lammps/10Auglb

We get a warning!

Lmod has detected the following error: Cannot load module
lammps/10Augl5" without these module(s) loaded:
mkl, cuda, fftw

What do you think this means? What do we do?

35/43

Exercise 3 (Instructor Only!): Run LAMMPS Interactively

| said we wouldn't run lammps interactively. However, our example
data is for a small problem, and it's interesting to see how the program
works, and even though you should not run jobs on the login nodes, | will
risk a short small test for you because | want to make a point.

cd colloid (move to directory containing input file)
module purge
module load gcc/4.7.2

module
module
module
module
module
mpirun

load openmpi/1.8.5

load mkl

load cuda

load fftw

load lammps/10Auglh

-np 4 lmp_mpi < colloid.in

On NewRiver, the MPI version of lammps is named Imp_mpi.

These are almost exactly the user commands we will need to run lammps
on the compute nodes, with any number of processes.

36/43

The Job File User Commands

On the ARC systems, you don’t run a big program by typing its name.
Instead, you create a job file, which includes the commands you would
normally type interactively, plus some information about how the job
should be run, including the number of cores to be assigned.

The user commands we just saw that ran lammps interactively are part
of what | need, but let me make one modification.

Instead of writing cd colloid, the job file will use the command:
cd $PBS_O_WORKDIR
For us, this will end up meaning the same thing, but technically, it says:

“move to the directory from which the job file was just submitted”.

37/43

The Job File With Scheduler Commands

#! /bin/bash <-- always like this

#PBS -1 walltime=00:05:00 <-- Time limit in HH:MM:SS

#PBS -1 nodes=1:ppn=16 <-- Request 16 cores on one node

#PBS -W group_list=newriver <-- always this on NewRiver

#PBS -q open_q <-- Queue available to all users

#PBS -j oe <-- Include errors in output file
cd $PBS_O_WORKDIR <-- our user commands begin here

module purge

module load gcc/4.7.2
module load openmpi/1.8.5
module mkl

module cuda

module fftw

module lammps/10Auglb

mpirun -np 16 lmp_mpi < colloid.in

38/43

Using a Job File

Our job file is called colloid.sh and it’s in the colloid directory we
created and filled in Exercise 1.

To run the job, we move to this directory, and then issue the command
qsub colloid.sh

which should result in a response like
178725 .master.cluster

where 178725 is the jobid, the identification number for the job.

We can use the jobid to check the status:
checkjob -v 0178725

and in particular, when the job is done, the output file will have the name
of the job file, followed by the letters “.0" and the jobid:

colloid.sh.0178725

39/43

Exercise 4: Run Your Job

Log into NewRiver, and move to your colloid directory and issue the
appropriate command to submit the job (what was that command?)

Note your jobid, and issue the command that checks on your job’s status.

When you see the output file appear in your directory, print out the first
few lines. You can do this with a command like

more colloid.sh.o0178725 <-- use your jobid, not mine!

Your results should begin something like this:
more colloid.sh.0178725

LAMMPS (18 Aug 2015)

Lattice spacing in x,y,z = 10 10 10

Created orthogonal box = (0 0 -5) to (300 300 5)
4 by 4 by 1 MPI processor grid

Created 900 atoms

Setting atom values ...
861 settings made for type/fraction

Setting atom values ...
39 settings made for mass

40/43

Exercise 5: Retrieve the Output to Your Laptop

After a successful run, you want to bring results back to your laptop
for reading, printing, analysis, visualization or archiving.

We need sftp program, but this time our important command will be get.

The output file is in the colloid directory, with a name something like
colloid.sh.0123456. We can figure out the correct name of the file using
the Is command.

From your laptop, open a terminal, and use sftp to connect to NewRiver.
If you did not quit your original sftp session, you don't need this step.

Move your remote sftp directory to the colloid directory. Remember this
is done with the cd command.

Have sftp issue the Is command to see what's there. You're looking for
the exact name of your output file.

Have sftp issue the get command to copy the output file to your laptop.

Now quit your sftp session.

41/43

RECAP: How to Use an MPI Program

Did your output file make it back? Is it in the directory you expected?
You should be able to view the output file with any text editor.

| would guess this test drive was somewhat exhausting! But so is learning
to drive. Realize that the second time you run lammps will be much
easier. You might simply change an item in the input file, and everything
else would stay the same.

To use other MPI programs, the procedure will be similar:

© Try the program out on your laptop if possible, and prepare a
suitable input file and job file.

@ Use the module spider command to find the appropriate modules
for this program.

© Decide how many MPI processes you want to use.

@ Transfer the input and job file to the cluster.

© Submit your job and then copy results back to laptop.

42/43

If You Liked Your MPI Test Drive...

If you want to run MPI programs on your laptop, you need to make sure
the MPI library is installed. A quick test is to see what your laptop thinks
of the command mpicc.

If MP1 is installed on your laptop, you can download and run programs
like LAMMPS, and see a speed improvement that depends on how many
cores your laptop has and how well the program has been parallelized.

To get access to larger MPI systems, you can apply for an ARC account.

If you want to know more about how MPI works, or want to write your
own MPI programs, start with the MPI tutorial at
https://computing.linl.gov/tutorials/mpi/

43/43

