POLYGON_PROPERTIES
Compute Properties of an Arbitrary Polygon
POLYGON_PROPERTIES
is a Python library which
computes properties of an arbitrary polygon in the plane, defined
by a sequence of vertices, including

angles;

area;

centroid;

containment of a point;

diameter;

expand polygon outward by H;

inradius of regular polygon to area, outradius side length;

integral over polygon of 1, x, x^2, xy, y, y^2;

is polygon convex?;

lattice area;

outradius of regular polygon to area, inradius, side length;

perimeter;

perimeter integral;

point to polygon distance;

point to nearest point on polygon;

sampling uniformly;

side length of regular polygon to area, inradius, outradius;

triangulation (decomposition into N3 triangles).
Licensing:
The computer code and data files made available on this
web page are distributed under
the GNU LGPL license.
Languages:
POLYGON_PROPERTIES is available in
a C version and
a C++ version and
a FORTRAN77 version and
a FORTRAN90 version and
a MATLAB version and
a Python version.
Related Data and Programs:
POLYGON_INTEGRALS,
a Python library which
returns the exact value of the integral of any monomial
over the interior of a polygon in 2D.
POLYGON_MONTE_CARLO,
a Python library which
applies a Monte Carlo method to estimate the integral of a function
over the interior of a polygon in 2D.
POLYGON_TRIANGULATE,
a Python library which
triangulates a possibly nonconvex polygon,
and which can use gnuplot to display the external edges and
internal diagonals of the triangulation.
TOMS112,
a Python library which
determines whether a point is contained in a polygon,
by Moshe Shimrat.
This is a version of ACM TOMS algorithm 112.
Reference:

Gerard Bashein, Paul Detmer,
Centroid of a Polygon,
in Graphics Gems IV,
edited by Paul Heckbert,
AP Professional, 1994,
ISBN: 0123361559,
LC: T385.G6974.

SF Bockman,
Generalizing the Formula for Areas of Polygons to Moments,
American Mathematical Society Monthly,
Volume 96, Number 2, February 1989, pages 131132.

Adrian Bowyer, John Woodwark,
A Programmer's Geometry,
Butterworths, 1983,
ISBN: 0408012420.

Peter Schorn, Frederick Fisher,
Testing the Convexity of a Polygon,
in Graphics Gems IV,
edited by Paul Heckbert,
AP Professional, 1994,
ISBN: 0123361559,
LC: T385.G6974.

Moshe Shimrat,
Algorithm 112:
Position of Point Relative to Polygon,
Communications of the ACM,
Volume 5, Number 8, August 1962, page 434.

Allen VanGelder,
Efficient Computation of Polygon Area and Polyhedron Volume,
in Graphics Gems V,
edited by Alan Paeth,
AP Professional, 1995,
ISBN: 0125434553,
LC: T385.G6975.
Source Code:
Examples and Tests:
You can go up one level to
the Python source codes.
Last revised on 18 October 2015.