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Abstract

The theory, numerical algorithm, and user documentation are provided for a new
“Centroidal Voronoi Tessellation (CVT)” method of filling a region of space (2D or 3D)
with particles at any desired particle density. “Clumping” is entirely avoided and the
boundary is optimally resolved. This particle placement capability is needed for any so-
called “mesh-free” method in which physical fields are discretized via arbitrary-
connectivity discrete points. CVT exploits efficient statistical methods to avoid expensive
generation of Voronoi diagrams. Nevertheless, if a CVT particle’s Voronoi cell were to
be explicitly computed, then it would have a centroid that coincides with the particle
itself and a minimized rotational moment. The CVT code provides each particle’s volume
and centroid, and also the rotational moment matrix needed to approximate a particle by
an ellipsoid  (instead of a simple sphere). DIATOM region specification is supported.
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Chapter 1

Introduction

This publication describes the use of a library of codes that perform the following task:

given a region Ω ∈ R
d, d = 2 or 3, and a positive integer N , construct N regions

that tessellate Ω and determine the volumes (the zeroth-order moments), the
centroids (the first-order moment vectors), and the second-order moment tensors
corresponding to each subregion in the tessellation.

It is natural to choose the N regions to be a Voronoi tessellation of Ω. The question that
first arises is: how does one choose the point set that generates the Voronoi tessellation?
The particular Voronoi tessellation that our codes uses is a centroidal Voronoi tessellation of
the given region Ω. In fact, the codes first determine such a tessellation, and subsequently
determine the three desired sets of moments for each of the associated Voronoi regions
or cells. Centroidal Voronoi tessellations result in very uniformly distributed point sets
(or equivalently, subregions with very similar volumes), much more so than other point
placement techniques. Centroidal Voronoi point sets also conform well to boundaries and
can be characterized, in some sense, as a minimun “energy” configuration.

The next question is how does one efficiently determine the centroidal Voronoi tessellation
and the desired moments? We, in fact, never explicitly determine the centroidal Voronoi
tessellation, but instead use probabilistic methods to determine its generators. Similarly, we
use probabilistic methods to determine the desired moments. As a result, our methodology
is quite straightforward and efficient.

In summary, the library of codes performs the given task through the following steps:

• given the region Ω and the positive integer N , the N generators of a centroidal Voronoi
tessellation of Ω are determined;

• once the N generators have been determined, the zeroth, first, and second-order mo-
ments are determined.

Central to both steps is the random sampling of uniformly distributed points in Ω. In order
to do this, the codes require the user to supply a means for determining if a randomly

1



2 CHAPTER 1. INTRODUCTION

sampled point in an enclosing box is inside or outside the given region Ω. For example, we
have been supplied with an interface to DIATOM1 which accomplishes this task.

In this publication, we first provide, in Chapter 2, a discussion of the theoretical background
underlying our methodology. Then, in Chapter 3, we provide some examples of the use of
our codes which illustrate the performance of our methodology and the effects of the few
parameters that the user must specify to run our codes. Finally, in Appendix A, we describe
the different components of the codes and how to run the codes.

1DIATOM is the name of a geometry definitiion syntax used in the Sandia codes CTH [1] and ALEGRA
[3].



Chapter 2

Theoretical background

2.1 Centroidal Voronoi tessellations

2.1.1 Voronoi tessellations

Let | · | denote the Euclidean norm in R
d, d = 2 or 3. Given an open set Ω ⊂ R

d and a set
of points {zi}N

i=1 belonging to Ω, let Vi dennote the region in Ω consisting of points that
are closer to zi than to any other zj , j �= i, i.e.,

Vi = {x ∈ Ω | |x − zi| < |x − zj | for j = 1, . . . , N , j �= i } i = 1, . . . , N . (2.1)

The set of regions {Vi}N
i=1 are non-overlapping and tessellate Ω, i.e.,

Vi ∩ Vj = ∅ for i �= j and ∪N
i=1 V i = Ω .

The set {Vi}N
i=1 is referred to as a Voronoi tessellation or Voronoi diagram of Ω, the members

of the set {zi}N
i=1 are referred to as generating points or generators, and each Vi is referred to

as the Voronoi region or Voronoi cell corresponding to zi. Examples of Voronoi tessellations
are given in Figure 2.1.
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Figure 2.1: Voronoi regions for two points in the plane (left) and the Voronoi tessellation
for 10 random points in a square (right).
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4 CHAPTER 2. THEORETICAL BACKGROUND

It is well known that Voronoi regions are convex polyhedra and are very useful in a
number of applications;1 see, e.g., [11]. For example, Voronoi polygons and their dual
tessellation, the Delaunay triangulation,2 the are very useful in numerical computations,
e.g., in interpolation, quadrature, partial differential equations, etc. Voronoi and Delaunay
tessellations also possess many useful properties. For example, among all possible trian-
gulations of a given set of points in the plane, the Delaunay triangulation is the one with
largest minimum angle. This, in turn, is desirable, e.g., finite element approximations of
partial differential equations. Another example is in “finite difference” discretizations of
certain types of partial differential equations for which one must associate variables with
points, and/or regions, and/or edges. On arbitrary domains, the best way to do this is to
choose regions to be Voronoi polygons and/or Delaunay triangles, and to use the associated
edges and vertices as needed.

2.1.2 Centroids

Given a point density function3 µ(x) defined on Ω, for each Voronoi region Vi, we can define
its centroid4 z∗i by the well-known formula

z∗i =
1
|Vi|

∫
Vi

xµ(x) dx for i = 1, . . . , N , (2.2)

where |Vi| denotes the volume of Vi and dx denotes the volume element.5 The generating
points {zi}N

i=1 of a Voronoi tessellation do not, in general, coincide with the centroids {z∗i }N
i=1

of the corresponding Voronoi regions. See, e.g., the left plot in Figure 2.2 for the case of a
uniform point density function.

2.1.3 Centroidal Voronoi tessellations

We call the tessellation defined by (2.1) a centroidal Voronoi tessellation (CVT) if and only
if

zi = z∗i for i = 1, . . . , N ,

1In fact, Voronoi sets appear under many names (e.g., Dirichlet regions, Meijering cells, S-mosaics,
Thiessen polygons, area of influence polygons, etc.), depending on the application.

2Given a Voronoi tessellation of a plane region, the Delaunay triangulation is determined by joining the
generators of Voronoi cells that share a common edge as part of their boundaries.

3The point density function µ(x) allows for nonuniform point distributions. Later, we will also use
a physical mass density function ρ(x). Our codes apply to the case of uniform point and mass density
functions. We treat only uniform point distributions because that is the desired output from our codes.
However, for the sake of generality, in the discussion in this chapter, we will allow for both nonuniform point
and mass density functions.

4A more common name for z∗
i might be center of mass. However, we reserve that name for the physical

center of mass of a region determined with respect to a physical mass density; see Section 2.4.
5One can also define a centroid in case only a discrete set of points in Ω is given. Given the set of points

W = {wj}J
j=1, j = 1, . . . , J , the centroid z∗ of W is defined by

z∗ =
1

J

J∑
j=1

µ(wj)wj .
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Figure 2.2: On the left, the Voronoi regions, their generators (dots), and their centroids
(with respect to a uniform density) (circles) for 10 randomly selected points in a square.
Note that the generating points and the centroids do not coincide. On the right, a 10-point
centroidal Voronoi tessellation of a square. The dots are the generators of the Voronoi
regions and are also the centroids of those regions.

i.e., the points {zi}N
i=1 which serve as the generators associated with the Voronoi regions

{Vi}N
i=1 are also the centroids of those regions. An example of a CVT for a uniform point

placement density is shown in the right plot of Figure 2.2.
In general, one does not have uniqueness, i.e., for a given positive integer N , there may

be more than one N -point CVT of a given region Ω. Examples are provided in Figures 2.3
and 2.4.

Figure 2.3: Two two-point centroidal Voronoi tessellations of a square.

Figure 2.4: The three regular tessellations of the plane are centroidal Voronoi tessellations.

There are many applications for centroidal Voronoi tessellations; see, e.g., [5, 6, 8, 11] for
applications in optimal allocation of resources, clustering, numerical integration, territorial
behavior of animals, data compression, cell division, grid generation, meshless methods, etc.
CVT’s also possess many desirable properties. Although here we are mainly concerned with
uniform points distributions, we give, in Figure 2.5, two examples of nonuniform CVT’s.
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Figure 2.5: Examples of 256 point nonuniform centroidal Voronoi tessellations of a square.
On the left, the point density function µ(x) is largest at the center of the square; on the
right, the point density function has a peak at the lower left-hand corner of the square.

Centroidal Voronoi tessellations are closely related to minimizers of an “energy.” Specif-
ically, let

E
(
{zi}N

i=1, {Vi}N
i=1

)
=

N∑
i=1

∫
Vi

|x − zi|2µ(x) dx , (2.3)

where {Vi}N
i=1 is a tessellation of Ω and {zi}N

i=1 are points in Ω. No a priori relation
is assumed between the Vi’s and the zi’s. We refer to E as the energy; in the statistics
literature, it is called the variance or cost. It is easy to prove that a necessary condition
for E to be minimized is that {zi, Vi}N

i=1 is a centroidal Voronoi tessellation of Ω; see [5].
However, not all CVT’s are minimizers of the energy. For example, the CVT on the right
in Figure 2.3 is a saddle point of the energy functional (2.3).

Since a CVT is not uniquely defined, one may ask what CVT does one obtain on a
computer? In general, one finds CVT’s that minimize the energy functional (2.3). For
example, it is clear that there are many 64 = 26-point CVT’s of a square, including the
Cartesian arrangement into an 8 × 8 grid depicted in the left-hand plot in Figure 2.6.
However, on a computer, one obtains a CVT like the right-hand plot in that figure. In fact,
for all common methods for determining CVT’s, the Cartesian arrangement is unstable
in the sense that if one starts with that arrangement, the methods will evolve the point
distribution into one that minimizes the energy. This point is illustrated in Figure 2.6 using
a specific method (which will be discussed in Section 2.1.4) for determining CVT’s.

2.1.4 Constructing centroidal Voronoi tessellations

As we have seen, the points that generate a Voronoi tessellation are not generally the
centroids of the associated Voronoi regions. As a result, one is left with the following
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Figure 2.6: A Cartesian CVT (left) with 64 generators deforms into a hexagonal-like CVT
(right) through Lloyd’s iteration. The pictures are generated at iteration numbers 0, 15,
30, and 120.

construction problem: given a region Ω ⊂ R
d and a positive integer N , determine an N -

point centroidal Voronoi tessellation of Ω.6

There are many known methods for constructing centroidal Voronoi tessellations. In
order to understand the method employed in the codes, we first describe the two methods
which are perhaps most “basic” and, certainly in the first case, the most used.

First, we have Lloyd’s method [9] which is the straightforward iteration between con-
structing Voronoi tessellations and centroids.

Lloyd’s method. Start with some initial set of N points {zi}N
i=1 in Ω, e.g., determined

using random sampling;

1. construct the Voronoi tessellation {Vi}N
i=1 of Ω associated with the points {zi}N

i=1;
2. compute the centroids of the Voronoi regions {Vi}N

i=1 found in Step 1; these centroids
are the new set of points {zi}N

i=1;
3. go back to Step 1, or, if happy with convergence, quit.

Lloyd’s method and its convergence properties have been analyzed; see [5] and the references
cited therein.

A second method is McQueen’s method [10] which is a random sampling7 algorithm that
doesn’t require the explicit construction of Voronoi tessellations or of centroids.

McQueen’s method. Start with some initial set of N points {zi}N
i=1 in Ω, e.g., deter-

mined using random sampling; set the integer array Ji = 1 for i = 1, . . . , N ;

1. pick a random point w ∈ Ω;
2. find the zi closest to w; denote the index of that zi by i∗;

3. set zi∗ ← Ji∗zi∗ + w
Ji∗ + 1

and Ji∗ ← Ji∗ + 1 ;

4. zi∗ along with the unchanged points {zi}N
i=1,i�=i∗ are the new set of points;

6In this section and in Section 2.2 and 2.3, we will simplify the discussion by considering only uniformly
distributed point sets. The discussions of those sections can be easily generalized to treat the nonuniform
case.

7Throughout our discussion, random sampling implies that points are sampled uniformly.
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5. go back to Step 1, or, if happy with convergence, quit.

Note that Ji keeps track of how many times the point zi has been previously updated. Re-
markably (since neither Voronoi tessellations or centroids appear anywhere in the definition
of the algorithm), the McQueen iterates converge to a set of generators of a CVT. The
convergence properties of McQueen’s methods have been analyzed in [10].

One point is sampled at each McQueen iteration so that the McQueen iterations are
cheap, but lots of them are needed. Lloyd’s method requires relatively fewer iterations,
but each iteration is expensive; a straightforward implementation requires the explicit con-
struction of Voronoi regions and, to determine the centroids, numerical integrations on
polyhedra. We have developed (see [7]) a class of probabilistic methods which, similar to
McQueen’s method, do not require the construction of Voronoi tessellations or centroids but
which converge in fewer iterations than does McQueen’s method. It is found to be more
efficient than both the Lloyd and McQueen methods. The class of methods is characterized
by two parameters; see [7] for details. Here, we only consider one particular method within
the class that can be viewed as a probabilistic version of Lloyd’s method; again, see [7] for
details.

Algorithm 1: A probabilistic Lloyd’s method. Start with some initial set of N points
{zi}N

i=1 in Ω, e.g., determined using random sampling; choose a positive integer Ns;

1. randomly sample N · Ns points in Ω;8

2. assign each of the sampled points to a cluster according to which of the points {zi}N
i=1

is closest to it; the points in each cluster are then in the Voronoi region of one of the
generators, i.e., in the Voronoi region of zi for some i;

3. average the position of the points in each cluster; these cluster averages are the new
set of points {zi}N

i=1;
4. go back to Step 1, or, if happy with convergence, quit.

Note that Ns is the average number of points sampled per generator.
In Algorithm 1, the new position of the i-th generator is the average of the points

sampled in the Voronoi region corresponding to the current i-th generator. Then, since the
points averaged are randomly selected points in the Voronoi region Vi corresponding to the
current zi, one may view the average of those points as a probabilistic approximation to
the centroid of Vi. This justifies viewing this method as a probabilistic version of Lloyd’s
method. The more points sampled at each iteration, i.e., the larger is Ns, the better the
centroid approximations. Parallel versions of this algorithm having nearly perfect speed-up
properties can be easily defined; see [7].9

All methods for computing CVT’s are heavily influenced by the position of the initial
guess for the generating points {zi}N

i=1 in the sense that the number of iterations needed
to achieve satisfactory convergence is heavily dependent on the initial guess. Generally, the

8At least for a uniform point density function, if may be more efficient to sample points on a uniform,
regular lattice instead of by random sampling.

9McQueen’s method does not parallelize well due to the relatively large amount of communications
needed; this results from the fact that only one point is sampled and averaged at each iteration.
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initial positions of the generators are determined by the random sampling of N -points in Ω.
For a uniform distribution of points, quasi-random sampling methods such as those based
on Halton sequences have been found to be useful in generating “better”10 initial point
distributions. In the next section, we discuss both random sampling and Halton sequence-
based sampling in more detail. We emphasize that Halton sequences can be used only for
generating uniformly distributed point sets.

Algorithm 1 requires two auxiliary algorithms. Step 1 requires the sampling of random
points in the given region Ω; algorithms for such sampling are discussed in the next section.
Step 2 requires the determination of which of the current zi’s is closest to a sampled point;
algorithms for this purpose are discussed in Section 2.3.

2.2 Random and quasi-random sampling

All CVT construction algorithms require an initial set of candidate generating points. These
can be determined by random sampling or, in some cases, by using Halton sequences.
Algorithm 1 also requires, at each iteration, the random sampling of points. We now
discuss both random and Halton sequence-based sampling in the context of general regions
in R

3. The discussion can be be applied to regions in R
2 by making obvious changes.

2.2.1 Random sampling in general regions

All computers have a built-in (pseudo-)random number generator that can provide a se-
quence of (pseudo-)random numbers uniformly distributed on the interval [0, 1]. How does
one use this capability to generate uniformly distributed points in a general region in R

3?
In other words, given a region Ω ⊂ R

3, how can one determine a random point in Ω?
If the region Ω is a box in R

3, then it is obvious how one determines a random point in Ω;
one merely obtains (from the built-in random number generator) three uniformly distributed
random numbers, which suitably translated and stretched, become the coordinates of a
random point in the given box. Thus, here the issue is how does one account for the
fact that the region is not a box? It is, in fact, easy to treat general regions in R

3. To
find a random point inside a given region Ω, we first enclose the given region Ω in a box
[a1, b1] × [a2, b2] × [a3, b3]. We then sample a random point inside the enclosing box. If the
point is inside the given region Ω, we accept it; if it is outside Ω we reject it. We keep on
sampling in the enclosing box until we find an acceptable point, i.e., a point that is also
inside Ω. Note that the only random sampling necessary to implement the algorithm is to
sample a random point in the enclosing box. The algorithm just described is summarized
as follows.

Algorithm 2: Random sampling in a general region. Given a region Ω ⊂ R
3

and a box containing Ω, i.e., three ordered pairs of real numbers {ak, bk}3
k=1 such that

Ω ⊂ [a1, b1] × [a2, b2] × [a3, b3];

1. sample three random real numbers x1, x2, and x3 in the interval [0, 1] according to a
uniform distribution;

10Better in the sense that fewer iterations of the CVT construction algorithm are required.
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2. set xk ← (bk − ak)xk + ak for k = 1, 2, 3;
3. if x = (x1, x2, x3) is outside Ω, go to step 1; otherwise, exit.

The random point x determined by the algorithm is in Ω and is uniformly distributed.
The output of the random sampling algorithm (Algorithm 2) can be used in two ways

for the determination of a CVT. In the first place, N points sampled according to the
algorithm can be used as initial data for any of the CVT construction methods. Second,
each iteration of both McQueen’s method and Algorithm 1 requires sampled points which
are then averaged; the necessary sampled points may be determined by Algorithm 2.

2.2.2 Halton sequence point selection

For uniform point distributions, one can also use Halton sequences to generate initial point
sets for CVT construction algorithms. Halton sequences are based on the following obser-
vations. Given a prime number q, any n ∈ N can be represented as n =

∑
i niq

i. Then, one
can define a mapping Hq from N to [0, 1] by Hq(n) =

∑
i ni/qj+1. The Halton sequence of

N -points in [0, 1] is then defined as {Hq(n)}N
n=1. Halton sequences are uniformly distributed

pseudo-Monte Carlo sequences.
Given three prime numbers q, r, and s, one may then define the (q, r, s)-Halton sequence

of N -points in the unit cube in three dimensions by {(Hq(n), Hr(n), Hs(n))}N
n=1. By the

obvious translations and stretchings, one may then define a set of N Halton points in an
arbitrary box in three dimensions. By rejecting sampled points in an enclosing box that lie
outside of a given region, one can then generate a Halton point set in an arbitrary region
in R

3.

2.2.3 CVT’s as an improvement to both random sampling and Halton
points

We now know how to generate three types of point sets: randomly selected, Halton-sequence
based, and CVT-based. We have discussed the use of the first two of these as initial
conditions in construction algorithms for the last. If one wants to obtain a uniformly
distributed point set, why not just choose one of the first two and avoid the iteration
necessary to determine a CVT?

All three methods (random sampling, Halton, and CVT) will produce, as the number of
points N → ∞, uniformly distributed point sets. But, what happens for finite values of N?
The typical situation is depicted in Figure 2.7. Note that for 128 points, the CVT point
distribution is much more “uniform” than are either of the random sampling or Halton
point distributions. This is why it is worthwhile going ahead and determining the CVT
point distribution instead of just settling for the random sampling or Halton points. We
will discuss this issue again in Section 3.1.2.

From Figure 2.7, we see that the Halton point distribution is more uniform than the
randomly sampled points. This is typical and this is why it is usually advantageous to use
Halton point sets as initial conditions for CVT construction.
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RANDOM

HALTON

CVT

Figure 2.7: Sets of 128 points uniformly distributed in a square (left) and circle (right)
determined by the random sampling (top), (2,3) Halton sequence (middle), and centroidal
Voronoi tessellation (bottom) point selection methods.

2.3 Closest point determination

From timings of early versions of the code, it became clear that one of the most expensive
operations is determining which member of the current set of N generators is nearest to a
randomly sampled point; this is a necessary step of Algorithm 1. In a naive implementa-
tion11 of this search, each sampling point incurs a cost of computing the distance to all N
generators. Let us see why this is so.

Suppose we have N generators and, at each iteration of Algorithm 1, we sample an
average of Ns points per generator so that the total number of points sampled at each
iteration is NNs. Then, the total cost of computing nearest generators over Niter iterations
is Niter(NNs)N since we create NNs sampled points at each iteration and each sampling
point requires N distance computations. Thus, if Ns, the average number of sampling
points per generator, is fixed, the amount of work to determine nearest generators increases
quadratically with N , the number of generators. No other operation in the code has an N2

behavior. This means that for even moderate values of N , a naive approach to the nearest
generator computation represents the dominant cost.

11By this we mean the exhaustive search approach in which the distance from a sampling point to all the
generators is computed and then compared to find the closest generator.
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2.3.1 Using bins for efficient closest point determination

One way to control the cost of closest generator determination is to pay the price of pre-
processing the data in some way so that the nearest point can be more quickly determined.
The obvious approach is to use bins, that is, a mesh of simple rectilinear subregions, to
organize the geometry of the generators [4].

For simplicity of presentation, consider a simple, two-dimensional example. Suppose the
physical region of interest is some subset of a square. In this situation, we might subdivide
the square by a 10 × 10 Cartesian grid to produce an array of 100 square bins. After the
initial positions of the generators are chosen, we process the generators, constructing a
database that allows us to list all the generators in each bin. Then, it is possible to define
an algorithm that guarantees that the nearest generator will be located but that “not too
many” bins will be unnecessarily searched [2]. If the number of points in each bin is small,
say,

√
N , then significant savings can result. The process is fairly easy to describe, although

the coding can be elaborate.12

Algorithm 3: Determination of the closest point in a set to a given point. Given
a set of points {zi}N

i=1 which have been sorted into bins and given a random point y;

1. determine the bin that contains y; if that bin does not contain any of the points in the
set {zi}N

i=1 go to Step 2; otherwise, determine the point zi∗ in the bin that is closest
to y and go to Step 3;

2. if the bin containing y contained no points in the set {zi}N
i=1, search the layer of bins

surrounding the bin containing y, or if necessary, “spiraling out” to additional layers
of bins until a nonempty bin is found; determine zi∗ , the nearest neighbor to y in that
bin;

3. let R denote the distance from y to zi∗ ; we continue the spiraling process, expanding
the set of searched bins; in each bin, compare R to the distances from y to the points
in the set {zi}N

i=1 contained in the bin, redefining zi∗ and R by a new point and new
distance whenever the new point is closer to y than the candidate point; we stop the
search as soon as enough bins have been searched so that they contain the sphere of
radius R.

We make some observations about Algorithm 3. First, in Step 1, the bin containing the
sampled point y serves as the center of the search for the closest zi. After Step 1, if any of
the points in the set {zi}N

i=1 are located in the center bin, i.e., in the bin containing y, we
have a candidate zi∗ for the nearest point and we can skip the second step. If the center
bin contained none of the points in the set {zi}N

i=1 so that we have no candidate closest
point, we “spiral out” from the center bin, adding one layer of bins at a time to our list of
searched bins. Usually, searching one more layer of bins is sufficient, but in any case, if we
add enough layers, we are guaranteed to find a bin containing at least one point zi∗ in the
set {zi}N

i=1, and hence, a candidate for the nearest neighbor. Once we know the distance R
from some point zi∗ to y, we know the nearest neighbor can be no further away. In Step 3,
we are essentially constructing a sphere of radius R centered at the point y and continue

12There have been many other algorithms proposed for efficient closest point determination; in future
work, these will be explored.
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the spiraling process, expanding the set of searched bins in such a way that they eventually
contain the sphere. After Step 3, the distance from y to every point in the sphere has been
considered, and we are guaranteed to have determined the nearest point in the set {zi}N

i=1

to y.
This procedure incurs the costs of additional storage for the bin data, extra preprocessing

whenever the generators are modified to resort them into the bins, and the cost of carrying
out the bin search procedure. In general, however, for each sampled point, the number
of generators that have to be considered is vastly decreased (compared to the exhaustive
search approach), and for large enough problems, the decrease in the points that need to
be considered can outweigh the overhead of the bin search procedure. If the number of
points is of order

√
N , then, using the bind approach, the complexity reduces to N

√
N .

This may be further reduced at the cost of more bins and therefore more preprocessing. In
our investigations, we have seen that the use of bins on a problem of “interesting” size can
speed up the closest point computation by a factor of ten or more.

As mentioned before, as the number of generators increases, the cost of a naive search
dominates the whole computation, and so the bin search improvement can be even greater,
as long as the number of bins is appropriately increased. The optimal number of bins to use
can depend greatly on the geometry of the problem. For example, for a long, thin region,
the number of bins in each direction should reflect the aspect ratios of the region since it is
best if the bins themselves remain nearly square or cubical.

This simple bin scheme works best when the points are uniformly distributed throughout
the rectilinear bounding box. In other cases, the scheme may not work as well. In the
DIATOM test case, for example, the region of interest occupies a relatively small portion
of the bounding box, so many bins are completely empty. However, a uniform density
is used within the region, so this simply means that rather more bins must be used to
achieve good results. A more difficult case to handle occurs when the generating points are
nonuniformly clustered. A simple, evenly spaced grid of bins will have to be very fine in
order to reduce the maximum number of points per bin significantly, and thus to achieve
the benefit of reduced computation.

Note that the computation of zeroth, first, and second moments (see Section 2.4) can
be optimized by the same process as we just described for optimizing the CVT iteration.

2.4 Determination of zeroth, first, and second moments

So far we have discussed how one determines the generators of an N -point centroidal Voronoi
tessellation of Ω. However, recall that the goal of our effort is to determine a set of zeroth
moments (volumes), first moments (centroids), and second moments associated with a set
of volumes that constitute a “good” tessellation of the region Ω. Having obtained the
generators {zi}N

i=1 of an N -point centroidal Voronoi tessellation, it is natural to choose the
associated Voronoi polyhedra {Vi}N

i=1 to be the “good” tessellation of Ω. Thus, we now want
to consider how to efficiently compute zeroth, first, and second moments associated with
each of the volumes Vi. We assume that we are given a physical mass density function13

13The mass density function ρ(x) should not be confused with the point density function µ(x). The former
is a physical attribute of the media while the latter is a computational artifact that can used in some settings
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ρ(x) defined for all x ∈ Ω.14

For i = 1, . . . , N , the zeroth moment or mass of Vi (a scalar) is defined by

Mi =
∫

Vi

ρ(x) dx , (2.4)

the first moments or the center of mass15 Vi (a vector) by

xi =
1

Mi

∫
Vi

xρ(x) dx , (2.5)

and the second moments (relative to the center of mass) of Vi (a tensor) by

Mi =
1

Mi

∫
Vi

(x − xi)(x − xi)T ρ(x) dx . (2.6)

Since we have that
Mi = M0i − xixT

i ,

where M0i denotes the second-order moment tensor relative to the origin, i.e.,

M0i =
1

Mi

∫
Vi

xxT ρ(x) dx ,

it is clear that if, for each Vi, one determines the three integrals

Mi =
∫

Vi

ρ(x) dx , qi =
∫

Vi

xρ(x) dx , and Si =
∫

Vi

xxT ρ(x) dx , (2.7)

then one can easily compute the desired quantities (2.4)–(2.6). In fact, we simply have that

xi =
1

Mi
qi and Mi =

1
Mi

Si − xixT
i .

Thus, given the set of points {zi}N
i=1 (the generators of an N -point CVT of Ω), what we

now want is an efficient method for determining the set {Mi,qi, Si}N
i=1 defined in (2.7).

In principle, knowing the position of the generators {zi}N
i=1 of the CVT, one could

generate the corresponding Voronoi tessellation and then use numerical integration rules to
evaluate the integrals in (2.7). Since numerical integration formulas for general polyhedra
do not exist, one would actually need to subdivide the Voronoi regions into tetahedra and

as a means of obtaining better computational results.
14Our codes only treat the case of a uniform physical density; the generalization to the nonuniform case

is fairly straightforward. Thus, although we define the moments associated with a give set of regions for the
general nonuniform case, our discussion of algorithms and quality measures in this section will be confined
to the case of uniform point placement and mass densities.

15If the point placement density function µ(x) that determines the centroidal Voronoi tessellation and the
physical density function ρ(x) are multiples of one another, e.g., they are constants, zi = xi, the generators
of the Voronoi regions coincide with the centers of mass of those regions. In our codes, both these densities
are constants, so that, knowing the generators, we already have xi in hand. However, we choose to recompute
it because in more general cases zi �= xi. Furthermore, as we shall see later, the recomputation provides a
good check on the overall accuracy of our methodology.



2.4. DETERMINATION OF ZEROTH, FIRST, AND SECOND MOMENTS 15

then use numerical integration rules on each of these subregions. This would be difficult to
program and expensive in terms of CPU time.

Instead, the integrals in (2.7) can be evaluated probabilistically, avoiding not only the
use of complicated numerical integration rules on polyhedra, but also avoiding the need
to explicitly determine the Voronoi polyhedra. Our discussion so far is summarized in the
following algorithm for probabilistically determining, for a uniform mass density, (2.4)–(2.6)
from a given set of points16 {zi}N

i=1 in Ω.

Algorithm 4: Probabilistic determination of zeroth, first, and second moments.
Given a region Ω ∈ R

3, its volume |Ω|, a set of points {zi}N
i=1 in Ω, and a positive integer

Nm;

1. randomly sample K = NmN points {yj}K
j=1 in Ω;

2. for i = 1, . . . , N , compute the sums

Ki =
∑

yj∈Vi

1 , qi =
∑

yj∈Vi

yj , and Si =
∑

yj∈Vi

yjyT
j ;

3. for i = 1, . . . , N , set

Mi =
|Ω|
K

Ki , xi =
1
Ki

qi , and Mi =
1
Ki

Si − xixT
i .

The input Nm is the average number of points sampled in each Voronoi region for the
moment calculation. The sampling in Step 1 can be performed using the same sampling
algorithm (Algorithm 2) as that used for determining the generators {zi}N

i=1. In Step 2, for
each i = 1, . . . , N , the sums are over all sampled points belonging to the Voronoi region
Vi corresponding to the generator zi. Note that this requires the sorting of the K = NmN
sampled points into the Voronoi regions of the points {zi}N

i=1; this may be accomplished
with the help of Algorithm 3. Step 3 requires some explanation. First, Ki is merely the
number of sampled points in Vi, i.e., in the Voronoi region corresponding to zi; K = NmN
is the total number of points sampled over the whole region Ω. Then, the ratio Ki/K is an
estimate of the ratio of the volume of Vi to the volume of Ω so that then |Ω|Ki/K provides
an estimate for the volume of Vi. Next, we have the probabilistic approximation to the
centroid

xi =
1

Mi

∫
Vi

x dx ≈ 1
Mi


Mi

Ki

∑
yj∈Vi

yj


 =

1
Ki

qi

which accounts for the second term in Step 3. The third term in Step 3 can be accounted
for in a similar manner.

Note that Algorithm 4 requires the volume |Ω| of the given region Ω. If this is not known,
it can be approximately determined as follows. In Step 1 of Algorithm 4, we must sample K
points inside Ω. If we use Algorithm 2 to determine these points, then in determining these

16For us, the set of points {zi}N
i=1 will be the generators of a CVT, i.e., the output of a CVT construction

algorithm. However, the algorithm given for probabilistically determining (2.4)–(2.6) can be applied to any
set of points in Ω.
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K points, the points sampled in the enclosing box which were outside of Ω were rejected.
If Nb denotes the total number of points sampled in the enclosing box so that K of those
points were inside of Ω, then K|B|/Nb is an estimate for the volume of Ω, where |B| is the
easily determined volume of the enclosing box.

2.5 Tests for the quality of the solution

Our software determines a set of uniformly distributed points in a user specified region;
the user also specifies the number of points.17 Visual examination, of course, can often be
used to compare the relative uniformity (or lack thereof) of different sets of points; see, e.g.,
Figure 2.7. There are other, more quantitative measures of the uniformity of a set of points.

Given any set of points in a region Ω, we can use those points to generate a Voronoi
tessellation of Ω.18 Then, we can associate with each point a corresponding Voronoi region
and then determine various quantities associated with the points and the regions, includ-
ing the zeroth, first, and second-order moments for the regions.19 These can be used to
determine the quality of the set of points.

We will use three particular properties associated with the set of points and the cor-
responding Voronoi regions as measures of the quality, i.e., the uniformity, of a point set.
These are:

• the zeroth-order moments (the volumes) of the Voronoi regions associated with each
point;

• the trace20 of the second-moment matrix associated with each point and its corre-
sponding Voronoi region; and

• the determinant21 of the deviatoric matrix associated with each point and its corre-
sponding Voronoi region.

For a perfectly uniform distribution of N points {zi}N
i=1 in a given region Ω, the corre-

sponding volumes Mi would all be equal, i.e., M1 = M2 = · · · = MN , the corresponding
17From these points, the zeroth, first, and second moments are then determined.
18Of course, our methodology produces a centroidal Voronoi tessellation of Ω which, as we have seen, is a

special Voronoi tessellation.
19Indeed, this is desired output of our codes, so that we must determine them in any case.
20For each point, the trace of the corresponding second-moment matrix M is given by

T = M11 + M22 in two dimensions

T = M11 + M22 + M33 in three dimensions,

where Mjk denotes the j, k second moment associated with a point.
21For each point, the determinant of the corresponding deviatoric or second-moment matrix M − MI,

where M = T/2 in two dimensions and M = T/3 in three dimensions, is given by

D = det

(
M11 − M M12

M12 M22 − M

)
in two dimensions

D = det


 M11 − M M12 M13

M12 M22 − M M23

M13 M23 M33 − M


 in three dimensions.
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traces {Ti}N
i=1 would also all be equal, i.e., T1 = T2 = · · · = TN , and the corresponding

determinants {Di}N
i=1 would all vanish, i.e., D1 = D2 = · · · = DN = 0. Thus, we will use the

uniformity of these volumes and traces and the smallness of these determinants as measures
of the uniformity of a set of points.

In two dimensions, a perfectly uniform set of points would be the centroids of a tessel-
lation of the given region into congruent regular hexagons. Of course, in general, this is
impossible since general regions cannot be exactly tessellated by congruent regular hexagons.
Similar arguments can be given in three dimensions. Thus, we cannot expect that our crite-
ria for perfect uniformity will ever be satisfied. However, we can certainly use these criteria
as quality measures for a set of points.

We can also use the criteria to monitor the convergence of our iterative algorithm (Al-
gorithm 1) for determining a set of generators for a CVT of a given region. As the points
converge to the generators of a CVT, the volumes and traces of the points should become
more uniform and the determinants should become smaller. In Chapter 3, we will use the
criteria in this manner.

The three criteria that we use to test the quality of a set of points or the convergence
of an iterative method for determining those points can be generalized to nonuniform point
placements and nonuniform physical densities.

For case of uniform point placement and mass densities µ(x) and ρ(x), respectively,
there is another obvious criterion that can be used. In this case, as has already been noted,
the generators of the CVT {zi}N

i=1 should coincide with the first moments {xi}N
i=1 of the

corresponding Voronoi regions; this follows from the defining property of a CVT.22 Since
our codes apply to the constant densities case, one may use this additional criteria to assess
the quality of a CVT point set or to monitor the convergence properties of an iterative
algorithm for its determination.

22It is interesting to observe that in case the point placement and mass densities are uniform, the “energy”
(2.3) can be expressed in the form

E
(
{zi}N

i=1, {Vi}N
i=1

)
=

N∑
i=1

trace

(∫
Vi

(x − zi)(x − zi)
T dx

)
=

N∑
i=1

MiTi ,

where Mi and Ti = trace(Mi) respectively denote the mass and the trace of the second moment tensor
(relative to the center of mass) of the region Vi. Thus, (stable) centroidal Voronoi tessellations can be
characterized as minimizers of the sum over the tessellation of the products the mass and second moment
traces.
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Chapter 3

Numerical experiences

In this chapter, we report on some computational results which illustrate the use of the
centroidal Voronoi-based software and which also form the basis for discussions of the per-
formance of that software. We use the quality criteria discussed in Section 2.5 in our
discussion.

All computations reported in this chapter were performed on Dec or Compaq Alpha
workstations.

3.1 An example in two dimensions

The domain used for the two-dimensional example is the region specified by the DIATOM

test case which can also be analytically defined by

45 ≤ x ≤ 55 for 40 ≤ y ≤ 100
30 ≤ (x − 50)2 + y2 ≤ 40 for 0 ≤ y < 40 .

3.1.1 Initial point sets

Since the method used is iterative in nature, a set of initial points must be generated.
As indicated in Section 2.2, the initial points can be chosen either by a random sampling
(Monte Carlo) approach using a random number generator or by using Halton sequences.
In Figure 3.1, we plot a set of 256 initial points using a (2, 3) Halton sequence along with
the absolute value of the determinant of the deviatoric matrix at each of the points. In
Figure 3.2, we plot a set of 256 initial points which are generated by random sampling along
with the determinant of the deviatoric matrix at each point. As can be seen by comparing
the figures, the Halton points represent a better starting set for this example. It has been
our experience that in most situations using Halton points requires fewer iterations to reach
the centroidal Voronoi generators and so is the preferred method to use for generating
initial point distributions. However, the software allows the user to choose either method
for generating an initial set of points.

19
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HALTON INITIAL POINT SET
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Figure 3.1: Initial set of 256 points using Halton sequence along with the magnitude of the
determinant of the deviatoric matrix at each point.

RANDOM INITIAL POINT SET
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Figure 3.2: Initial set of 256 points using random sampling along with the magnitude of
the determinant of the deviatoric matrix at each point.

3.1.2 Quality of the point sets

There are several parameters which are input to the code which affect the accuracy and
performance of the methods implemented. These include:

• the number of Voronoi generators N , i.e., the number of points;
• the number of sampling points per generator Ns; and
• the maximum number of iterations Niter.

The number of generators or points is determined by the needs of the user.
In the code, the total number of sampling points is set to the number of generators

times the user specified number of sampling points per generator. The number of iterations
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depends on the properties of the iterative method with respect to the number of generators,
sampling points, etc., and the initial distribution of points. Hence it is not always easy to
determine the number of iterations a priori. We will investigate an appropriate choice for
the number of iterations in the following discussion.

We demonstrate the convergence of the iterative method by plotting the position of
the points and the magnitude of the determinants of the deviatoric matrices associated
with each point at several stages of the iterative process for determining the centroidal
Voronoi set of points. In Figures 3.3, 3.4, and 3.5, we respectively plot the distribution of
128, 256, and 512 points after 10, 20, 40, 60, 80, and 100 iterations of our iterative point
placement method (Algorithm 1).1 In Figures 3.6, 3.7, and 3.8, we plot the corresponding
determinants of the deviatoric matrix at each point. The data in Figures 3.6, 3.7, and 3.8
are summarized in Figures 3.9 and 3.10 in which respectively the average and standard
deviation of the magnitude of the determinant of the deviatoric matrix vs. the number of
iterations for 128, 256, and 512 generating points is plotted. Note that it is always beneficial
to try to determine a centroidal Voronoi point placement, i.e., that there is a substantial
improvement over the initial Halton point set. However, we also see that there no need to
perform a large number of iterations; the improvements gained by doing additional iterations
are small, i.e., performing further iterations does not change the distribution of points and
hence the determinant of the deviatoric matrix is not reduced. As can be seen from the
figures, a higher number of points requires fewer iterations. This is partly due to the fact
that the initial condition is better for a higher number of points, i.e., in the limit as the
number of points approaches infinity, the Halton sequence points (or randomly sampled
points for that matter) approach a uniform distribution of points.2 To illustrate this point,
we present the initial conditions using a Halton sequence for 128, 256, and 512 points in
Figure 3.11. Note that in the case where 128 points are specified, the determinant of the
deviatoric matrix is much larger than the other two cases. This is due to the fact that
128 points are insufficient for a Halton sequence to produce a truly quasi-uniform point
distribution.

Even though the quality of the Halton points improves as the number of points increases,
they are still not as good as the CVT points. This can be seen from Figure 3.12 where,
using the same scale, the magnitude of the determinant of the deviatoric matrix for both
the initial Halton and converged CVT sets of points are shown for the case of 512 points.

In Figures 3.13–3.15, the other quality criteria discussed in Section 2.5 are used to
examine the quality of the CVT points produced after 100 iterations; sets of 128, 256, and
512 points are compared. Specifically, in Figure 3.13, the volumes (zeroth moments) of
the associated Voronoi regions are given for each point; recall that for a perfectly uniform
point distribution, these should be the same. In Figure 3.14, the traces of the associated
second moment matrices are given for each point; recall that for a perfectly uniform point
distribution, these should also be the same. In Figure 3.15, the distance between the CVT
generators and the calculated first-moment vectors of the corresponding regions are given
for each point; recall that for a perfectly uniform point distribution of CVT points (and
only for CVT points), these should vanish. From Figures 3.13–3.15, we again see that for

1The initial set of points were determined using a Halton sequence.
2It is also due to the fact that as the number of points increases, the same number of sampling points

per generator yields more accurate approximations to the centroids of the Voronoi regions.
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the same number of sampling points per generator and the same number of iterations, the
greater the number of generators the better is the quality of the point sets.
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Figure 3.3: Position of 128 points after the indicated number of iterations of Algorithm 1
for determining a centroidal Voronoi tessellation.
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Figure 3.4: Position of 256 points after the indicated number of iterations of Algorithm 1
for determining a centroidal Voronoi tessellation.
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Figure 3.5: Position of 512 points after the indicated number of iterations of Algorithm 1
for determining a centroidal Voronoi tessellation.
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Figure 3.6: Magnitude of the determinant of the deviatoric matrix at each point after the
indicated number of iterations for 128 generating points.
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Figure 3.7: Magnitude of the determinant of the deviatoric matrix at each point after the
indicated number of iterations for 256 generating points.
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Figure 3.8: Magnitude of the determinant of the deviatoric matrix at each point after the
indicated number of iterations for 512 generating points.
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Figure 3.9: Average of the magnitude of the determinant of the deviatoric matrix vs.
number of iterations for 128, 256, and 512 generating points.
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Figure 3.10: Standard deviation of the magnitude of the determinant of the deviatoric
matrix vs. number of iterations for 128, 256, and 512 generating points.
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Figure 3.11: The initial distribution of points, i.e., Halton points, and the magnitude of the
determinant of the deviatoric matrix at each point for 128, 256, and 512 generating points.
The final centroidal Voronoi point distribution may be viewed in Figures 3.3 to 3.5.
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Figure 3.12: The magnitude of the determinant of the deviatoric matrix for the initial
(Halton) and converged (CVT) 512 point sets.
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Figure 3.13: The volumes (zeroth moments) of the associated Voronoi regions after 100
iterations for 128, 256, and 512 generating points.
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Figure 3.14: The trace of the second moment matrix after 100 iterations for 128, 256, and
512 generating points.
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Figure 3.15: Distance between generators and first-moment vectors after 100 iterations for
128, 256, and 512 generating points.
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3.2 An example in three dimensions

As an example in three dimensions, we extended the two-dimensional domain used in Section
3.1 to three dimensions by allowing the z-component to range between 0 and 20. Specifically,
we use the region

45 ≤ x ≤ 55, 40 ≤ y ≤ 100, 0 ≤ z ≤ 20
30 ≤ (x − 50)2 + y2 ≤ 40, 0 ≤ y < 40, 0 ≤ z ≤ 20 .

As before, we illustrate the convergence and accuracy of the method by plotting the mag-
nitude of the determinant of the deviatoric matrix. Results for 256, 512, and 1024 point
sets are presented in Figures 3.16–3.18, respectively. From a three dimensional view of
the points, it is not easy to discern how uniform the distribution of points is; however, in
Figure 3.19, for completeness, we provide a three-dimensional plot of the point distribution.
In Figure 3.20 we provide the traces of the second-order moment matrix for 256, 512, and
1024 points. All plots are for results obtained after 100 iterations.

0.05

0.1

0.15

0.2
80 iterations

0.05

0.1

0.15

0.2
100 iterations

0.05

0.1

0.15

0.2
40 iterations

0.05

0.1

0.15

0.2
60 iterations

0.05

0.1

0.15

0.2
10 iterations

0.05

0.1

0.15

0.2
20 iterations

Figure 3.16: Magnitude of the determinant of the deviatoric matrix for 256 points for the
three-dimensional example.
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Figure 3.17: Magnitude of the determinant of the deviatoric matrix for 512 points for the
three-dimensional example.
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Figure 3.18: Magnitude of the determinant of the deviatoric matrix for 1024 points for the
three-dimensional example.

Figure 3.19: CVT point distribution for 1024 points for the three-dimensional example.
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Figure 3.20: Traces of second-order moment matrix for 256, 512, and 1024 points for the
three-dimensional example.
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3.3 Timings

There are several factors which affect the time it takes the code to generate a centroidal
Voronoi point set. The most important input factors which affect the timing are

N - the number of points or generators;

Ns - the number of sampling points per generator;

Niter - the number of iterations.

In addition to these input parameters, the other factors that significantly contribute to the
timing are

– the routine to test whether a sampled point is inside the region Ω;

– the routine to find the centroidal Voronoi generator closest to a given point.

The total number of sampling points used at each iteration is N · Ns, i.e., the average
number of sampling points per generator times the number of generators.

The increase in time due to an increase in Ns, the number of sampling points per
generator, is roughly linear as can be seen from Table 3.1. In that table, we compare the
time it takes to complete ten iterations for the two-dimensional example of Section 3.1. In
Table 3.2, we see that when we fix the number of sampling points per generator Ns and
double the number of generators N , then the timing increases by a factor of roughly four.
For Tables 3.1 and 3.2, we used the exhaustive approach to finding the closest generator;
we saw in Section 2.3 that this approach requires N2 work, which is confirmed in the tables.
Note that an increase in Niter, the number of iterations, increases the timing linearly since
each iteration takes approximately the same amount of time when all other parameters are
fixed.

Number of Number of sample CPU time Increase in
generators points per generator CPU time

256 50 24
256 500 249 10.4
256 5000 2419 9.71
512 50 92
512 500 911 9.9
512 5000 9133 10.0

1024 50 362
1024 500 3626 10.0
1024 5000 35608 9.8

Table 3.1: Comparison of timings for 10 iterations in two dimensions.

There are two aspects of the code which take the majority of the time required to
complete an iteration. The first is, after a point is randomly sampled in an enclosing box,
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Number of Number of sample CPU time Increase in
generators points per generator CPU time

256 5000 2419
512 5000 9133 3.78

1024 5000 35608 3.90

Table 3.2: Comparison of timings as the number of generators increase.

determining if the point is inside or outside the region; the second is, given a point in the
region, finding the closest generator.

The code allows two options for finding the generator nearest to a given point. The
first option is to use a routine which is simply an exhaustive search among all generators
whereas the second uses “bins” to reduce the amount of work; see Section 2.3. In Table 3.3,
some timings are presented to compare the two methods. In all cases, 5000 sampling points
per generator are used and the times given are for the completion of 10 iterations. We
see that the “bins” approach results in a linear increase in the times as the number of
generators increases while, as we already have seen, the exhaustive search approach results
in a quadratic increase in the time. Thus, it is usually recommended to use the “bin
approach” but, as already mentioned, the code allows the user to choose either approach.
Note that the relative size of the advantage of the “bin” approach can also depend on things
like compiler options.

Number of CPU time for CPU time Factor
generators exhaustive search for bin search

256 2419 442 5.5
512 9133 894 10.2

1024 35608 1847 19.3

Table 3.3: Timings to compare methods to find a generator nearest a given point.

The other portion of the code that can significantly contribute to CPU time is the test
to determine if a point is inside or outside the given region. In the above calculations, we
have used an analytic description of the region (instead of DIATOM) to determine if a
given point is inside the region. In two dimensions, we have not seen a significant difference
in timing when DIATOM or the analytic description of the region is used. However, in
three dimensions, we have seen a significant difference. For example, using 256 generators
and 5000 sampling points per generator, we saw an increase of a factor of approximately 15
when DIATOM was used. After running some experiments, we believe that DIATOM can
quickly determine if a point is or is not in the region but when the point is in the region,
DIATOM calculates a quantity mdens which evidently is costly to compute. Since this
quantity is not needed by our codes, it seems that one could probably modify DIATOM
to quickly determine if a point is inside the region.
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Chapter 4

Avenues for future work

There are a number of directions for the possible improvement or generalization of the
algorithms discussed in this report. Here, we list a few of the possibilities.

• Instead of using randomly distributed sample points, one could sample points on a
regular lattice. This is not only less expensive to do, but allows for the use of Richard-
son extrapolation, i.e., running simulations using two different sampling lattices, one
finer than the other, and then combining the results to obtain higher accuracy.

• Similarly, instead of using Halton sequences or random sampling for determining initial
point sets, one could use a regular hexagonal grid of points. This may be less expen-
sive to determine and, since the final arrangement is hexagonal away from boundaries,
it may require fewer iterations for the convergence of algorithms to determine a cen-
troidal Voronoi tessellation.

• It would be useful to allow the user to specify the orientation of the hexagonal lattice
in the interior of the domain. One potential application is the generation of point sets
for laminates.

• For some applications, it would be useful for the codes to be able to treat point
distributions which are nonuniformly distributed according to a user specified density
function.

• For some applications, it would be useful to determine particles on the boundary or
particles that are near the boundary. Likewise, it would be useful to determine the
boundary normal at boundary points or the normal vector from nearby interior points
to the boundary.

• For irregularly shaped domains, it may be beneficial to use a recursively refined quad-
tree (or oct-tree in three dimensions) lattice to locate the boundary. In this approach,
refinement would occur as one approaches the boundary. As a result, except near the
boundary, cells that are totally within the domain would be large. The DIATOM
interface built into the codes can particularly take advantage of this approach since
it is designed to return volume fractions.

39
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Appendix A

User manual

In this chapter, we discuss the use of a FORTRAN 90 (F90) library of routines that im-
plement Algorithm 1 (see page 8) for determining the generators of a centroidal Voronoi
tessellation of a user-specified region and Algorithm 4 (see page 15) for determining the
zeroth, first, and second-order moments of the associated Voronoi regions. Algorithm 2 (see
page 9) for random sampling in a general region and Algorithm 3 (see page 12) for a bin-
based closest point search are also implemented in the library, as are algorithms for Halton
sequence-based point placement (see page 10) and for exhaustive closest point search (see
page 11).

The user is required to supply the following.

• A calling program in which input variables are specified, storage space for several
internal variables is reserved, and desired outputs are saved to files; see Section A.2.6.
The user supplied calling program also calls the library routines in an appropriate
order.

• A means for defining the geometry of the physical region. This task is simplified,
however, if the user already has a DIATOM input file. The library has an interface
with DIATOM and can be instructed to have DIATOM read that file and participate
in the treatment of the region. Otherwise, the user has to supply a routine that
specifies the region.

These requirements are discussed in detail in the remainder of this chapter. In particular,
guidance about the meaning of program parameters of user interest is provided below (see
Section A.2.6) as are descriptions of the purpose and use of the most important routines
that make up the library (see Sections A.2.2–A.2.5). A sample calling program (see Sections
A.2.1 and A.2.7) and a DIATOM input file (see Section A.1) will also be briefly described;
this may provide the quickest way to understanding how the library is intended to work.

In order to facilitate comparisons between the algorithmic descriptions in Chapters 1
and 2 and how they are realized in the codes, we provide, in Table A.1, a list of variables
defined in Chapters 1 and 2 and the corresponding names used in the codes.
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Variable name Page
in chapters in codes Description of variable reference

1 and 2
d ndim number of space dimensions 3
N n number of generators and Voronoi regions 3
Ns ns cvt average number of points sampled per gen-

erator per iteration of the CVT algorithm
(Algorithm 1)

8

a1, a2, a3 box min minimal coordinates of box enclosing the re-
gion

9

b1, b2, b3 box max maximal coordinates of box enclosing the re-
gion

9

Niter maxit number of iterations used in CVT determina-
tion (Algorithm 1)

11

Nm ns mom average number of points sampled per Voronoi
region for the approximation of the mo-
ments (Algorithm 4)

15

Table A.1: Correspondence between variable names used in Chapters 1 and 2 and those
appearing in the codes. The “Page references” column gives the number of the page in
Chapter 1 or 2 in which the variable is defined.

A.1 Region specification

The library allows, at the user’s discretion, for two ways of specifying the geometry of
the region of interest. First, the library contains routines that interface with DIATOM,
and second, it allows the user to supply a routine called TEST REGION for domain
specification. We will not discuss TEST REGION any further; however, a sample which
corresponds to an analytic description of the DIATOM test case (see Figure 3.19) is included
with the code distribution.

A.1.1 The DIATOM geometry file

If, in the main program, the user sets the logical parameter use diatom to TRUE, then
DIATOM SETUP is called before the CVT routines are invoked and the code expects
that the region is defined by a DIATOM input file. The general structure of such input
files can be found in [3] and [1]. However, we display below the three-dimensional version
of a DIATOM test region, which is the union of a box and a cylindrical shell; see Figure
3.19. For this example, the DIATOM input file is simply given as follows.

diatom

package ’box’



A.2. LIBRARY SUBROUTINES AND CODE VARIABLES 45

density 1
insert box
p1 = 45,35,0
p2 = 55,90,20

endinsert
endpackage

package ’cylinder’
density 1
insert cylinder
ce1 = 50,0,0
ce2 = 50,0,20
r = 40
ri = 30

endinsert
endpackage

A.2 Library subroutines and code variables

Starting from a typical user supplied main program, we look at the more interesting routines
that make up the library of codes. We will also look at the input and output variables, as
well as other variables of interest; see Section A.2.6 for a complete list. A schematic of a
sample main calling program is given in Section A.2.7; it may be referred to to facilitate
understanding of the purposes of variables and library routines.

A.2.1 The user main program

The user supplied main program is responsible for setting parameters, defining data, calling
and controlling the library routines, and processing output. It generally calls the following
routines:

• RANDOM INITIALIZE which initializes the F90 random number seed;

• DIATOM SETUP which initializes DIATOM and reads a DIATOM input file, if
DIATOM is to be used for region definition;

• GENERATOR INIT which initializes the Voronoi generators;

• BIN PREPROCESS which sorts generators into bins, if bins are used for closest
point searches;

• CVT ITERATION which takes one step of the CVT iteration;

• VCM which calculates the zeroth moments (volumes), first moments (centroids), and
second moments of the Voronoi regions.

The main program embeds the calls to the BIN PREPROCESS and CVT ITERATION
routines inside of a loop to effect multiple iterations of the CVT generation algorithm. The
BIN PREPROCESS routine also has to be called before the call to the VCM routine.
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A.2.2 CVT construction

The CVT calculation (Algorithm 1), is embodied in the routines GENERATOR INIT
and CVT ITERATION.

• GENERATOR INIT uses sampling to produce a set of n points to be used as the
initial positions for the generators; it repeatedly calls the routine

– REGION SAMPLER which produces a random point x in the region.

• CVT ITERATION is called repeatedly, each time applying one step of the proba-
bilistic Lloyd’s method (Algorithm 1). In doing so, it repeatedly calls the routine

– REGION SAMPLER which produces a random point x in the region

and then, to find the closest generator to the point x, it calls one of the following two
routines:

– FIND CLOSEST which uses a naive algorithm for closest point search;

– POINTS NEAREST POINT BINS3 3D which uses bins for a more efficient
closest point search.

A.2.3 Calculation of moments

The calculation of the zeroth, first, and second moments (Algorithm 4) is performed by the
routine VCM.

• VCM uses random sampling and averaging to estimate the integrals in the definitions
of the three moments; it repeatedly calls the routine:

– REGION SAMPLER which produces a random point x in the region

and then, to find the nearest generator to the point X, it calls one of the following
two routines:

– FIND CLOSEST which uses a naive algorithm for closest point search;

– POINTS NEAREST POINT BINS3 3D which uses bins for a more efficient
closest point search.

A.2.4 Sampling

A recurring task in the code is the sampling of points in the region. Sampling is done by
the routine REGION SAMPLER which chooses a random point in the enclosing box and
determines if the point lies inside or outside the given region. If it is inside, the point is
accepted; if it is outside it is rejected and another point is sampled and tested.

• REGION SAMPLER supervises the sampling procedure; a random point within the
enclosing box is chosen by calling one of the following two routines:
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– RANDOM NUMBER which uses the F90 random number generator as a basis
for sampling points;

– I TO HALTON VECTOR which uses Halton sequences as a basis for sampling
points.

Then, the sample point is tested to determine whether it is within the physical region
by calling one of the following two routines:

– TEST REGION which determines if a point is within a region defined by for-
mulas;

– DIATOM POINT TEST2 which determines if a point is within a region de-
fined by DIATOM input.

The generation and testing process is repeated, if necessary, until the sampling routine
can return a suitable point.

The Halton sequence choice for generating a sampling point in the enclosing box is only avail-
able for the initialization of the Voronoi generators (routine GENERATOR INIT of Sec-
tion A.2.2). The other two places that require point sampling (routines CVT ITERATION
and VCM of Sections A.2.2 and A.2.3, respectively) use only point sampling based on the
the F90 random number generator.

Note that the F90 random number generator is used to sample random points in the
enclosing box, i.e., by the RANDOM NUMBER routine. The RANDOM INITIALIZE
routine called by the main program initializes the seed for the F90 random number gener-
ator, either by using a user supplied seed or by using the system clock to generate a seed.
The first option should be used if reproducible results are of interest.

A.2.5 Closest neighbor search

Given a point x in the region (which is the output of one of the sampling routines of
Section A.2.4) and the current set of CVT generators, both the CVT ITERATION and
VCM routines need to determine the generator that is closest to x. The user chooses which
of the following routines is called to accomplish this task:

• FIND CLOSEST which finds the closest generator to x through an naive exhaustive
search;

• POINTS NEAREST POINT BINS3 3D which finds the closest generator to x
more efficiently using bins as in Algorithm 3.

If the bins approach is used for the closest neighbor calculation, then the generators
must be assigned to bins. This should be done after the generators are initialized and
whenever they are adjusted, i.e., whenever they may have moved from one bin to another.
In the main program, the routine BIN PREPROCESS is called for this purpose. For a
three-dimensional problem, this preprocessing routine calls the following three routines:

• D3VEC BIN EVEN3 which places the elements of an array of three-dimensional
vectors into evenly spaced bins;
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• D3VEC BINNED REORDER2 which reorders the elements of an array by bin;

• D3VEC BINNED SORT A2 which sorts the elements within each bin.

The bin preprocessing and computation routines call some lower level routines which will
not be discussed here.

Note that the bin routine for closest point determination includes a two-dimensional
version.

A.2.6 Glossary of variables

In Tables A.2–A.6, we list the names and meanings of the input variables that the user must
specify. In Table A.7, the output variables that the user can access are listed. In Table A.8,
internal variables for which storage space must be reserved are listed.

Initialization of random number generator
Name Type Description
seed integer if set to zero, the seed for the F90 random number generator is

determined from the system clock;
if set to a nonzero number, it is used as the seed for the F90

random number generator; this option should be used if repro-
ducible results are desired.

Table A.2: The input variable used to determine how the F90 random number generator is
initialized.
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Geometric input variables
Name Type Description

ndim integer the spatial dimension, either 2 or 3.
box min double precision (ndim) the minimum coordinate values of a box

enclosing the physical region.
box max double precision (ndim) the maximum coordinate values of a box

enclosing the physical region.
use diatom logical set to TRUE if DIATOM is called to de-

termine if a point is inside in the phys-
ical region;

set to FALSE if a user-supplied subrou-
tine TEST REGION is called for this
purpose.

dr double precision if use diatom is TRUE, a tolerance used
by DIATOM when testing if a point is
inside the physical region.

Table A.3: The input variables used to define the physical region being analyzed.

CVT algorithm input variables
Name Type Description

n integer the number of points to be generated.
maxit integer the number of iterations used for the CVT deter-

mination.
ns cvt integer the average number of points sampled per gener-

ator at each step of the CVT iteration.
random generator integer set to 0 if the F90 random number generator is

used for determining the initial position of the
generators;

set to 1 if Halton sequence-based sampling is used
for this purpose (preferred choice).

Table A.4: The input variables needed by the CVT determination algorithm.
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Moment algorithm input variables
Name Type Description

ns mom integer the average number of points sampled
per generator for the approximation
of the moments.

region volume given logical set to TRUE if the region volume is
input in region volume;

set to FALSE if the region volume is
determined internally by the library.

region volume double precision if region volume given is TRUE,
then region volume is the region
volume input by the user.

Table A.5: The input variables needed for the determination of the zeroth, first, and second
moments.

Closest neighbor calculation input variables
Name Type Description

use bins logical set to TRUE if the enclosing box is divided up into bins
to speed up the nearest neighbor search;

set to FALSE if the nearest neighbor search is done
through exhaustive search.

nbin integer (3) the number of bins to use in each direction; for 2D prob-
lems, set nbin(3) = 1. For efficiency, these values should
be set in such a way that the bins are nearly square or
cubical.

Table A.6: The input variables needed for closest neighbor calculation.
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Output variables
Name Type Description

cell generator double precision (ndim,n) the CVT generating points.
cell volume double precision (n) the volume (zeroth mo-

ment) of the Voronoi re-
gions.

cell centroid double precision (ndim,n) the centroids (first mo-
ments) of the Voronoi re-
gions.

cell moment double precision (ndim,ndim,n) the second moments of the
Voronoi regions.

Table A.7: The output variables of the CVT and moment determination library.

Internal variables for which storage must be reserved
Name Type Description

bin start integer (nbin(1),nbin(2),nbin(3)) the index of the first cell center in
the bin, or -1 if none.

bin last integer (nbin(1),nbin(2),nbin(3)) the index of the last cell center in
the bin, or -1 if none.

bin next integer (n) the index of the next cell center
in the bin containing this cell
center.

Table A.8: Variables which are internally set but for which the user has to reserve storage
space.

A.2.7 Schematic of the main program

We provide a schematic version of a typical main program, emphasizing the input and
output variables of primary interest to the user, and the order in which the CVT library
routines should be called. For clarity, we suppress the display of less important data and
routines, particularly those used for bin searches. For a full working example, refer to the
main program included with the code distribution. For an explanation of the purpose of the
individual subroutines invoked here, see Sections A.2.2–A.2.5 and A.1. For an explanation
of the meaning and purpose of the variables, see Section A.2.6.

! Inputs

integer, parameter :: seed = 0
integer, parameter :: n = 1024
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integer, parameter :: ndim = 3
real, dimension ( ndim ) :: box_min = (/ 0.0, 0.0, 0.0 /)
real, dimension ( ndim ) :: box_max = (/ 100.0, 100.0, 5.0 /)
integer, parameter :: maxit = 10
integer, parameter :: ns_cvt = 5000
integer, parameter :: ns_mom = 5000
logical, parameter :: use_bins = .false.
logical, parameter :: use_diatom = .true.

! Output variables

double precision cell_centroid(ndim,n)
double precision cell_generator(ndim,n)
double precision cell_moment(ndim,ndim,n)
double precision cell_volume(n)

! Initialize the random number generator.

call random_initialize ( seed )

! If DIATOM is to be used, then DIATOM must be intialized.

call diatom_setup ( )

! Initialize the position of the Voronoi generators.

call generator_init ( ndim, box_min, box_max, n, cell_generator, &
use_diatom, ... )

! Carry out the CVT iteration.

do it = 1, maxit

if ( use_bins ) then

call bin_preprocess ( ndim, box_min, box_max, n, cell_generator, &
nbin, ... )

end if

if ( it <= maxit ) then

call cvt_iteration ( ndim, box_min, box_max, n, cell_generator, &
ns_cvt, use_diatom, use_bins, dr, ... )
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end if

end do

! Compute moments.

call vcm ( ndim, box_min, box_max, n, cell_generator, ns_mom, use_diatom, &
use_bins, ... , cell_volume, cell_centroid, cell_moment )

! Output of results would occur here.

end

A.3 Summary of user control

The library includes a great deal of flexibility for the user. The user can specify the prob-
lem in several ways and has available several options for the way the CVT and moment
determination algorithms are carried out. In many cases, a great deal of code is available
which the user can access by simply setting a switch or parameter.

The most critical information that the code needs is the geometry of the region. The user
must specify ndim, the spatial dimension of the region, and box min and box max, arrays
which specify the minimum and maximum coordinate values, respectively, of a box that
encloses the region. The code also must be able to query the region, i.e., determine whether
a given point is inside or outside the region. The user may set the value of use diatom to
TRUE to have DIATOM answer these queries based on a user input file; alternately, the
user can supply a subroutine to answer the queries.

For the CVT iteration (Algorithm 1), the user specifies the number of generators n
and may specify how the generators are initialized by setting random generator. The
user then calls the CVT iteration step routine a number of times, with control returning
to the user after each step. In the sample main program, the iteration is simply carried
out maxit times, with no other iteration control. The CVT iteration requires the random
sampling of points in the region. The user may specify the value of ns cvt, the average
number of points sampled for each Voronoi region at each iteration. As part of the CVT
iteration, closest neighbor calculations are carried out. For problems with a large number
of generators, this calculation can dominate the problem execution time. In such cases, the
code offers an alternative method, using bins, to the naive closest neighbor calculation via
exhaustive search. The user can use this option by setting use bins, and then specifying
in the nbins array the number of bins to use in each dimension.

The calculation of moments also requires random sampling. The user may specify the
value of ns mom, the average number of points sampled for each Voronoi region for the
moment calculation. Again, the user may choose to do closest neighbor determination by
exhaustive searches or by the use of a bin-based method.



54 APPENDIX A. USER MANUAL

A.4 Summary of the overall structure of the running codes

The complete running version of the codes is made up of five logical groups.

1. The master routine, a user supplied main program which defines parameters, sets
up data structures, calls library routines to carry out the algorithms, and writes out
important data.

2. The CVT library. This comprises a number of F90 routines that carry out the CVT
construction algorithm and the determination of moments of the associated Voronoi
regions. Many of these routines have optional switches that the user can set in order
to vary the nature of the algorithm.

3. DIATOM, a library of routines in C and FORTRAN, supplied by Sandia.

4. Two interface routines, based on code supplied by Sandia; both are written in C and
currently included in the DIATOM library. The first routine, DIATOM SETUP,
causes a DIATOM input file to be read and stored in the DIATOM geometry struc-
ture. Geometrical information about the region of interest is set in this routine. For
example, for the DIATOM test case, the routine currently sets the geometry to be
three dimensional, rectilinear, and contained in the bounding box [0,100] by [0,100]
by [0,20]. This information is also needed by the CVT library, and some of it must
be also set in the main program that runs the CVT and moment calculations. It
would be much better to have these choices made by the user and passed from the
main program to DIATOM SETUP as arguments, instead of being set twice in sep-
arate routines. However, we have not effected this change; in order to avoid possibly
disastrous conflicts in data, we recommend that the DIATOM SETUP routine be
changed to accept, through its calling sequence, input from the main program. The
second routine,1 DIATOM POINT TEST2, allows the CVT routines to query the
physical region stored in DIATOM, with a response of +1, -1, or 0 depending on
whether the point is inside, on the boundary, or outside the region.

5. A DIATOM input file that defines the geometry of the region of interest. In order
to have DIATOM read this file, the main program must call the interface routine
DIATOM SETUP. As currently written, DIATOM expects the input file to have
the name DIATOM TEST.IN, another hardwired feature that should be made more
flexible.

A.5 Miscellaneous remarks

• The CVT library is written in FORTRAN 90.

• Floating point quantities are declared DOUBLE PRECISION. The DIATOM li-
brary declares floating point quantities using the symbolic type REAL, which we

1See Section A.5 for comments about the necessity for the changes that were made to the Sandia supplied
DIATOM POINT TEST routine.
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currently have set to “double.” The F90 code and DIATOM must always agree in
this way on the size of floating point values.

• UNIX FORTRAN compilers have a tradition of storing FORTRAN symbolic names
with an appended underscore. C compilers do not do this. Thus, if a FORTRAN
routine wants to call a C procedure named SOLVE, a problem arises because the
FORTRAN compiler will, by default, convert this into a call to SOLVE . Most
FORTRAN compilers have a way, during compilation, of requesting that underscores
not be appended to symbolic names and this was necessary in the development of the
CVT library in order to interface with DIATOM.

• Another issue is that FORTRAN procedure calls are by address. The interface routine
DIATOM POINT TEST, supplied by Sandia, had a call by value. This is the reason
that a slightly revised version, called DIATOM POINT TEST2 had to be written
for use as an interface between the F90 CVT library and DIATOM.

• DIATOM has some internal source code settings that specify the spatial dimension,
bounding box, and geometry type. These quantities are currently hard-wired in DI-
ATOM SETUP. This means that a user may have to enter certain information in
two places in order to get a correct run. A proper approach would allow the user to
choose these values in the main program and pass them to DIATOM SETUP by
its argument list, avoiding the possibility of a catastrophic disagreement in problem
definition.

• During development of the code, CPU and real time measurements were made. There
is an F90 standard routine called CPU TIME for CPU time measurement. The
implementation of this routine on the DEC Alpha was unreliable for CPU times that
were more than about 30 minutes. Apparently, an internal integer would wrap around,
resulting in negative CPU time intervals. Hence, CPU timings were also done with the
UNIX routine ETIME. However, because the compiler was instructed not to append
an underscore to symbolic names, but the compiled version of ETIME actually has
an underscore, the calls to ETIME had to be explicitly made to ETIME . Real time
measurements were made by calls to the F90 routine SYSTEM CLOCK, for which
wrap-around problems did not seem to arise.
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