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Why stochastic models?
A transition to non-deterministic simulations

Many applications (especially those predicting future events) are affected by a
relatively large amount of uncertainty in the input data such as model
coefficients, forcing terms, boundary conditions, geometry, etc.

An example includes forecasting financial markets where this may depend
on the number of economic factors, number of underlying assets or the
number of time points/time steps, human behaviors, etc.

Important DOE examples include the enhancement of reliability of smart
energy grids, development of renewable energy technologies, vulnerability
analysis of water and power supplies, understanding complex biological
networks, climate change estimation and design and licensing of current
and future nuclear energy reactors (CASL simulation hub)

The model itself may contain an incomplete description of parameters,
processes or fields (not possible or too costly to measure)

There may be small, unresolved scales in the model that act as a kind of
background noise (i.e. macro behavior from micro structure)

All these and many others introduce uncertainty in mathematic models
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Types of uncertainties

Stochastic models give quantitative information about uncertainty. In practice
it is necessary to address the following types of uncertainties:

Uncertainty may be aleatoric which means random and is due to the
intrinsic variability in the system
Remark: by variability we mean a type of uncertainty that is inherent
and irreducible, e.g. turbulent fluctuations of a flow field around an
airplane wing, permeability in an aquifer, etc.
OR

Uncertainty may be epistemic which means due to incomplete knowledge
Remark: can be reduced by additional experimentation, improvements in
measuring devices, etc., e.g. mechanic properties of many bio-materials,
polymeric fluids, highly heterogeneous or composite materials, the action
of wind or seismic vibrations on civil structures, etc.

Uncertainty quantification (UQ) attempts to quantitatively access the impact
of uncertain data on simulation outputs
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Uncertainty quantification (UQ)
Worst scenario approaches

Let A denote the input data and B the output set such that u : A 7→ B.
There are various ways to describe the uncertainty in A with the goal of
describing the uncertainty in some quantity of interest (QoI) Q(u):

Worst scenario approaches: Typically A is an ε-ball around some nominal
input data and the goal is to determine the worst case associated with the set
relation B = u(A)

The range of the uncertainty of Q(u) is then defined by the interval I

I =
[
Q(u), Q(u)

]
=

[
inf
a∈A

Q(u(a)), sup
a∈A

Q(u(a))

]

the choice of the input set A is, in a large way, subjective and should be
regarded as a working assumption

“Assumption has many advantages. Chiefly these are the same as those
of theft over honest toil.” Bertrand Russel
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Uncertainty quantification (UQ)
Knowledge-based methods

Fuzzy sets and possibility theory: deterministic approach to UQ which
generalizes classical set theory. Let C ⊂ A:

for each x ∈ A set membership is defined by µC : A→ [0, 1], expressing
the degree of truth of the statement “x belongs to C.”

define the α-cut of C by Cα
def
= {x ∈ A : µC ≥ α} which gives a set

characterization of uncertainty

the operator u then propagates the fuzziness in A into the fuzziness in B

Evidence theory (Dempster-Shafer Theory): generalizing the probabilistic
approach by defining the Belief Bel(C) (lower bound) and Plausibility Pl(C)
(upper bound) functions, for the likelihood of an event C.

define the likelihood m : Φ→ [0, 1] of a countable family of events Ψ∑
ϕ∈Φ

m(ϕ) = 1, m(∅) = 0, however ϕ1 ⊂ ϕ2 6⇒ m(ϕ1) ≤ m(ϕ2)

Bel(C) =
∑

ϕ∈Φ,ϕ⊂C
m(ϕ), P l(C) =

∑
ϕ∈Φ,ϕ∩C 6=∅

m(ϕ)
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Uncertainty quantification (UQ)
Stochastic/Probabilistic methods

What is probability theory? Understood as a mathematical theory of a finite
measure. Let (Ω,F ,P) denote a (complete) probability space: Ω is the event
space, F ⊂ 2Ω is the σ-algebra and P is the probability measure, satisfying:

1 0 ≤ P (A), if A ∈ F and P (Ω) = 1

2 A positive measure P : F → [0, 1] which is countably additive

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai), for {Ai}∞i=1 ∈ F disjoint

Stochastic / probabilistic methods: given a probability measure on the
input data A the mapping u induces a probability measure on the output set
B =⇒ SODEs/SPDEs (Doob-Dynkin Lemma)

applies to aleatoric phenomena, i.e. frequencies of occurance

applies to epistemic concepts in the realm of Bayesian and maximum
entropy methods
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Stochastic models

Models (linear or nonlinear) for a system M may be stationary with state u,
exterior loading or forcing f and random model description (realization)
ω ∈ Ω, with probability measure P:

M(ω;u) = f(ω) a.e. in D ⊂ Rd

Evolution in time may be

discrete (e.g. Markov chain), driven by discrete random process:

un+1 = F(ω;un)

continuous (e.g. Markov process ≡ Stochastic Differential Equation),
driven by random processes:

du = (M(ω;u)− f(ω, t))dt+ B(ω;u)dW (ω, t) + P(ω;u)dQ(ω, t).

In this Itô evolution equation, W (ω, t) is a Wiener process and Q(ω, t) is
a Poisson process.
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The Computational Stochastic PDE
Forward Problem: From Real World to Predictions to Decisions

Output

Input
-coefficients, 
-forcing terms
-geometry
-boundary conditions

System

complex system of 
Partial Differential Equations (PDEs)

Quantities of Interest

QOI

Prediction

GOAL:  Decision 

Verification
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Output
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-geometry
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System

complex system of 
Partial Differential Equations (PDEs)

Quantities of Interest

QOI

Prediction

GOAL:  Decision 
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Uncertainty

-statistical information
-functional of the solution

HIGH - DIMENSIONAL
-interpolation / integration

Stochastic FEM
-Collocation
-Galerkin, 
-Monte Carlo, etc
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An example problem
Pressure distribution in a porous medium

Consider the following simple equation describing the pressure distribution in a
porous medium:{

−∇ · (a(x)∇u(x)) = f(x) in D ⊂ Rd,
u(x) = 0 on ∂D,

where f(x) is the source, a(x) describes the permeability and u(x) is the
pressure distribution.

Q: What if the input data is random?{
−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D,

u(ω, x) = 0 on Ω× ∂D,

where f(ω, x) is the stochastic source, a(ω, x) describes the stochastic
permeability and u(ω, x) is the stochastic pressure distribution.

Difficulties arise since instead of just asking for u(x0) we instead want to
know E[u](x0), Var[u](x0) or even P[u(ω, x0) ≥ u0]

J. Burkardt, http://www.sc.fsu.edu/~burkardt, C. Webster, http://www.csm.ornl.gov/~cgwebster — April 2-3, 2012 10/49

http://www.sc.fsu.edu/~burkardt
http://www.csm.ornl.gov/~cgwebster


Motivation UQ Stochastic models RVs RFs SVD KLE Summary

An example problem
Pressure distribution in a porous medium

Consider the following simple equation describing the pressure distribution in a
porous medium:{

−∇ · (a(x)∇u(x)) = f(x) in D ⊂ Rd,
u(x) = 0 on ∂D,

where f(x) is the source, a(x) describes the permeability and u(x) is the
pressure distribution.

Q: What if the input data is random?{
−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D,

u(ω, x) = 0 on Ω× ∂D,

where f(ω, x) is the stochastic source, a(ω, x) describes the stochastic
permeability and u(ω, x) is the stochastic pressure distribution.

Difficulties arise since instead of just asking for u(x0) we instead want to
know E[u](x0), Var[u](x0) or even P[u(ω, x0) ≥ u0]

J. Burkardt, http://www.sc.fsu.edu/~burkardt, C. Webster, http://www.csm.ornl.gov/~cgwebster — April 2-3, 2012 10/49

http://www.sc.fsu.edu/~burkardt
http://www.csm.ornl.gov/~cgwebster


Motivation UQ Stochastic models RVs RFs SVD KLE Summary

An example problem
Pressure distribution in a porous medium

Consider the following simple equation describing the pressure distribution in a
porous medium:{

−∇ · (a(x)∇u(x)) = f(x) in D ⊂ Rd,
u(x) = 0 on ∂D,

where f(x) is the source, a(x) describes the permeability and u(x) is the
pressure distribution.

Q: What if the input data is random?{
−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D,

u(ω, x) = 0 on Ω× ∂D,

where f(ω, x) is the stochastic source, a(ω, x) describes the stochastic
permeability and u(ω, x) is the stochastic pressure distribution.

Difficulties arise since instead of just asking for u(x0) we instead want to
know E[u](x0), Var[u](x0) or even P[u(ω, x0) ≥ u0]

J. Burkardt, http://www.sc.fsu.edu/~burkardt, C. Webster, http://www.csm.ornl.gov/~cgwebster — April 2-3, 2012 10/49

http://www.sc.fsu.edu/~burkardt
http://www.csm.ornl.gov/~cgwebster


Motivation UQ Stochastic models RVs RFs SVD KLE Summary

General approaches I

There have been many formulations and approaches to solve SPDEs:

Statistical sampling methods:

Brute-force Monte Carlo (MC): convergence rate independent of the
number of random variables, robust, embarrassingly parallel - very slow
convergence (1/

√
#samples)

Quasi MC (QMC), Latin Hypercube Sampling (LHS), Lattice Rules

Variance reduction techniques: important, conditional and correlated
sampling - limitations when confronted with large number of RVs

Indirect methods (require closure approx.):

Moment methods: derive equations for the moments of the quantities of
interest - not applicable to nonlinear problems or non-Gaussian RVs

PDEs for PDFs (e.g. Fokker-Planck equation): derive a system of PDEs
whose solution approximates the probability distributions / densities - BCs
and higher dimensions are challenging
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General approaches II

Direct methods: compute an approximation to u(ω, x) in a suitable
subspace and use this solution to compute the desired statistics, e.g.
Stochastic Galerkin, Stochastic Collocation.

Interval analysis : maximum bounds of output uncertainty - can
dramatically overestimated to uncertainties

Perturbation-based methods : Taylor expansion around a mean solution -
can only be used for linear QoIs and when the variance in solution is small

Operator-based methods : compute the inverse of a given operator, if it
exists, by using a Neumann series expansion or the weighted integral
method - restricted to small magnitude uncertainties and often limited to
static problems

Stochastic polynomial approximations: spectral Galerkin, Wiener
(polynomial) chaos, Karhunen-Loève , stochastic collocation - challenges
include: determining the proper polynomial subspace, curse of
dimensionality, adaptive and anisotropic refinement, low stochastic
regularity and discontinuities, optimization and inverse problems
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Plan of attack

1 Determine an accurate representation for the input stochastic (random)
fields can be both simulated and analyzed. e.g. a Karhunen-Loève
expansion

2 Transform the stochastic problem into a deterministic, parametric one
in Rd× an ∞− dimensional space

3 Design an adaptive dimensional reduction procedure

4 Design an adaptive discretization procedure using sampling methods,
polynomial (spectral) methods or a combination of both

5 Develop theory which justifies the approach

6 Compare the complexity of the approach with with other methods
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in Rd× an ∞− dimensional space

3 Design an adaptive dimensional reduction procedure

4 Design an adaptive discretization procedure using sampling methods,
polynomial (spectral) methods or a combination of both

5 Develop theory which justifies the approach

6 Compare the complexity of the approach with with other methods
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expansion

2 Transform the stochastic problem into a deterministic, parametric one
in Rd× an ∞− dimensional space

3 Design an adaptive dimensional reduction procedure

4 Design an adaptive discretization procedure using sampling methods,
polynomial (spectral) methods or a combination of both

5 Develop theory which justifies the approach

6 Compare the complexity of the approach with with other methods

J. Burkardt, http://www.sc.fsu.edu/~burkardt, C. Webster, http://www.csm.ornl.gov/~cgwebster — April 2-3, 2012 13/49

http://www.sc.fsu.edu/~burkardt
http://www.csm.ornl.gov/~cgwebster


Motivation UQ Stochastic models RVs RFs SVD KLE Summary

Tools of the trade
Random variables and random fields

The input data a(ω, x), f(ω, x) and the solution u(ω, x) of the SPDE will
(more than likely) be a random field defined by a set of random variables
Y(ω) = (Y1(ω), . . . , YN (ω)), i.e. u(ω, x) = u(Y(ω), x)

1 How to deal with RVs Yn(ω)?

2 How to represent RFs a(Y(ω), x), f(Y(ω), x) and u(Y(ω), x)?
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Tools of the trade
Random variables

A R-valued random variable (RV) Y : (Ω,F ,P)→ R is completely specified
by a probability density function (pdf) ρY and a cumulative distribution
function (cdf) and FY s.t. ∀y ∈ R:

FY (λ) := P [{Y (ω) ≤ λ}] =

∫
{Y (ω)≤λ}

dP(ω) = E
[
χ{Y (ω)≤λ}

]
=

∫ λ

−∞
ρY (y)dy,

where
∫
R ρY (y)dy = 1
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Random variables
Covariance, correlation and independence

For Y ∈ L1
P(Ω) define the expected (mean) by

Y = E [Y ] =

∫
Ω

Y (ω)dP(ω) =

∫
R
yρY (y)dy

and fluctuating part by Ỹ = Y (ω)− Y (ω), with E[Ỹ ] = 0.

The variance Var[Y ] = E
[
Ỹ ⊗ Ỹ

]
= E

[
(Ỹ )2

]
= Cov[Y, Y ]

Let Y(ω) = (Yn(ω))
N
n=1 , N ∈ N+ be a random vector, then the

covariance and correlation of two RVs:

Cov[Yi, Yj ] := E
[
Ỹi ⊗ Ỹj

]
, Corr =

Cov[Yi, Yj ]√
Var[Yi]

√
Var[Yj ]

uncorrelated if Cov[Yi, Yj ] = 0 (orthogonal), perfectly correlated if
Corr = 1 and perfectly anti-correlated if Corr = −1

independent if ∀φ1, φ2, E[φ1(X1)φ2(X2)] = E[φ1(X1)]E[φ2(X2)]
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]
= E

[
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Random variables
Covariance matrix for vectors

We can now define a covariance matrix Cov[Y] whose (i, j) entry is the
covariance between Yi(ω) and Yj(ω):

Cov[Y](i,j) = Cov[Yi, Yj ]

Cov[Y] is symmetric, nonnegative definite, and has diagonal elements
Cov[Y](i,i) = Var[Yi]

As before, the correlation matrix can be defined from the covariance matrix.
Form a diagonal matrix Σ from the square roots of the variances, then
compute the correlation matrix by:

Corr[Y] = Σ−1Cov[Y]Σ

the diagonal entries of Corr[Y] are 1
The Cauchy-Schwarz inequality guarantees that the off-diagonal elements
lie between −1 and +1
value of each covariance entry indicates the strength and direction of the
correlation between the corresponding components
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Tools of the trade
Random processes/fields: generalizations of RVs

A random process/field (RP/RF) a(ω, x) defined on a probability space
(Ω,F ,P) and indexed by a deterministic domain D ⊂ Rd, returns a real value

1 a set of RVs indexed by x ∈ D. For every x ∈ D, a(·, x) is a RV on Ω

2 a function-valued RV. For every ω ∈ Ω, a(ω, ·) is a random function - a
realization - of x in the domain D

Often only second order information - mean and covariance are known

Mean a(x) = E[a](x) =
∫

Ω
a(ω, ·)dP(ω) and Var[a](x) = E[(ã)2](x) as

a function of x with fluctuation part ã(ω, x) = a− a
P [a ≥ a0] = P [{ω ∈ Ω : a(ω, x) ≥ a0}] = E

[
χ{a≥a0}

]
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Random fields (RF)
White vs. colored noise

The covariance may be considered at different spatial positions x ∈ D ⊂ Rd:

Cov[a](x1, x2) := E [ã(·, x1)ã(·, x2)] , for x1, x2 ∈ D ×D

if a(x) ≡ a and Cov[a](x1, x2) = Ca(x1 − x2) then the process is
homogeneous. Here representation through the spectrum using Fourier
expansion if well known
we will consider colored noise approximations using correlated
second-order RFs: a(ω, x) ∈ L2

P(Ω;W (D)) where

L2
P :=

{
a measurable and

∫
Ω

‖a(ω, ·)‖2W (D)dP(ω) < +∞
}

and W (D) a Banach space of functions a : D → R
we will not focus on white noise approximations which refers to
uncorrelated RFs for which:

a(x) = 0 and Cov[a](x1, x2) = δ(x1 − x2)
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Discretized white noise
Piecewise constant approximations

Discretized white noise over a square subdivided into 2, . . . , 512 triangles
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Random fields (RF)
Finite dimensional noise assumption

Given the mean and covariance of the RF we would like to construct a simple
representation which captures this information and used for simulations

Ideally, this involves a combination of countably many independent RVs

Γn ≡ Yn(Ω) ⊂ R and Γ =
∏N

n=1 Γn ⊂ RN , the image of the random
vector Y = (Y1, . . . , YN )
Let ρ : Γ→ R+, with ρ ∈ L∞(Γ) be the joint probability density function
(jPDF) of Y, then we want that:

ρ(y) =

N∏
n=1

ρn(yn), where y ∈ Γ and ∀n, yn ∈ Γn

The independence of the N RVs allows to see each of them as the axis of
a coordinate system (Doob-Dynkin lemma)

The most popular approach: Karhunen-Loève (KL) expansion - involves
an ∞-dimensional expansion of the random field suitably truncated

Challenge: this truncation in N RVs can be high-dimensional

In the discrete case - KL is similar to ROM and the SVD of a matrix
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Motivate the Karhunen-Loève expansion
SVD: The Singular Value Decomposition

Every (real) m by n matrix A has a singular value decomposition:

A = U S V T

where

U is an m by m orthogonal matrix (UT U = I);

S is an m by n diagonal matrix with nonnegative entries;

V is an n by n orthogonal matrix;

The diagonal entries of S, called the singular values of A, are chosen to
appear in descending order, and are equal to the square roots of the nonzero
eigenvalues of AAT or ATA
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SVD
Facts about the SVD I

r, the number of nonzero diagonal elements in S, is the rank of A

very small nonzeros may indicate numeric singularities

the i-th diagonal element of S is the i-th largest eigenvalue of AAT (and
also of AAT ). Hence, we may write this value as

√
λi.

Let ui and vTi be the i-th columns of U and V T . Then A maps the i-th
column of V T to the i-th column of U .

The columns of U and V provide a singular value expansion of A:

A =

r∑
i=1

√
λi ui v

T
i
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SVD
Facts about the SVD II

If we use all r terms, the singular value expansion is exact

Let Ak represent the sum of just the first k terms of the expansion

Ak is a matrix of rank k, the sum of k rank-1 outer products

Of all rank k matrices, Ak is the best approximation to A in two senses:

1 Minimum L2 norm:∥∥A−Ak∥∥
L2 ≡square root of maximum eigenvalue of (A−Ak)T (A−Ak)∥∥A−Ak∥∥2

L2 =s2
k+i = λk+1

2 Minimum Frobenius (sum of squares) norm:∥∥A−Ak∥∥
F
≡
√∑

i,j

(Ai,j −Aki,j)2

∥∥A−Ak∥∥2

F
=

r∑
k+1

s2
i =

r∑
k+1

λi
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SVD
Using the facts I

U and V are natural bases for the input and output of A

In the natural bases, the SVD shows that multiplying by A is simply
stretching the i-th component by si:

x =

r∑
i=1

vTi ∗ ci =⇒ y = A ∗ x =

r∑
i=1

ui ∗ (si ∗ ci)

The relative size of the singular values indicates the importance of each
column

The singular value expansion produces an optimal, indexed family of
reduced order models of A
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SVD
Using the facts II

SVD is the discrete version of the Karhunen-Loève (KL) expansion that is
typically applied to RF that produce, for any time t, a field of values
varying spatially with x

Since it’s easier to understand discrete problems, let’s prepare for the KL
expansion by looking at how the SVD is used with a set of data

Let us re-imagine the columns of our discrete data as being n snapshots
in discrete time indexed by j. Each snapshot will record m values in a
“space” indexed by i
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SVD

If we pack our data into a single matrix A, then Ai,j means the
measurement at position i and time j

It is reasonable to expect correlation in this data; the “neighbors” of
Ai,j , in either space or time, might tend to have similar values

Moreover, the overall “shape” of the data for one time or one spatial
coordinate might be approximately repeated elsewhere in the data

This is exactly the kind of behavior the SVD can detect
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SVD example
Snowfall at Michigan Tech

We have a data file of the monthly snowfall in inches, over 121 winters at
Michigan Tech. We’ll think of the months as the ”space” dimension.
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SVD example
Snowfall at Michigan Tech

To analyze our data, we consider each of the 121 snowfall records, starting
with x1890, as a column of 8 numbers, and form the m=8 by n=121 matrix A:

A =
[
x1890|x1891|...|x2010

]

Now we determine the SVD decomposition A = USV T

The columns of U are an orthogonal set of “spatial” behaviors or modes
(typical behavior in a fixed year over a span of months)

The columns of V are typical behaviors or modes in a fixed month over a
span of years.

In both cases, the most important behaviors are listed first

The diagonal matrix S contains the “importance” or “energy” or signal
strength associated with each behavior
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SVD example
The first 9 singular values

The S data shows the relative importance of the first two modes is:

s12√∑8
i=1 s

2
i

= 0.87
s22√∑8
i=1 s

2
i

= 0.05

The first pair of modes, u1 and v1, by itself, can approximate the entire
dataset with a relative accuracy of 87%.
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SVD example
Four strongest snowfall modes for a year

1 December/January High (DOMINANT) 2 More December, less later

3 February High, less January 4 More November snow
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SVD example
Approximating 2010-2011 snowfall

2010 − 2011 Data 1 Mode 2 Modes

3 Modes 4 Modes 5 Modes

The same kind of approximating is occurring for all 121 sets of data!
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SVD example
Four strongest “time” Modes

The linear regression line suggests the “December/January High” pattern
(upper left) is steadily gaining importance over the years.
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SVD
Typical old and new snowfall patterns

To see how heaviest snowfall is coming earlier, compare the 1890
January/February style snowfall with the 2008 December/January style:
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SVD
Conclusions

1 Data gathered at discrete places and times is easier to understand than
the corresponding continuous cases

2 The SVD shows how underlying patterns and correlations can be
detected, and represented as a sum of the form

A =

r∑
i=1

√
λi ui v

T
i

where the λ values represent a strength, the u’s represent variation in
space, and v variation in time

3 The structure of the u and v vectors suggests something about the
preferred modes of the system, and the size of the λ coefficients allows
us to understand the relative important of different modes, and to
construct reduced order models if we wish
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SVD
Conclusions II

Given that our data was stored in A, we may think of the matrices AAT

and ATA as a form of a covariance matrix

The singular values
√
λi are the square roots of eigenvalues of both these

matrices

U contains eigenvectors of the “spatial” covariance matrix AAT

V contains eigenvectors of the “temporal” covariance matrix ATA

Very similar statements will hold for the continuous case
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Stochastic representation of a RF
Karhunen-Loève expansion of the input data

The Karhunen-Loève expansion of a RF is a Fourier-type series based on the
spectral expansion of its covariance function - other names Proper Orthogonal
Decomposition (POD), Principle Component Analysis (PCA)

Let a(ω, x) ∈ L2
P be a RF with continuous covariance Ca : D ×D → R

Examples of 1d covariance kernels for correlation lengths Lc = 1 and Lc = 1/4
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Karhunen-Loève expansion
Properties of the covariance function

1 Ca is symmetric, i.e. Ca(x1, x2) = Ca(x2, x1), ∀x1, x2 ∈ D
2 Ca is non-negative definite, i.e. for any n = 1, . . .

n∑
i=1

n∑
j=1

Ca(xi, xj)vivj ≥ 0,∀(x1, . . . , xn) ∈ Dn and (v1, . . . , vn) ∈ Rn.

In matrix notation: vTCa(x, x)v ≥ 0, ∀v, x.

Define the associated linear covariance operator TCa
: L2(D)→ L2(D) s.t.:

[TCa
f ](x1) =

∫
D

Ca(x1, x2)f(x2)dx2, ∀f ∈ L2(D)

Observation: TCa
f ∈ C0(D) , ∀f ∈ L2(D), Ca 7→ TCa

is injective and TCa

is compact, symmetric and non-negative def.

it has a countable sequence of real eigenvalues {λn} ⊂ R+, λn → 0

corresponding eigenfunctions {bn(x)} are L2(D)-orthonormal
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Karhunen-Loève expansion
Spectral representation of the kernel

Theorem (Mercer, 1909)

Given Ca continuous, symmetric, non-negative definite, then:

lim
N→∞

max
(x1,x2)∈D×D

∣∣∣∣∣Ca(x1, x2)−
N∑
n=1

λnbn(x1)bn(x2)

∣∣∣∣∣ = 0

Mercer’s spectral representation of the kernel:

Ca(x1, x2) =

∞∑
n=1

λnbn(x1)bn(x2)

Eigenvalues/eigenfunctions constructed from a 2nd-order Fredholm equation:

[TCa
bn] (x1) =

∫
D

Ca(x1, x2)bn(x2)dx2 = λnbn(x1), n = 1, . . .

with

∫
D

bn(x1)bm(x1)dx1 = δnm
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Karhunen-Loève expansion
Approximating an ∞-dimensional RF

a(ω, x) = a(x) +

+∞∑
n=1

bn(x)Yn(ω),

with Yn(ω) =

∫
D

(a(ω, x)− a(x))bn(x) dx

(λn, bn(x)) are eigenpairs of TCa ; Yn(ω) are centered, uncorrelated RVs:

E[Yn] = 0, Cov[Yn, Ym] = E[YnYm] = δnm

but not necessarily independent, with Var[Yn] = λn

If the basis {bn} has spectral approx. properties and the realizations of a are
smooth, then λn = Var[Yn]→ 0 sufficiently fast as n→∞ and we can
truncate the series

a(ω, x) ≈ aN (ω, x) = a(x) +
N∑
n=1

bn(x)Yn(ω),

Rate of decay depends on the smoothness of Ca and the corr. length Lc
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Karhunen-Loève expansion
Example: Ornstein-Uhlenbeck process

Peaked and smooth covariance functions

Corresponding KL eigenvalues
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Karhunen-Loève expansion
Truncation error minimization

This truncated expansion corresponds to the Best N -term approximation

min
(Yn,bn)∫

D
bnbm=δnm

E

∫
D

(
a− a(x)−

N∑
n=1

bnYn

)2


If we truncate using the N largest eigenvalues, we have an optimal - in
variance - expansion in N RVs

i.e. with Ca continuous, aN converges uniformly to a (Mercer’s Thm)

sup
x∈D

E[(a− aN )2](x) = sup
x∈D

{
Ca(x)−

N∑
n=1

λnb
2
n(x)

}
→ 0, as N →∞

KL expansion is the SVD of the map A : L2(D)→ L2
P(Ω), where

Ca := A∗A (i.e. truncate at the N largest eigenvalues of ATA) ⇒
finding a sparse representation (model reduction)
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Karhunen-Loève expansion
Example eigenfunctions

Distributions of the eigenfunctions of 1d exponential kernels,

Ca(x1, x2) = σ2e
− |x1−x2|

Lc , for correlation lengths Lc = 1 and Lc = 1/4
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Karhunen-Loève expansion
Examples of eigenvalues

exp.: Ca(x1, x2) = σ2e
− ‖x1−x2‖1

L2
c , Gaussian: Ca(x1, x2) = σ2e

− ‖x1−x2‖
2

L2
c

Eigenvalues values of the kernels for correlation lengths Lc = 1 and Lc = 1/4

More modes required as the correlation decreases (noise level increases)
In the asymptotic limit of white noise ⇒ infinity number of modes
For a given Lc, the smoothness of the covariance kernel Ca dictates the
convergence rate of the eigenvalues
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Karhunen-Loève expansion
Convergence of the spectrum

the truncation error decreases monotonically with the number of terms in
the expansion

the convergence is inversely proportional to the correlation length and
depends on the regularity of the covariance kernel

Theorem (Schwab et al. 2005)

If Ca is piecewise analytic on D ×D with D ⊂ Rd then:

0 ≤ λn ≤ c1 exp(−c2 n1/d), ∀c1, c2 > 0 ind. of n

If Ca is piecewise Hk ⊗ L2 with k > 0 then:

0 ≤ λn ≤ c3 n−k/d, ∀c3 > 0

Remark: similar to SVD - if one wants the relative error (in the variance) less

than some tolerance δ, i.e. ‖a− aN‖2 ≤ ‖a‖ δ, then choose N s.t.∑∞
n=N+1 λn ≤ δ

∑∞
n=1 λn
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Karhunen-Loève expansion
Approximating 90% variance with Gaussian kernel

Exponential and Gaussian kernels with Lc = 1 and N = 5 modes

Exponential and Gaussian kernels with Lc = 1/4 and N = 20 modes
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Karhunen-Loève expansion
Special case: Gaussian RFs

Although the Yn’s are uncorrelated, in general they are not independent

Gaussian RVs are uncorrelated ⇐⇒ independent

A very convenient special case is the one where the RF a(ω, x) is a Gaussian

RF, defined by Gaussian random vector Y(Ω) = Γ =
∏N
n Γn s.t.

ρ(y) =

N∏
n

ρn(yn), where yn ∈ Γn

Question: Is aN strictly positive? Answer: Not necessarily!

Warning: the truncated expansion might not be positive almost surely!
Possible remedy: nonlinear transformations

⇒ a(ω, x) ≈ aN (ω, x) = amin + eγN (ω,x) = amin + eb0(x)+
∑N

n=1 bn(x)Yn(ω)

where γN (ω, x) is a truncated Gaussian RF and aN (ω, x) is a lognormal RF
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Karhunen-Loève expansion
Stationary non-Gaussian RFs [Grigoriu, 2007]

If a(ω, x) is the given RF and if the marginal CDF Fa is known or can be
approximated, then one can use a translation process, i.e. a nonlinear
transformation of a stationary Gaussian field γ(ω, x) with zero mean and
unit variance:

a(ω, x) = F−1
a ◦ Φ(γ(ω, x)),

where Φ is the CDF of N(0, 1)

then we can approximate γ(ω, x) using a truncated KL expansion in
terms of Gaussian random parameters {Yn(ω)}Nn=1 s.t.

aN (ω, x) = F−1
a ◦ Φ(γN (ω, x)) = F−1

a ◦ Φ

(
b0(x) +

N∑
n=1

bn(x)Yn(ω)

)
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Summary
What’s coming next?

Motivation, Probabilistic and Stochastic models, aleatoric and epistemic
uncertainty

Formulating a “Plan of attack” for solving stochastic problems

An overview of numerical methods for solving SPDEs

Random variables and random fields

Stochastic representation of a random field:
– Discrete case, Singular value decomposition
– Spectral expansion, Karhunen-Loève expansion

What’s next? Formulating a well-posed SPDE, stochastic regularity

How to compute a numerical solution uN (ω, x)?
– Monte Carlo FEM
– Stochastic Galerkin FEM
– Stochastic Collocation FEM
– convergence analysis

What happens when N becomes large?
– curse of dimensionality and sparse representations
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