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Abstract

This document is a sequel to a a study of the use of a Jacobi iterative solver to compute approximate
solutions to a discretization of Poisson’s equation in 1D. It was found that the convergence rate for the
Jacobi iteration decreased drastically as the grid size increased. For that reason, it was decided to inves-
tigate the use of a multigrid solver for the same problem. This document discusses the implementation
of a multigrid solver that is based, as far as possible, on the existing Jacobi solver. Some options for
the multigrid method are considered. Results are reported for a standard calculation on a single grid. A
convergence study is also carried out, to compare the costs of the multigrid and Jacobi methods as the
grid size increases. The hope is that the multigrid method will enable us to solve the 1D problem more
quickly, and to proceed to the 2D problems that are of greater interest.

1 Ooops

I am stumbling over my preference for n to be the number of nodes, and the popular use of n
for the number of intervals! Could we let M be intervals and N be nodes? N = M + 1? That
would almost make both sides happy.

2 Shortcomings of the Jacobi Iteration

We are considering the iterative solution of the linear system associated with the solution of a discretization
of a boundary value problem over a one-dimensional spatial interval [a, b], known as the Poisson equation,
and having the form

u′′(x) = f(x) for a ≤ x ≤ b

with boundary conditions given as:
u(a) = ua, u(b) = ub

By discretizing the interval into n equal subintervals and approximating the second derivative by a
difference quotient, we were able to write down a system of n+1 equations, involving the boundary conditions
at the first and last nodes, and the discretized differential equation at the n− 1 interior nodes. To solve this
discretized system, we used a Jacobi iterative solver, specifying a tolerance on the residual as our stopping
criterion.

We conducted simple experiments in which we doubled the value of n and observed the number of
iterations necessary to achieve convergence. The iteration count grew at a surprisingly high rate compared
to n. It is a common observance that the solver on a coarse grid quickly approximates the overall behavior
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of the solution, and that a fine grid solver might profitably “reference” such information in order to get a
better starting point, or, indeed to speed up an iteration that seems to have stalled.

This is the inspiration for the multigrid method. In this document, we investigate methods for modifying
our solution procedure for the Poisson equation to take the multigrid approach. We first make a very simple
experiment, in which we use a single pair of coarse and fine grids, determining whether the coarse grid data
can give a useful and efficient head start to the fine grid iteration.

The results of the two-grid experiment encourage us to proceed to a full multigrid approach, involving
a sequence of grids, and a process for transferring information from fine to coarse grids and back, and to
decide which particular grid to concentrate on at each phase of the iteration. Once the new implementation
is completed, we return to test problems we considered for the Jacobi solver, and compare the costs.

3 The Two-Grid Procedure

We suppose that we have two geometric grids, nested in such a way that the fine grid contains all the nodes
of the coarse grid. For clarity, we will assume that the fine grid is twice as fine as the coarse grid, and that
the coarse grid can be constructed by selecting just the nodes with odd index from the fine grid.

Using the superscripts f and c for the fine and coarse grids respectively, it should be clear that there are
simple relationships between the linear systems Af and Ac, and the solutions uf and uc. In particular, since
both uf and uc are pointwise approximations to the solution function u(x), it can be expected that where
the fine and coarse grids share a node, the corresponding solution vectors will be close.

As a strategy for reducing the cost of iteratively solving the linear system associated with the fine grid,
we might be able to make use of an approximate solution of the coarse grid, using linear interpolation to fill
in the missing entries.

Conversely, we can start with a linear system on the fine grid, and construct a related system for the
coarse grid, either by simply deleting the even-indexed entries of the right hand side, or by some form of
agglomeration.

Experience has shown that the coarse grid iteration is likely to converge much more quickly. Therefore,
we might be able to speed up the fine grid iteration by, at some point, transferring the current fine grid
approximation to the coarse grid and doing a substantial number of iterations there, before returning to the
fine grid to finish up.

As a test, we know that the pure Jacobi iteration, applied to the 33 point grid k=5, is accepted with
an RMS residual tolerance of 0.000001 after 3,088 steps. Therefore, we will make a simple test of the two
grid procedure by taking 500 steps on the fine grid, taking 500 further steps on the coarse grid, and then
returning to the fine grid and running until the residual tolerance is satisfied. If the two grid procedure is
helpful, we might expect that the total number of iterations is significantly reduced, leaving aside the fact
that the coarse grid iterations are half as expensive to carry out.

4 Moving Data Between Grids

We now outline a multigrid approach to the solution of the linear system associated with the discretized
1D Poisson equation. We assume that we are interested in a solution vector u(n) associated with a mesh
index n, and that for this value of n, we have associated quantities A(n) and f (n). Moreover, given these
quantities, we define the residual

r(n) = f (n) −A(n) · u(n)
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We restrict our choice of n so that it always has the form

n = 2k + 1

where k will be called the mesh index, with “useful” values of k starting at 1.

Now we consider the relationship between two grids determined by successive values of k. When consid-
ering a related pair of grids, we may prefer a different naming convention to associate the grid order with the
corresponding variable names. Thus, we use ’c’ and ’f ’ to distinguish the coarse and fine grids, respectively,
denoting the coarse data by kc, nc, xc, uc,Ac, rc and the fine data by kf, nf, xf, uf,Af, rf .

In this case, in particular, we naturally have:

kf =kc + 1;

nf =2 ∗ nc − 1;

xf(2i− 1) =xc(i), i = 1 . . . nc;

xf(2i) =0.5 ∗ (xc(i− 1) + xc(i + 1)), i = 1 . . . nc − 1.

For any n, the values of f and A are easily determined directly; however, in the case of the estimated
solution vector u, we suspect that the iteration carried out on one grid may be speeded up by referencing
data on another grid. We now consider how these operations may be carried out.

A mapping that takes a vector vf on the fine grid and determines a corresponding coarse grid vector vc
is known as a restriction. A simple restriction is:

vc(i) = vf(2i− 1), i = 1, . . .nc.

although other restrictions are possible which use averaging to include data at the intermediate fine grid
nodes which are otherwise ignored by the mapping shown here.

A mapping that takes a vector vc on the coarse grid and determines a corresponding fine grid vector vf is
known as a prolongation. A simple prolongation can be found that is essentially the same as that obtaining
between the coarse and fine node coordinates:

vf(2i− 1) =vc(i), i = 1 . . . nc;

vf(2i) =0.5 ∗ (vc(i− 1) + vc(i + 1)), i = 1 . . . nc − 1.

It might be natural to assume that we would want to use prolongation to take an estimated solution uc on
the coarse grid and prolong it to a solution uf on the fine grid. It turns out that this is precisely what we
must not do! Instead, we will reserve the prolongation operation to distributing small corrections to the
fine solution, as computed on the coarse grid. The importance of this subtle point will become clear in a
demonstrative experiment we will perform shortly.

5 The V Cycle
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