
How to make a mesh

John Burkardt
Department of Scientific Computing

Florida State University
..........

3:30-4:45pm, 11 April 2014,
Graduate Student Seminar ISC5934

..........
http://people.sc.fsu.edu/∼jburkardt/presentations/. . .

. . . mesh 2014 fsu.pdf

11 April 2014

1 / 90

SURVEY: The Great Trigonometrical Survey of India

Meshing analyzes geometry.

2 / 90

SURVEY: A Township Survey

Meshing can organize a territory into patches.

3 / 90

How to Make a Mesh

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Conclusion

4 / 90

MESHING:

The finite element method begins by looking at a complicated region,
and thinking of it as a mesh of smaller, simpler subregions.

The subregions are simple, (perhaps triangles) so we understand their
geometry; they are small because when we approximate the differential
equations, our errors will be related to the size of the subregions. More,
smaller subregions usually mean less total error.

After we compute our solution, it is described in terms of the mesh. The
simplest description uses piecewise linear functions, which we might
expect to be a crude approximation. However, excellent results can be
obtained as long as the mesh is small enough in places where the solution
changes rapidly.

5 / 90

MESHING:

Thus, even though the hard part of the finite element method involves
considering abstract approximation spaces, sequences of approximating
functions, the issue of boundary conditions, weak forms and so on, ...it
all starts with a very simple idea:

Given a geometric shape, break it into smaller, simpler shapes; fit the
boundary, and be small in some places.

Since this is such a simple idea, you might think there’s no reason to
worry about it much!

6 / 90

MESHING:

Indeed, if we start by thinking of a 1D problem, such as modeling the
temperature along a thin strand of wire that extends from A to B, our
meshing problem is trivial:

Choose N, the number of subregions or elements;

Insert N-1 equally spaced nodes between A and B;

Create N elements, the intervals between successive nodes.

For this problem, we can write down formulas for the location of each
node, the location of each element, the indices of the pair of nodes I and
J that form element K, and the indices of the elements L and M that are
immediate neighbors to element K.

7 / 90

MESHING: Nodes and Elements in 1D

From 2 vertices, we define 11 nodes, and 10 elements.

8 / 90

MESHING: Nodes and Elements in 1D

It might seem that the 2D world is going to be just as easy! We just
take our rectangular region, defined by four corners, place nodes along
each side and then put nodes at intersection points, and then, because
we prefer triangles, we split each of the resulting squares into two
triangular elements.

Again, we can write down, fairly easily, the location of every node, the
nodes that form each triangle, and the triangles that neighbor each
triangle.

9 / 90

MESHING: The “ELL” Problem

For our basic 2D example, we’ll consider an L-shaped region, and show
how to go through the basic meshing steps.

When it’s time to talk about programs for doing the meshing for us, we
will come back to this same problem, so keep its simple shape in mind!

It’s simply a square of dimension 2x2 units, from which a 1x1 unit square
in the northeast has been removed.

Interesting features might include:

the vertices (points)

the boundary (lines)

the region (area)

10 / 90

MESHING: Nodes and Elements in 2D

6 vertices define the shape.

11 / 90

MESHING: Nodes and Elements in 2D

21 nodes will be used for the internal mesh.

12 / 90

MESHING: Nodes and Elements in 2D

24 triangular elements constitute the mesh.

13 / 90

MESHING: Rectangular Regions Are Not Good Enough!

While a mathematician or academic computing person might regard
our L-shaped region as wildly irregular, a person who actually needs to
use the finite element method will regard the use of purely rectangular
regions as unrealistic and much too limited to be useful.

It’s similar to trying to analyze a horse race by starting out with the
assumption “All horses can be regarded as perfect spheres.”

Well, what kind of problems do we really need to be able to solve?

14 / 90

MESHING: We Want Small Elements Near Boundaries!

We need meshes that automatically vary in density.

15 / 90

MESHING: We May Need Transition Zones!

We need the mesh to be small near interfaces.

16 / 90

MESHING: We Want to Handle Holes (and Surfaces)!

We need to mesh surfaces that include holes and edges.

17 / 90

MESHING: On a Surface, We Must Match Curvature!

The mesh must notice and adapt to local features (here, curvature.)

18 / 90

MESHING: We May Need an Internal Mesh

For a true 3D problem, we need nodes and elements inside the surface

19 / 90

MESHING: Realistic Problems Can’t Be Meshed by Hand!

These regions are complicated and realistic and not rectangular. The
meshes “respond” to the geometry. How is this done?

Given the boundaries of the region, and perhaps a desired mesh density
at every point, how can we:

describe the input information to a computer?

use the input information to choose nodes?

use the nodes to construct elements?

handle boundaries, internal holes, internal walls?

construct all the arrays of connectivity information?

What if we have 1,000,000 nodes? What if our problem is 3D?

20 / 90

MESHING: Reference

One good web site is Robert Schneider’s “Mesh Generation & Grid
Generation on the Web”.

www.robertschneiders.de/meshgeneration/meshgeneration.html

including

People and research groups

List of people

Latest news

Software

Conferences

Literature

Open positions

Information on related topics

21 / 90

How to Make a Mesh

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Conclusion

22 / 90

REP: Data and Files for Meshes

The objects we are talking about must somehow be represented on a
computer. It may be helpful to go over how these objects might be
represented, and in some cases, suggest how one object can be computed
from another.

The fundamental object, of course, is the region. Let’s keep things simple
and assume we’re simply dealing with a subset of the plane, such as a
circle, square, perhaps an irregular polygon, or possible an arbitrary curvy
closed loop.

This region might have sharp corners, stretches with a fixed curvature,
interior holes or barriers. In the most general case, this is a hard object to
describe.

23 / 90

REP: Define a Region by Boundary Vertices

We will assume that the region can be defined by one or more closed
curves, approximated using straight line segments. Even if our region is a
circle, we specify it by a sequence of straight lines.

A circle might be specified by 24 evenly spaced vertices V.

A region is really specified by the curve suggested by the vertices, so we
should be more careful and either insist that the 24 vertices are
connected one after another, or else we should include an additional set
of information, namely, the order in which the given vertices should be
connected to bound the region.

The advantage of the second approach is that, if I always specify such a
curve in counterclockwise order, then it is easy to describe regions with
multiple parts, or with holes.

24 / 90

REP: Define a Region That is a Square Minus a Triangle

Here is a region defined by a square with a triangular hole.

Vertices V: { (0,0), (5,0), (5,5), (0,5),
(4,2), (2,1), (2,4) }

Boundary Indices BI: { 1, 2, 3, 4, 1, 5, 6, 7, 5 }

This describes a square from which a triangle has been removed. The
region is on the “inside” of both curves, that is, points that lie on the left
hand side as you follow each curve.

MATLAB could plot this data by starting with the first index (and
remembering it!), drawing to the next one, until it returns to the start.
Then it should jump to the next index and start a new line segment. We
assume V is stored as a V NUM by 2 array.

25 / 90

REP: Draw A Vertex Boundary of Multiple Line Segments

hold on

next = 1;

s = bi(1);

t2 = s;

draw = 1;

while (next < length (bi))

t1 = t2;

next = next + 1;

t2 = bi(next);

if (draw)

line ([v(t1,1), v(t2,1)], [v(t1,2), v(t2,2)]);

if (t2 == s)

draw = 0;

end

else

s = t2;

draw = 1;

end

end

hold off

http://people.sc.fsu.edu/∼jburkardt/m src/fem meshing/boundary display.m

26 / 90

REP: Nodes Fill the Region and the Vertex Boundary

The vertices outline the boundary of the region, but we need to fill up
the region (and the vertex boundary) with what we have called nodes.
These nodes will be used to define our elements, and the basis functions.
If our region isn’t rectangular, it might not be obvious how to produce
them, but once we have them, we’ll think of them as a list P of (X,Y)
coordinates.

Nodes P: { (0.0,0.0), (0.5,0.0), (1.0,0.0), (1.5,0.0),
(2.0,0.0) ... (1.0,2.0) }

It is very likely that some or all of the vertices V will be included in the
list P. If we’ve stored the P data as a P NUM by 2 array, then MATLAB
can plot the nodes:

plot (p(:,1), p(:,2), ’r.’, ’MarkerSize’, 5)

27 / 90

REP: Triangles Are Formed From Nodes

Even if we can’t compute the triangles, we can imagine how to store
them. A triangle is formed by three nodes. We can store the collection T
of triangles as a T NUM by 3 array of node indices:

Triangles T: { (1, 2, 3), (6,1,4), (5,6,8), ...
... (89,43,27) }

When listing triangles, we choose the counterclockwise ordering. This
means that every interior edge will be listed twice, while boundary edges
will all be listed once. In other words, the “logical sum” of all the
triangles is an outline of the original region!

MATLAB can plot a triangulation:

trimesh (t, p(:,1), p(:,2))

28 / 90

REP: The Node Boundary is Edges Used Once

One way to compute the node boundary takes all the edges and drops
the duplicates. The node boundary can be stored as a B NUM by 2 list
of pairs of node indices:

Boundary Edges: { (1, 2), (7,18), (4,63), ... (82,14) }

Simply having a collection of boundary edges is different than actually
having the edges in sequence. If you need that, you start with one edge,
find a connecting edge, keep looking until you get back to where you
started, and then check to see whether you have more edges to work on.

We seem to have discussed the boundary twice. First was the vertex
boundary, which only involved vertices. The node boundary, includes
short line segments between nodes added to the boundary between the
vertices.

29 / 90

REP: Triangle Neighbors

The standard finite element method doesn’t need to know element
neighbors; however, there are many times when dealing with a mesh
when this is necessary. For example, there’s a fast algorithm to find a
random point hidden in one of 1,000,000 elements that will take, on
average, 500 trials, rather than 500,000, but it requires being able to
move from one triangle to its neighbor.

All the information for determining triangle neighbors is available. Two
triangles are neighbors if they share an edge. That is, one triangle uses
nodes 5 and 17, in that order, the other uses 17 and 5. There are ways to
efficiently examine all the edges, find these pairs of matching data, and
indicate that two triangles are neighbors. Some triangles don’t have a
neighbor on a particular side, because they are on the boundary, so that
neighbor is -1.

30 / 90

How to Make a Mesh

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Conclusion

31 / 90

DELAUNAY: Whence P and T?

A pair of mysteries remain:

where does the set of nodes P come from?

how are these nodes arranged into triangles T?

The answer to both questions involves the Delaunay triangulation, which
can compute a “good” triangulation of any set of nodes P.

That explains T, but what about P? Well, it turns out that we can start
with an arbitrary or random set of nodes P, and use information from the
Delaunay triangulation that will rearrange the nodes to better fill the
region, either uniformly or in accordance with some density function we
specify. By iterating on this process, we get good nodes and good
triangles.

32 / 90

DELAUNAY: A Maximal Triangulation

Suppose we generate a random set of nodes P within our problem
region. We can then connect as many pairs of nodes as possible without
ever crossing a previous line. The result is a (maximal) triangulation of
the nodes.

The process seems pretty arbitrary, and in fact there are many possible
triangulations of a set of points. You may wonder how to automate this
process; a natural way is to start by creating a giant triangle that
encloses all the points you are going to use.

Then add the first node. Connect it to each vertex of the enclosing
triangle, and you’ve got a maximal triangulation. Add the second node.
It falls into one of the triangles you already created, so you subdivide that
triangle. Keep going. At the end, remove the enclosing triangle, and any
edges that connect to it, and you
have a maximal triangulation of the nodes.

33 / 90

DELAUNAY: Sixteen Nodes to Triangulate

34 / 90

DELAUNAY: A Triangulation of 16 Nodes

35 / 90

DELAUNAY: What is a “good” triangulation?

We drew the lines of our triangulation at random. If we tried a second
time, we’d get a different picture. There are actually many ways to
triangulate a set of points in the plane. Given that fact, it’s likely that
some triangulations are “better” than others, but that depends on what
we want to do with our triangulations!

If we think about the connecting lines as “roads”, we might prefer a
triangulation that uses the shortest total length.

If we think about the triangles as representing patches of territory, we
might dislike triangles that have a very small angle.

For graphics applications, and for many computational purposes, the
avoidance of small angles is a very common criterion.

36 / 90

DELAUNAY: What is a “good” triangulation?

The Delaunay triangulation of a set of points is the (usually unique)
triangulation which does the best job of avoiding small angles.

Strictly speaking, we consider all possible triangulations of a set of nodes.
For each triangulation T , let θ(T) be the smallest angle that occurs in
any triangle of that triangulation. Then a triangulation T ∗ is a Delaunay
triangulation if

θ(T) ≤ θ(T ∗)

for all triangulations T .

Since there are only finitely many possible triangulations, the Delaunay
triangulation must exist, and if we had no other way,
we could find it by computing and comparing every triangulation.

37 / 90

DELAUNAY: A Triangulation of 16 Points

38 / 90

DELAUNAY: A Delaunay Triangulation of 16 Points

39 / 90

DELAUNAY: A Delaunay Triangulation of 16 Points

Although we chose the Delaunay triangulation based on an angle
consideration, comparing the two pictures suggests that the Delaunay
triangulation also does a better job of connecting nearby nodes rather
than far-away ones, avoiding long triangle sides, and creating triangles
that have a more uniform shape.

The convergence of the finite element method comes, in part, from
ensuring that all the elements get small. The accuracy of the finite
element calculations within a triangle depend, in part, on the triangle
having a relatively equilateral shape. The smoothness of the
approximation depends somewhat on having relatively short triangle sides.

So the Delaunay triangulation has much to recommend it!

40 / 90

DELAUNAY: An Algorithm

Even though we will end up calling a piece of software to take care of
all the details for us, it’s important to understand that there are simple
ways to compute a Delaunay triangulation.

For instance, a triangulation is Delaunay if each triangle is “locally
Delaunay”. A triangle is locally Delaunay if we can’t improve the (local)
minimum angle by merging with a neighbor triangle and flipping the edge.

So we check each triangle, and if an edge swap improves the local
minimum angle situation, we take it. We keep doing this until no more
improvement is possible.

It’s not magic, it’s an algorithm...

41 / 90

DELAUNAY: MATLAB Calculation

To compute the triangles that form a Delaunay triangulation of a set
of data points, use the MATLAB command

t = delaunay (p(:,1), p(:,2))

To display the triangulation,

triplot (t, p(:,1), p(:,2))

MATLAB includes a Delaunay function that can handle 3D or higher:

t = delaunayn (p) (P contains 2, 3, or N-dimensional points)
(T contains triangles, tetrahedrons, or simplexes)

MATLAB can make a 3D plot of tetrahedral meshes:

tetramesh (t, p)

42 / 90

DELAUNAY: Reference

For a discussion of triangulations, the Delaunay triangulation, and
Voronoi diagrams as implemented in MATLAB, see Chapter 5,
”Computational Geometry”, in the following free PDF book.

MATLAB Mathematics
www.mathworks.com/help/pdf_doc/matlab/math.pdf

43 / 90

How to Make a Mesh

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Conclusion

44 / 90

TRIANGLE: The C Program “Triangle”

Jonathan Shewchuk’s triangle can start from a node file:

spiral.node
15 2 0 0 <-- Point count, dimensions,
1 0.00 0.00 attributes, boundary markers.
2 -0.42 0.91
3 -1.35 0.43

...
14 2.16 2.89
15 1.36 3.49

We can triangulate the nodes we are given, or add nodes to increase the
minimum angle.

triangle spiral <-- Triangulate the nodes
triangle -q spiral <-- Minimum angle 20 deg
triangle -q32.5 spiral <-- Minimum angle 32.5 deg

http://www.cs.cmu.edu/∼quake/triangle.html
45 / 90

TRIANGLE: Angle Constraints

No New Points || Minimum Angle 20o || Minimum Angle 32.5o

46 / 90

TRIANGLE: Area Constraints

In finite element calculations, one of the crucial quantities to control is
the area of the elements. Sometimes we simply want all the elements to
be smaller than some tolerance. Other times, we only need elements to
be small in places where the solution changes rapidly, or has low
differentiability.

The ”-a” switch sets a global maximum for the area of all elements:

triangle -a0.2 spiral

If you can decompose your domain, you can specify a separate maximum
area for each subdomain.

You can also determine a mesh density function which is defined
pointwise. This might come from error estimators determined from a
previous finite element mesh.

47 / 90

TRIANGLE: Area Constraints

Global Maximum || Subdomain Maximum || Pointwise Maximum

48 / 90

TRIANGLE: Refinement

triangle helps you make a sequence of refined meshes, including all
points from the current mesh.

The ”box.poly” file contains a square with a square hole. We can
compute a triangulation, and a series of refinements, as follows:

triangle box Creates “box.1” mesh
triangle -rpa0.2 box.1 Creates “box.2” mesh, and so on
triangle -rpa0.05 box.2
triangle -rpa0.0125 box.3

49 / 90

TRIANGLE: Refinement of the Box Mesh

50 / 90

TRIANGLE: Voronoi Diagram

triangle can compute the Voronoi diagram of the nodes.

triangle -v dots

51 / 90

TRIANGLE: The SHOWME Graphics Interface

triangle includes a graphics program called showme, which can
display the nodes, edges, triangulation, or Voronoi diagram.

52 / 90

TRIANGLE: Reference

triangle is also available as a compiled library, which means a C
program you write can use triangle directly as it is running.

Web page:

www.cs.cmu.edu/~quake/triangle.html

Reference:

Jonathan Shewchuk,
Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator,
in Applied Computational Geometry: Towards Geometric
Engineering, edited by Ming Lin, Dinesh Manocha,
Lecture Notes in Computer Science, Volume 1148,
Springer, 1996.

53 / 90

How to Make a Mesh

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Conclusion

54 / 90

DISTMESH: MESHDEMO 2D

A picture is worth 1,000 words.

An animation is therefore worth 1,000,000 words ≈ 8 Megabytes?

meshdemo_2d ()

http://persson.berkeley.edu/distmesh/
http://people.sc.fsu.edu/∼jburkardt/m src/distmesh/meshdemo 2d.m

55 / 90

DISTMESH: Using T to Improve P

Given any set of nodes P, we can compute a Delaunay triangulation T.

Can we use T to “improve” P? (whatever that means!)

The meshing program distmesh(), by Persson and Strang, uses the idea
that, in the typical case, we’d like each node to be roughly the same
distance from all its neighbors. The Delaunay triangulation connects a
node to its neighbors (but not to far away nodes!). We can imagine each
of these connections to be a little spring, which exerts a force if it is too
long or too short.

So distmesh() actually sets up a linear system for the forces in a
differential equation, and then takes a small time step, that is, it lets
each node respond to the force by moving in the appropriate direction.

56 / 90

DISTMESH: Using T to Improve P

Once the nodes have been allowed to move, it is necessary to
recalculate the spring forces, and take another step. By repeating this
process carefully, a good result can be obtained.

Nodes that try to cross the boundary are pushed back in.

The result is a mesh of nodes that is well-spaced internally, and adapts to
the shape of the boundary.

Moreover, if the user wants nodes to be denser in some areas than
others, this information is easily used to make the springs “stiffer” in
some regions and “looser” in others, again creating a mesh that smoothly
varies in density according to the user’s request.

57 / 90

DISTMESH: Usage

[p, t] = distmesh (@fd, @fh, h, box, itmax, fixed);

where:

@fd, the name of a distance function defining the region;

@fh, the name of a mesh density function;

h, the nominal mesh spacing;

box, a box that contains the region;

itmax, the maximum number of iterations;

fixed, a list of points which must be included;

p, node coordinates;

t, triangles defined by node indices.

58 / 90

DISTMESH: Region Defined by Signed Distance

A peculiar input to distmesh() is the distance function fd(). This is
the way the program expects the region to be defined. The function
returns a signed distance d from any point (x,y) to the boundary of the
region, with the distance being negative if the point is actually inside the
region.

This makes it wonderfully easy to describe mathematical regions such as
a circle of radius r, because in that case

d =
√

x2 + y2 − r

However, for complicated geometries, it can be difficult to write down a
good formula, and inefficient for MATLAB to evaluate it millions of times
(which it must do!).

59 / 90

DISTMESH: The ELL Region

Although the L-shaped region is defined by straight line segments, the
true distance function is actually pretty complicated!

That is because exterior corners of the shape create curved level sets of
distance, while interior corners create sharp bends.

For convenience, distmesh() allows the user to define a distance function
that is only approximate, but both the true distance function and the
approximation can cause some odd behaviors in the mesh near corners.

And trying to write an exactly correct distance function, even for the
L-shaped region, is surprisingly tricky!

Can we sketch the distance function for the L-shaped region?

60 / 90

DISTMESH: Two (internal) Distance Plots

http://people.sc.fsu.edu/∼jburkardt/m src/dist plot/dist plot.html
61 / 90

DISTMESH: Distance function for the L Region

distmesh() supplies some basic functions that make it easier to
construct distance functions:

function d = p11_fd (p)

% The L shaped region is the union of two rectangles.

g1 = drectangle (p, 0.0, 1.0, 0.0, 0.5);
g2 = drectangle (p, 0.0, 0.5, 0.0, 1.0);

d = dunion (g1, g2);

return
end

http://people.sc.fsu.edu/∼jburkardt/m src/distmesh/p11 fd.m

62 / 90

DISTMESH: First Iterates for the L Region

63 / 90

DISTMESH: Distance function and Mesh for “Holey Pie”

64 / 90

DISTMESH: Reference

The source code for distmesh() is freely available at

http://persson.berkeley.edu/distmesh/

and a very readable and useful reference is available:

Per-Olof Persson, Gilbert Strang,
A Simple Mesh Generator in MATLAB,
SIAM Review,
Volume 46, Number 2, June 2004, pages 329-345.

http://persson.berkeley.edu/distmesh/persson04mesh.pdf

65 / 90

How to Make a Mesh

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Conclusion

66 / 90

MESH2D: Region Defined by Vertices

mesh2d is a program which starts with some of the computational
features of distmesh() and adds features that offer the user some
important options.

In particular, rather than trying to describe the geometry with a Matlab
function, we are simply going to give it as a list of points.

This means that if we want to deal with a circle, we’re going to have to
accept a polygonal approximation to a circle...I guess that’s OK.

But can we do regions with holes? Can we use a density? Can we refine
the mesh?

http://www.mathworks.com/matlabcentral/fileexchange/25555-mesh2d-
automatic-mesh-generation

67 / 90

MESH2D: Usage

[p, t] = mesh2d (vertices, edge, hdata, options);

where:

vertices, a V by 2 list of boundary vertex coordinates;

edge, (optional input), lists pairs of vertex indices that form the
boundary;

hdata, (optional input), a structure containing element size
information;

options, (optional input), allows the user to modify the default
behavior of the solver .

p, the coordinates of nodes generated by the program;

t, the triangulation of the nodes.

68 / 90

MESH2D: Usage

The mesh2d program has some nice features:

a very short call [p,t]=mesh2d(v) is possible;

short boundary segments result in small interior elements;

the region is described by vertices and the program is optimized for
this case; this means it’s actually pretty easy to triangulate a map,
diagram, or CAD outline;

the output is “clean”; duplicate and unused nodes and small
elements are discarded, elements are in counterclockwise order.

a refine() function can refine a mesh.

a smoothmesh() function will smooth a mesh.

69 / 90

MESH2D: Simple ELL Mesh

As examples of mesh2d usage, we can start with variations of the
L-shaped problem:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);

http://people.sc.fsu.edu/∼jburkardt/m src/mesh2d/ell demo.m

70 / 90

MESH2D: Simple ELL Mesh

71 / 90

MESH2D: Two Short Boundary Segments

Suppose we add two extra boundary vertices:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 0.25; 2.0, 0.5; ...
2.0, 1.0; 1.0, 1.0; 1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);

72 / 90

MESH2D: Two Short Boundary Segments

73 / 90

MESH2D: Set Maximum Element Size

Go back to the original problem, but specify a maximum element size:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

hdata = [];
hdata.hmax = 0.1;

[p, t] = mesh2d (v, [], hdata);

74 / 90

MESH2D: Set Maximum Element Size

75 / 90

MESH2D: Use a Density Function

Go back to the original problem, but specify a density function so
elements are small near the reentrant corner:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

hdata = [];
hdata.fun = @hfun;

[p, t] = mesh2d (v, [], hdata);

76 / 90

MESH2D: Use a Density Function

function h = hfun (x, y)

%
% Minimum size is 0.01, increasing as we move away
% from (1.0, 1.0).
%
h = 0.01 + 0.1 * sqrt ((x-1.0).^2 + (y-1.0).^2);

return
end

77 / 90

MESH2D: Use a Density Function

78 / 90

MESH2D: Refine Example #1

Go back to the original problem, then refine the mesh:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);
[p, t] = refine (p, t);

79 / 90

MESH2D: Refine Example #1

80 / 90

MESH2D: Refine Example #1

81 / 90

MESH2D: Smooth Example #2

Go back to problem 2, but smooth the mesh:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 0.25; 2.0, 0.5; ...
2.0, 1.0; 1.0, 1.0; 1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);
[p, t] = smoothmesh (p, t);

82 / 90

MESH2D: Smooth Example #2

Initial mesh:

83 / 90

MESH2D: Smooth Example #2

After 2 smoothing steps:

84 / 90

MESH2D: Smooth Example #2

After 6 smoothing steps:

85 / 90

MESH2D: Reference

mesh2d was written by Darren Engwirda.

You can get a copy of mesh2d from the Matlab Central Exchange:

http://www.mathworks.com/matlabcentral/fileexchange/...
25555-mesh2d-automatic-mesh-generation

86 / 90

How to Make a Mesh

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Conclusion

87 / 90

CONCLUSION: The Whole Talk in One Slide

Do not try to write your own meshing package!

There is already excellent software available.

A mesh can be precomputed, stored in a file, and referred to later.

Graphical output enables your eye to improve or correct mistakes.

88 / 90

CONCLUSION: Things I Skipped

The MATLAB programs distmesh and mesh2d are accessible,
powerful, usable, and graphical.

The triangle program is written in C, and its graphical program
“showme” is awkward to use. It’s easy to write your own C program that
calls triangle as a runtime library to generate meshes.

Surface and volume meshing can be done by Gmsh, medit, MeshLab,
Paraview, tetgen and VisIt.

89 / 90

CONCLUSION: Your Future in Meshing

Meshing creates a discrete model of reality for computers.

Meshing and grid generation arise in:

computer graphics, 3D animation, gaming;

computer geometry;

facial recognition;

GIS (geographic information systems);

medical scan analysis;

CAD/CAM, (computer-aided design and modeling);

3D “printers”.

It’s possible that your future will involve finite elements, but it’s certain
that you will work with meshes.

The concepts are simple, and there are powerful tools.

90 / 90

