
Maximum MATLAB

John Burkardt
Department of Scientific Computing

Florida State University
..........

Symbolic and Numeric Computations
http://people.sc.fsu.edu/∼jburkardt/presentations/...

matlab fast 2012 fsu.pdf

12:20-1:10, 5/7 November 2012

1 / 104

Introduction

With MATLAB, we can write programs fast.

But can we write fast programs?

2 / 104

Introduction

MATLAB has much of the power of traditional programming
languages such as C/C++ and FORTRAN.

But it simplifies or skips many of the features of such languages
that can slow down a programmer.

In particular, MATLAB:

doesn’t make you declare your variables;

doesn’t need to compile your program;

includes a powerful library of numerical functions;

can be used to edit, debug, run, visualize;

is easy to use interactively.

3 / 104

Introduction

MATLAB is interactive, but has been written so efficiently that
many calculations are carried out as fast as (and sometimes faster
than) corresponding work in a compiled language.

So MATLAB can be a comfortable environment for the serious
programmer, whether the task is small or large.

However, it’s not unusual to encounter a MATLAB program which
mysteriously runs very very slowly. This behavior is especially
puzzling in cases where the corresponding C or FORTRAN
program shows no such slowdown.

You can stop using MATLAB, or stop solving big problems...
but sometimes an investigation will get you back on track.

4 / 104

Introduction

Often, the underlying problem can be detected, diagnosed, and
corrected, resulting in an efficient MATLAB program.

We will look at some sensible ways to judge whether a MATLAB
program is running efficiently, try to guess the “maximum speed”
possible for such a program, and consider what to expect for
running time when a MATLAB program is given a series of tasks
of increasing size.

Once we know what to expect, we’ll pick some examples of simple
operations that seem to suffer from a slowdown, and try to spot
what’s wrong and fix it.

5 / 104

Introduction

We will find that MATLAB’s editor is one source of helpful
warnings and advice for creating better programs.

We will also see that a performance analyzer can watch our
program execute and give us an idea of where the most
computations are being carried out - those are the places that
really need to be made efficient.

We will also look at how MATLAB performance can be improved
when the calculation can be written in terms of matrix and vector
operations.

6 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

7 / 104

SEARCH:

A simple way to search is to look once at every possibility, with
no special strategy.

You are guaranteed to find the answer, (if any), but you have to
look everywhere!

8 / 104

SEARCH:

This kind of exhaustive search can be necessary when we are
seeking an integer solution to an equation. Things like bisection or
Newton’s method are not appropriate, since they can’t guarantee
to produce an integer answer.

As an example, consider the generation of random real numbers
between 0 and 1. This is often done by producing a sequence of
integer values s between 0 and S , using a function f ():

Given s0, we compute s1 = f (s0), s2 = f (s1), and so on.

Each value of s can be interpreted as a real number r by:

r =
s

S

We prefer working with integers because people know how to
scramble them to make a sequence that looks random and takes a
long time to repeat.

9 / 104

SEARCH:

Here’s a MATLAB program that can do this kind of scrambling:

function value = f (s)
%
% Scramble 5 times.
%

for i = 1 : 5
s = 16807 * (s - 127773 * floor (s / 127773)) ...

- 2836 * floor (s / 127773);
end

value = s;

end

10 / 104

SEARCH:

Let’s focus on the behavior of the function f () for the first few
integers:

s f(s) f(s) / S
-- ---------- ----------
0 0 0.000000
1 1144108930 0.532767
2 140734213 0.065534
3 1284843143 0.598302
4 281468426 0.131069
5 1425577356 0.663836
6 422202639 0.196603
7 1566311569 0.729371
8 562936852 0.262138
9 1707045782 0.794905
10 703671065 0.327672

11 / 104

SEARCH:

It turns out that the function f () is a permutation of the
integers 1 through 2,147,483,647. If we make a list of the values s
and f (s), then each integer will show up exactly once in column 1
and once in column 2.

So we know that, for any positive integer c , there is a solution s to
the equation

f(s) = c

How do we find it? For a complicated scrambling function like
ours, the simplest way is just to do a simple search, that is, to
generate the list until we notice our number c shows up in the
second column, and then notice what the input value s was.

12 / 104

SEARCH:

Our MATLAB code is pretty obvious. For s from 1 to
2,147,483,647, evaluate the function f (s). If it is equal to c, we
have found the answer, so break from the loop and print it.

I wrote this code and ran it...and ran it and ran it. I went outside
for a walk, came back, and it was still running. I waited an hour,
and it was still running.

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/search serial.m

13 / 104

SEARCH:

Question 1: Since I am checking more than a billion values,
maybe my program should take a long time to run?

Question 2: How fast can a computer compute, anyway?

Question 3: Can I estimate when this program is going to
finish (if I could afford to wait that long?)

Question 4: Can I speed the program up?

Question 5: Would a program in a different language run
faster?

14 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

15 / 104

TIC/TOC: We Are Baffled When MATLAB is Slow

MATLAB executes our commands as fast as we can type them in...

...until it doesn’t!
16 / 104

TIC/TOC: Bad Performance Suggests Bad Coding

For casual computations, we don’t really care if we have to wait a
second or two, and this means we pick up some bad coding habits.

Unfortunately, when we try to solve larger problems, writing bad
MATLAB code will make it impossible to solve problems that are
actually well within MATLAB’s capability.

The way you code a problem can make a big difference.

When performance is an issue, you need to understand:

how the program’s work load grows with problem size;

how fast your program is running;

how fast your program ought to run;

programming choices that can affect efficiency.

17 / 104

TIC/TOC: Can We Quantify Fast Performance?

To call a problem “big”, we need to be able to measure the work
the computer has been asked to do.

To call an algorithm, computation, or computer “fast”, we need to
be able to measure time.

If we can make these measurements, we can generalize the formula

Speed = Distance / Time,

to define

Computer Performance = Work / Time

Then we can estimate the “speed limit” on our computer, and
whether a MATLAB program is performing well or poorly.

18 / 104

TIC/TOC: Time is Measured by TIC and TOC

MATLAB’s tic function starts or restarts a timer;
toc prints the elapsed time in seconds since tic was called.

tic
a = rand(1000,1000);
toc

If we type these lines interactively, then the timer is also measuring
the speed at which we type! For quick operations, the typing time
exceeds the computational time.

19 / 104

TIC/TOC: An Interactive Example of Timing

>> tic
>> a = rand (1000, 1000);
>> toc
Elapsed time is 7.625469 seconds.
>> tic
>> a = rand (1000, 1000);
>> toc
Elapsed time is 14.400338 seconds.
>> tic
>> a = rand (1000, 1000);
>> toc
Elapsed time is 10.408739 seconds.
>>

But I don’t want to know my bad (and variable) typing speed!
20 / 104

TIC/TOC: A Noninteractive Timing Example

We can avoid the typing delay by putting our commands into a
MATLAB M file, called ticker.m, which repeats the timing 5 times:

>> ticker
Elapsed time is 0.015173 seconds.
Elapsed time is 0.021067 seconds.
Elapsed time is 0.016615 seconds.
Elapsed time is 0.015537 seconds.
Elapsed time is 0.015265 seconds.
>>

These times are much smaller and less variable than the interactive
tests. Even here, though, we see that repeating the exact same
operation doesn’t guarantee the exact same timing.

http://people.sc.fsu.edu/∼jburkardt/latex/tulane 2012/ticker.m

21 / 104

TIC/TOC: Measuring Work is Difficult

Measuring the work involved in a computer program is harder
than measuring time. A single MATLAB statement can represent
almost any amount of computation.

And because MATLAB is interpreted, a program like this:

Statement1.
Statement2.

is really something like this:

Have MATLAB interpret Statement1 and set up for it.
Execute Statement1.
Have MATLAB interpret Statement2 and set up for it.
Execute Statement2.

Time spent interpreting and setting up is time not spent on your
computation!

22 / 104

TIC/TOC: CPUTIME

MATLAB has a separate function called cputime(); it measures
how much time your program spent computing. It will not measure
time waiting for you to type a command (OK), or overhead
involved in using MATLAB (something we want to know!).

>> t = cputime ();
>> a = rand (1000, 1000);
>> t = cputime () - t
t = 0.2300
>> t = cputime ();
>> a = rand (1000, 1000);
>> t = cputime () - t
t = 0.2700
>> t = cputime ();
>> a = rand (1000, 1000);
>> t = cputime () - t
t = 0.2600

23 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

24 / 104

LIMIT: What’s the Fastest We Can Go?

You don’t know what fast is

...until you can’t possibly go any faster!
25 / 104

LIMIT: Your Computer Reports a Clock Rate

The built-in information about my computer reports:

2.8 Ghz Quad-Core Intel Xeon

This is a rating for the clock speed. We can think of it as meaning
that the computer’s heart beats 2.8 billion times per second. Or
perhaps we should call it the brain, instead.

It’s generally true that any operation on a computer will take at
least one clock cycle. So no matter what action we want to do, we
can’t do more than 2.8 billion of them in a second. Which doesn’t
really seem like a very difficult limit to live with!

Suppose each clock tick equals one arithmetic operation. Then if
we can estimate the arithmetic in a program, we can estimate the
time it might take.

Then I can say whether my programs run fast or slow.

26 / 104

LIMIT: A Dot Product is a Simple Computation

Let’s test what the 2.8 billion “speed limit” means.

Given two vectors ~u and ~v , the scalar dot product is defined by:

s = ~uT~v =
N∑

i=1

uivi

and can be computed in about 4*N operations:

1 initialization of s

2*N “fetches” from memory of ui and vi

N multiplies of ui ∗ vi

N additions of s + ui ∗ vi

1 write to memory of s

We’ll assume we can do just one operation per clock cycle.

27 / 104

LIMIT: Compute Dot Products with a FOR Loop

x = rand (n, 1);
y = rand (n, 1);

tic;
z = 0.0;
for i = 1 : n
z = z + x(i) * y(i);

end
t = toc;

speed = (4*n+2) / t;
speed_limit = 2800000000;

fprintf (’%d %g %g\n’, n, speed, speed_limit);

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/dot for graph.m

28 / 104

LIMIT: The Time Increases Linearly With Work

Nice linear growth (if we can ignore the peculiar beginning!)

29 / 104

LIMIT: But Our Speed is a Bit Disappointing

The red line is the “speed limit”. We’re using logarithms base 2,
so our blue line is actually about 10 times slower than the red
“speed limit”!

30 / 104

LIMIT: Run MATLAB Program = MATLAB + Program

It’s natural to ask what the computer is doing for 9 out of every
10 clock cycles, since it’s not working on our problem!

Recall that MATLAB is an interpreted language. That means that
when you run a program, you’re actually running MATLAB and
MATLAB is running your program. So how fast things happen
depends on the ratio of MATLAB action and program action.

It turns out that MATLAB has a fair amount of overhead in
running a for loop. It’s not easy to explain the ratio of 9/10, but
you can imagine MATLAB setting the index, checking the index,
determining which vector entries to retrieve, and so on.

This is like a sandwich with a lot of bread, and not much meat!

31 / 104

LIMIT: Recompute, Using Unrolled Loop

To convince you that the problem is too much MATLAB and
not enough computation, let’s make a fatter sandwich by putting
more “meat” in each execution of the loop:

tic;
z = 0.0;
for i = 1 : 8 : n
z = z + x(i) * y(i) + x(i+1) * y(i+1) ...

+ x(i+2) * y(i+2) + x(i+3) * y(i+3) ...
+ x(i+4) * y(i+4) + x(i+5) * y(i+5) ...
+ x(i+6) * y(i+6) + x(i+7) * y(i+7);

end
t = toc;

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/dot forplus graph.m

32 / 104

LIMIT: More “Meat” Runs Faster

The exact same computation runs 50% faster now, because
MATLAB spends less time setting up each iteration.

Log2(N) Thin Rate Fat Rate
------- --------- ---------

20 2.5e+08 3.8e+08
21 2.5e+08 3.7e+08
22 2.5e+08 3.8e+08
23 2.5e+08 3.8e+08
24 2.5e+08 3.8e+08

Maximum rate assumed to be 2.8e+09

33 / 104

LIMIT: Reformulate Using MATLAB Vectors

When MATLAB is given a loop to control, some overhead occurs
because MATLAB doesn’t know what is going on inside the loop.

Our loop is a simple vector operation, and if MATLAB knew that,
it could coordinate the operations much better, so that the
memory reads, arithmetic computations, and memory writes are
going on simultaneously.

MATLAB recognizes vector operations if we use the vector
notation. In particular, the dot product of two column vectors is
expressed by

z = x’ * y;

Let’s see if MATLAB takes advantage of the vector formulation.

34 / 104

LIMIT: Recompute Using Vectors

x = rand (n, 1);
y = rand (n, 1);

tic;
z = x’ * y;
t = toc;

speed = (4*n+2) / t;
speed_limit = 2800000000;

fprintf (’%d %g %g\n’, n, speed, speed_limit);

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/dot vector graph.m

35 / 104

LIMIT: Did We Go Faster Than Light?

Using vectors pushes the rate to the limit...and beyond!

Log2(N) Thin Rate Fat Rate Vector Rate
------- --------- --------- -----------

20 2.5e+08 3.8e+08 2.4e+09
21 2.5e+08 3.7e+08 3.1e+09
22 2.5e+08 3.8e+08 3.3e+09
23 2.5e+08 3.8e+08 3.6e+09
24 2.5e+08 3.8e+08 3.7e+09

Maximum rate assumed to be 2.8e+09

We can only assume that, knowing it’s a vector operation,
MATLAB is able to organize the calculation in a way that beats
the ”one operation per clock cycle” limit on a typical computer.

36 / 104

LIMIT: Vector Rates Jump Up

37 / 104

LIMIT: Remarks

Now we know what the “speed limit” means.

In a simple computation, where we can count the operations, we
can estimate our program’s speed and compare it to the limit.

And now we realize that the overhead of running MATLAB can
sometimes outweigh our actual computation, especially for loops
with only a few operations in them.

Performance might be enhanced by “fattening” such a loop.

Some small loops can be rewritten as vector operations, which can
achieve high performance.

Do you prefer OCTAVE? Compare the performance of OCTAVE
and MATLAB on the for and vector versions of the dot product.

38 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

39 / 104

SPACE: Automatic Storage is Convenient but Hazardous

MATLAB automatically sets aside space for our data as we go...

...but the results can be chaotic!
40 / 104

SPACE: Calculate Array Entries

Let’s define a matrix A using a formula for its elements.
A pair of for loops run through the values of i and j:

for i = 1 : m
for j = 1 : n

a(i,j) = sin (i * pi / m) * exp (j * pi / n);
end

end

This seems the logical way to define the matrix, and for small m
and n, there’s little to say.

But we make two bad MATLAB programming decisions here that
will cost us dearly if we look at larger versions of A.

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/array1.m

41 / 104

SPACE: The Work is Proportional to Matrix Size

To estimate the performance of this calculation, we ought to
know how much work is involved in evaluating the formula. But
sin() and exp() are not simple floating point operations, so we
can’t count the work that way. However, let’s simply assume that
computing each entry of the matrix costs the same work W. In
that case, the total work in evaluating the whole matrix is

Work = M * N * W

So a matrix with 100 times as many elements has 100 times as
much work, and presumably takes 100 times the time.

It’s not hard to check this using a graph!

42 / 104

SPACE: Time the Problem at Various Sizes

m = 1000;
n = 1;
for logn = 0 : 10
tic;
for i = 1 : m
for j = 1 : n
a(i,j) = sin (i * pi / m) * exp (j * pi /n);

end
end
x(logn+1) = m * n;
y(logn+1) = toc;
n = n * 2;

end
plot (x, y, ’b-*’, ’LineWidth’, 2, ...
’MarkerSize’, 10);

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/array1 once.m

43 / 104

SPACE: Timing Data for ARRAY1 ONCE

44 / 104

SPACE: Timing Data for Second Run of ARRAY1 ONCE

What happens if we run the program again, right away?

45 / 104

SPACE: How Different Are the Two Runs?

The program array1 twice.m runs the computation twice,
plotting in blue the first time, and red the second.

(And it uses the clear command at the beginning, so we have a
clean start!)

Perhaps if we plot the data together we can understand why the
shape of the plot changed.

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/array1 twice.m

46 / 104

SPACE: Compare Timings for First and Second Call

The blue line (first call) is actually a quadratic.
The red line (second call) is the linear behavior we expected.

47 / 104

SPACE: Call ARRAY1 Several Times

Look at a similar experiment, for M = N = 1000:

M N Time Rate
---- ---- -------- --------

m = 1000
n = 1000
array1 1000 1000 3.167540 315,702
array1 1000 1000 0.189113 5,287,850
array1 1000 1000 0.188934 5,292,870
array1 1000 1000 0.189222 5,284,810
array1 1000 1000 0.188770 5,297,460
clear
m = 1000
n = 1000
array1 1000 1000 3.162318 316,224
array1 1000 1000 0.190403 5,252,030

48 / 104

SPACE: Implicitly Declared Arrays Are Expensive

If you use arrays, and don’t declare their size, MATLAB cleverly
makes sure there is enough space.

MATLAB does this implicitly. If it sees a reference to x(8), it
checks if x exists, and if not, it creates it.

It checks if x has at least 8 entries, and if not, it gets 8 elements of
computer memory and copies the old x to this new space.

What happens if you have a for loop in which you assign entry i of
a array x that was never referenced before?

MATLAB allocates 1 entry and computes it.
Then it allocates 2 entries, copies 1, and computes the last.
Then it allocates 3 entries, copies 2, and computes the last.
...
Creating an array of size 1000 will involve 1000 separate
allocations, and the copying of 999*1000/2 entries!

49 / 104

SPACE: Preallocate Arrays!

The entire problem disappears if you simply warn MATLAB in
advance that you are going to need a given amount of space for an
array. The typical procedure to do this is the zeros(m,n)
command:

a = zeros (1000, 1000);

When we ran array1 a second time, the array space was already
allocated, so we only had the computational time to worry about.

50 / 104

SPACE: Even MATLAB’s Editor Knows This

MATLAB’s editor can spot and warn you about some
inefficiencies like this.

If you use the editor to view a program, on the right hand margin
of the window you will see a small red, orange or green box at the
top, and possible orange or red tick marks further down, opposite
lines of the program.

If you examine array1.m this way, you might see an orange box
and an orange tick mark. Putting the mouse on the tick mark
brings the following message:

Note:

The variable ’a’ appears to change size on every loop iteration
(within a script). Consider preallocating for speed.

51 / 104

SPACE: Avoid Repeated Computations of Sine and EXP

The code calls sin() and exp() a total of 2*m*n times. These
are relatively expensive calls, and we could get our results with just
m calls to sin() and n calls to exp(), at the cost of a little memory.

for i = 1 : m
u(i) = sin (i * pi / m);

end
for j = 1 : n
v(j) = exp (j * pi / n);

end
for i = 1 : m
for j = 1 : n

a(i,j) = u(i) * v(j)
end

end

52 / 104

SPACE: There’s Always Room For Vectors!

But more importantly, now we can see that we can use
MATLAB’s vector notation to define u, v and a.

u = sin ((1 : m) * pi / m); <-- (ROW vector)
v = exp ((1 : n) * pi / n); <-- (Row vector)
a = u’ * v; <-- (Matrix, not scalar!)

u and v are 1xM and 1xN row vectors, so that u’ * v is an
(Mx1)x(1xN) = (MxN) array.

This notation gives MATLAB as much information as we can to
help it speed up the execution of these operations.

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/array1 vector.m

53 / 104

SPACE: FOR Loops Lose to Vectors

Let’s compare our for loop based calculation against the
MATLAB vector calculation:

M N Rate1 Rate2
---- ---- ------- --------
1000 1 5.2e+06 8e+05
1000 2 6.7e+06 3.5e+07
1000 4 7.8e+06 7.1e+07
1000 8 8.2e+06 1e+08
1000 16 8.5e+06 1.4e+08
1000 32 8.9e+06 1.6e+08
1000 64 9.3e+06 1.5e+08
1000 128 9.3e+06 1.8e+08
1000 256 9.3e+06 1.7e+08
1000 512 9.3e+06 1.5e+08
1000 1024 4.6e+06 1.4e+08

The improvement is on the order of a factor of 15 or more!
54 / 104

SPACE: Estimating the Improvement Factors

We looked at three ways to compute the entries of the matrix A.

When the matrix is of size about 1000 by 1000, the three ways
have very different performance:

Method Seconds Rate
-------------- ------- -----------
Simple 3.22 320,000
Allocate array 0.24 4,300,000
Use Vectors 0.0071 140,000,000

so the first improvement produced a factor of 10 speedup, and the
second a factor of 30.

Our rates are in “results per second”, since we don’t know how to
measure the work involved in computing sin() and exp().

55 / 104

SPACE: Remarks

In MATLAB, large vectors and arrays must be allocated before
use, or performance can suffer severely.

Usually, we can’t count the floating point operations to tell
whether our program is running at the computer’s “speed limit”.
1 However, we often have a formula for the amount of work as a
function of problem size (in this case, the matrix dimensions M
and N).

We can plot program speeds versus size, looking for discrepancies.

We can also compare two algorithms for the same problem,
although it’s best to use a range of input to get a more balance
comparison.

56 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

57 / 104

GRID: A Grid is a Vector, Matrix, or Array of Numbers

We often carry out computations on a rectangular grid

...and this is a natural chance to use vector operations!
58 / 104

GRID: Grids Are Used as Discrete Samples of Space

Because computation involves discretization, and because we
have so many geometric calculations, it is often the case that we
are dealing with repeated calculations at the points of a regularly
spaced grid in 1, 2, 3 or more dimensions, including:

analyzing the pixels in an image;

approximating an integral using a product rule;

discretizing a partial differential equation.

The commands that MATLAB has for vectors, matrices and
higher-order arrays can be used to speed up such calculations.

Let’s seek the minimum over a 1001x1001 grid on [0, π]x [0, π] of

f (x , y) = − sin(x)(sin(
x2

π
))20 − sin(y)(sin(

2y2

π
))20

(This is the function seen on the previous slide.)

59 / 104

GRID: Nested FOR Loops Can Generate a Grid

A natural way to code this problem would be:

function [fxy_min, t] = min1 (n)

tic;
fxy_min = Inf;
for j = 1 : n
for i = 1 : n
x = pi * (i - 1) / (n - 1);
y = pi * (j - 1) / (n - 1);
fxy = f1 (x, y);
fxy_min = min (fxy_min, fxy);

end
end
t = toc;

return
end

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/min1.m
60 / 104

GRID: The Function File

The function file f1.m looks like this:

function value = f1 (x, y)

value = - sin (x) * (sin (x^2 / pi))^(20) ...
- sin (y) * (sin (2 * y^2 / pi))^(20);

return
end

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/f1.m

61 / 104

GRID: MATLAB Functions Replace FOR Loops

MATLAB offers the following tools that can be used to vectorize
this calculation:

x = linspace(a,b,n) returns a row vector of n values from a
to b;

[X,Y] = meshgrid(x,y) returns arrays X and Y for a product
grid from x and y;

v = min (F) returns the minimum of each column of the
array F.

To really speed up the calculation, we also want to call the
function f1 just one time, rather than a million times (otherwise,
we pay one million times the overhead cost of one function call.)
To do that, we need to rewrite the function so that it can accept a
vector or array of arguments.

62 / 104

GRID: Vectorized Version of Function File

The revised function file f2.m looks like this. We have enabled
this function to accept vector arguments by using the element-wise
operations

function value = f2 (x, y)

value = ...
- sin (x) .* (sin (x.^2 / pi)).^(20) ...
- sin (y) .* (sin (2 * y.^2 / pi)).^(20);

return
end

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/f2.m

63 / 104

GRID: The FOR Loops Are Gone

Now we are ready to write our vectorized calculation:

function [fxy_min, t] = min2 (n)

tic;

x = linspace (0.0, pi, n);
y = linspace (0.0, pi, n);
[X, Y] = meshgrid (x, y);
F = f2 (X, Y);
fxy_min = min (min (F));

t = toc;

return
end

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/min2.m
64 / 104

GRID: The Vectorized Code Runs Faster

We can compare our two programs, min1.m and min2.m, for a
range of values of n, the number of points on one side of the grid:

N min val MIN1 MIN2
----- ------- -------- --------

10 -0.9631 0.0007 0.0014
100 -1.7884 0.0707 0.0015

1000 -1.8012 6.7651 0.0904
10000 -1.8013 668.5089 294.6438

The min1 timings grow as we expect, by the same factor of 100
that measures the increase in problem size.

For N=1000, we see that our new approach is 50 times faster. It’s
only when we look at the next line that we see a catastrophe. The
min2 is blowing up.

We’re asking for an awful lot of memory, 100,000,000 real numbers
at one time. Our computer doesn’t have that much fast memory,
so it uses slower memory, causing the performance hit.

65 / 104

GRID: The Vectorized Code Runs Faster

Vectorization doesn’t require that we do the whole problem in
one shot, but that we do the problem in sizable chunks. We can
modify our program to do the 100,000,000 calculations in groups
of 1,000,000, a value which the computer can handle.

Now compare the performances on the last line!

N min val MIN1 MIN2 MIN3
----- ------- -------- -------- ----------

10 -0.9631 0.0007 0.0014 (0.0014)
100 -1.7884 0.0707 0.0015 (0.0015)

1000 -1.8012 6.7651 0.0904 (0.0904)
10000 -1.8013 668.5089 294.6438 8.4357

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/min3.m

66 / 104

GRID: Remarks

This example involved a lot of iterations of a loop, and calls to a
function, both of which incur MATLAB overhead.

When we’re talking thousands or millions of iterations, this
overhead can dominate the calculation.

It’s time to look at MATLAB vector operations, and if necessary,
to rewrite your own functions in vector form, so that a loop is
replaced by a vector operation, and millions of calls to a user
function become just one.

If you run out of memory, you can back off and try to carry out
your array operations using smaller chunks.

67 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

68 / 104

SPARSE: There’s No Need to Store Zeros

What if you set aside a huge amount of space

...and almost nobody came to use it?

69 / 104

SPARSE: Store and Use Sparse Data Efficiently

Mathematics teaches us to ignore details. If A is a matrix, and x
is a vector, then the operations of matrix-vector multiplication
y = A ∗ x or of solving the linear system Ax = b are important to
us, but the details of how the matrix is stored seem trivial.

A sparse matrix is one in which there are a lot of zeros. If you
know you’re dealing with a sparse matrix, MATLAB makes it
pretty easy to set up a sparse array which looks and works the
same way as a regular array, but which requires much less storage,
and which can be operated on much more efficiently.

So there are two issues here:

memory: you only store the nonzero data;

speed: you only operate on nonzero data.

70 / 104

SPARSE: A Sparse Array Stores Indices and Values

If MATLAB knows an MxN matrix is sparse, then for each
nonzero entry it stores the value, and the indices I and J. This
means a huge saving in storage, at the cost of some bookkeeping.

Although the matrix is not stored as a traditional array, MATLAB
can quickly retrieve the information it needs for multiplication,
system solving, or any other linear algebra operation.

And knowing which entries are zero means MATLAB skips many
unnecessary steps. (In matrix multiplication, it doesn’t need to
bother multiplying by zero entries. In Gauss elimination, it doesn’t
need to zero out entries that are already zero.)

71 / 104

SPARSE: Our Favorite Sparse Matrix

Poisson’s equation −∇2u = f shows up everywhere.

The operator ∇2 returns 0 for linear data, so in a sense it’s
measuring nonlinearity or quadratic behavior. In some way, it
seems to say that Nature doesn’t rest until it gets the kinks out of
the system. For instance, if the ends of a metal rod are held at 50
and 100 degrees respectively, and we don’t supply any heat source
(f (x) = 0), then over time the interior temperature will settle
down to the corresponding linear function.

If we sample the temperature at equally spaced points, we can
approximate ∇2 for our problem:

∇2u(x) ≈ u(x − dx)− 2u(x) + u(x + dx)

dx2

72 / 104

SPARSE: Our Favorite Sparse Matrix

If our metal rod extends from x = 0 to x = 1 and we use 11
sample points, then we can write down 2 boundary conditions and
9 equations for our estimated temperature u(x):

u(1) =50

−u(1) + 2u(2)− u(3)

0.12
=0

−u(2) + 2u(3)− u(4)

0.12
=0

...

−u(9) + 2u(10)− u(11)

0.12
=0

u(11) =100

73 / 104

SPARSE: Our Favorite Sparse Matrix

You can see that this problem can be written as a linear system
of the form A ∗ u = f where

u is our unknown solution,

f is [50, 0, 0, ..., 0, 100], and

A is a matrix with simple entries:

1 ∗ ∗ ∗ ... ∗ ∗ ∗
−100 200 −100 ∗ ... ∗ ∗ ∗
∗ −100 200 −100 ... ∗ ∗ ∗
... ∗ ∗ ∗
∗ ∗ ∗ ∗ ... −100 200 −100
∗ ∗ ∗ ∗ ... ∗ ∗ 1

where the asterisks are really 0’s.

74 / 104

SPARSE: Our Favorite Sparse Matrix

We can solve this problem by setting up the linear system, and
using MATLAB’s backslash operator. That is, to solve Au = f , we
issue the MATLAB command

u = A \ f;

If we’re solving a small problem, then it almost doesn’t matter how
we do this. But suppose that instead of n = 11 nodes, we wanted
to use a thousand or even a million nodes.

Now we can’t solve the problem unless we think about it carefully!

75 / 104

SPARSE: Our Favorite Sparse Matrix

% Set F

n = 11

f(1) = 50;

for i = 2 : n - 1

f(i) = 0;

end

f(n) = 100;

% Initialize A

for j = 1 : n

for i = 1 : n

A(i,j) = 0.0

end

end

% Boundary nodes

A(1,1) = 1

A(n,n) = 1

% Interior nodes

for i = 2 : n - 1

A(i,i-1) = 1 / dx^2;

A(i,i) = -2 / dx^2;

A(i,i+1) = 1 / dx^2;

end

76 / 104

SPARSE: Our Favorite Sparse Matrix

First, we should realize that we should preallocate the arrays. As
an extra benefit, the zeros() command will also initialize the
entries to zero.

% Set F

n = 11

f = zeros (n, 1);

f(1) = 50;

f(n) = 100;

% Initialize A

A = zeros (n, n);

% Boundary nodes

a(1,1) = 1

a(n,n) = 1

% Interior nodes

for i = 2 : n - 1

A(i,i-1) = 1 / dx^2;

A(i,i) = -2 / dx^2;

A(i,i+1) = 1 / dx^2;

end

77 / 104

SPARSE: Our Favorite Sparse Matrix

We should try to replace the for loop if we can. Unfortunately,
array notation like A(2:n-1,1:n-2) won’t do the right thing for us.
Instead, we can use the diag() function.

diag(v,k) creates a matrix which is entirely zero, except that the
k-th diagonal is set to the vector v. We count diagonals by letting
the main diagonal be 0, the first superdiagonal is +1, the first
subdiagonal is -1, and so on.

% Initialize A

p = ones (n, 1) / dx^2;

q = -2.0 * ones (n - 1, 1) / dx^2;

A = diag(q,-1) + diag(p,0) + diag(q,+1);

78 / 104

SPARSE: Our Favorite Sparse Matrix

But if we are really looking for efficiency, we should notice that
our matrix A is mostly zeros. This is called a sparse matrix. For
our problem, if N is 1,000, then the matrix A needs 1,000,000
entries, of which 997,000 are zero!

Not only do we waste a lot of space, but we can also waste time.
If we perform Gauss elimination on A, part of the procedure
involves setting subdiagonal elements to zero. But most of them
already are zero, and the time spent checking for this is wasted.

MATLAB allows you to classify a matrix as sparse, in which case it
only stores the nonzero values, plus some information to help it
organize them.

79 / 104

SPARSE: Our Favorite Sparse Matrix

How do we signal to MATLAB that the matrix B is sparse, and
should be stored in a special way? We’ll see the sparse()
command in a minute, which always works. But another way is to
build B out of other sparse matrices.

Before, we used the diag() function to build B. But MATLAB also
has a sparse version, called spdiag().

spdiag(v,k,m,n) creates an M by N sparse matrix whose k-th
diagonal is set to the vector v. We count diagonals by letting the
main diagonal be 0, the first superdiagonal is +1, the first
subdiagonal is -1, and so on.

% Initialize B

v = ones (n, 1) / dx^2;

B = spdiag(v,-1,n,n) -2.0 * spdiag(p,0,n,n) + spdiag(q,+1,n,n);

80 / 104

SPARSE: Our Favorite Sparse Matrix

The whos command returns the storage size of an object, in
bytes. A real number takes 8 bytes, a vector of length 10 takes 80
bytes, and a 10x10 array takes 800 bytes...but a sparse array is
smaller.

Begin with N=10:

whos (’A’); whos (’B’)
Name Size Bytes Class Attributes
A 10x10 800 double
B 10x10 536 double sparse

Now go to N=100. A grows quadratically, B linearly:

Name Size Bytes Class Attributes
A 100x100 80000 double
B 100x100 5576 double sparse

81 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

82 / 104

SPARSE: A Finite Element Mesh

Here is a relatively crude finite element mesh of 621 nodes and
974 triangular elements representing a lake with an island.

83 / 104

SPARSE: The Finite Element Matrix is Sparse

We are modeling pollutant diffusion in the water of the lake.

To solve the Poisson diffusion equation −∂2u
∂x2 − ∂2u

∂y2 = f (x , y), we
associate an unknown with each node, and assemble a matrix
whose nonzero entries occur when two nodes are immediate
neighbors in the mesh.

It is obvious from the picture that most nodes are not neighbors,
and so most of the matrix will be zero. This is a common fact
about finite element and finite difference methods.

It is not unusual to want to solve a problem with 1,000,000 nodes.
Using full storage for the finite element matrix would require a
trillion entries. Needless to say...

84 / 104

SPARSE: A Sparse Matrix Is Mostly Empty

Here is the sparsity pattern for our small finite element matrix,
with 621 rows and columns, displayed using MATLAB’s spy()
command:

85 / 104

SPARSE: Use MATLAB’s sparse() Command

To define a sparse matrix, you call A = sparse(). In the
simplest case, you simply set aside enough storage, by passing the
dimensions, and an (over)estimate of the number of nonzeros.

If A is a 100x200 matrix, with “around” 400 nonzeros, try:

A = sparse ([], [], [], 100, 200, 450);

I’ve asked for 450 entries to have room for error or growth.

The first three arguments specify the row, column and value of the
nonzero elements, if you have them ready (I don’t).

Once you declare the matrix to be sparse, you can put the entries
in one at a time, using ordinary notation like

A(i,j) = v;

and use any MATLAB notation allowed for ordinary matrices.
86 / 104

SPARSE: Space and Time Comparison

For our finite element example, the matrix is 621x621.

Full storage of this matrix would require 385,641 entries for full
storage. Since there are just 2,802 nonzero entries, sparse storage
is much cheaper. We actually store three items per nonzero, but
the cost is still just 8,406 items.

Moreover, as N increases, the full storage requirement goes up
quadratically, the sparse storage linearly.

When we solve the finite element system, simply using MATLAB’s
“backslash” operator, the sparse system is solved 50 times faster
than the full system, even though the data is identical.

87 / 104

SPARSE: Tridiagonal Matrices are Sparse

A tridiagonal matrix is a sparse matrix with very regular
behavior. People have developed storage and solution schemes for
this special case.

The discretized 1D Poisson operator becomes a tridiagonal
[-1,2,-1] matrix.

The LINPACK routine sgtsl() factors and solves such a linear
system, storing only the three nonzero diagonals. The only
advantage remaining to sparse() might be the time required.

Let’s compare sgtsl() and sparse() for a sequence of problems.
Since we’re only storing diagonals, we can consider NxN matrices
in which N gets up to 1,000,000.

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/sgtsl.m

88 / 104

SPARSE: Comparison for Tridiagonal Matrices

N SGTSL SPARSE FULL
seconds seconds seconds

--------- ------ ------- ------
1,000 0.0003 0.00004 0.035

10,000 0.0028 0.0003 18.8429
100,000 0.0319 0.0037 (too big to store!)

1,000,000 0.2787 0.0364 (too big to store!)

The sparse() code still wins, but now only by a factor of 10, and
it’s possible that we could cut down the difference further.

The timings for sgtsl() and sparse() grow linearly with N, because
the correct algorithm is used. Full Gaussian quadrature grows like
N3, so if space didn’t kill the full version, time would!

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/sgtsl vs sparse.m

89 / 104

SPARSE: Remarks

If you’re dealing with large matrices or tables or any kind of
array, think about whether you really need to set aside an entry for
every location or not. If you can use sparse storage, you will be
able to work with arrays much larger than your limited computer
memory would allow.

For sparse matrices, an estimate of the number of nonzero
elements is important so that MATLAB can allocate the necessary
space just once.

When I do my finite element calculations, I essentially set the
matrix up twice; the first time I don’t store anything, but just
count how many matrix elements I would create. I call sparse() to
set up that space, and then I can define and store the values.

90 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

91 / 104

SUCCESS

Our unsuccessful search program is probably still running!

Before we try to improve it, we need to know how bad it is now.
right now. We can do this with tic() and toc(). Since the
program wasn’t finishing, we need to time a portion of the
calculation and estimate the total time.

A new version only searches from 1 to a user input value N.

N Time (seconds)
---------- -----------

100,000 0.91s
1,000,000 9.24s

10,000,000 91.52s

I want to check about 2,000,000,000 values, which is 200 times
more than 10,000,000, so I guess my program would complete in
200 ∗ 91(s) ≈ 18, 000(s) = 300(m) ≈ 5(h).

92 / 104

SUCCESS: Ask the Editor

We can ask the MATLAB editor to take a look at the program
and make any simple suggestions.

“Unfortunately”, when we open the program file within the editor,
it seems to have no comments to make - in other words, there are
no obvious problems it can see.

That doesn’t mean there aren’t problems, of course!

93 / 104

SUCCESS: Get a Profile

We want to get a profile of the program as it is running, to see
where the time is being spent. Once again, we can’t run the
program to completion, since we don’t want to wait 8 hours! So
let’s try getting a profile of the program for the computation
restricted to N = 1,000,000, which seems to run in about 9
seconds.

profile on
program or commands you want to study
profile viewer

94 / 104

SUCCESS: The Profile

20% of our time in search() and 80% in the function f():

95 / 104

SUCCESS: The Profile

Our first program looked something like this:

for i = ilo : ihi
c = f (i)
if (c == 45)

fprintf (1, ’Solution is %d\n’, i)
end

end

function value = f (i)
Code to evaluate function.

end

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/search serial.m

96 / 104

SUCCESS: The Profile

Our new program looks like this:

for i = ilo : ihi
Code to evaluate function, input is i, output is c.
if (c == 45)

fprintf (1, ’Solution is %d\n’, i)
end

end

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/search merge.m

97 / 104

SUCCESS: The Profile

The new program runs about 30 times faster!

N First Try Second Try
----------- --------- ----------

100,000 0.91s
1,000,000 9.24s .34s
10,000,000 91.52s 2.97s

100,000,000 29.48s

We explain this by assuming that the new program has eliminated
the function calls, which MATLAB seems to do somewhat slowly.

Our second program could solve the problem in 10 minutes,
instead of 5 hours!

98 / 104

SUCCESS: The Profile

We can try to speed up the calculation using vectors. That is,
the value i can represent a range of input values to be computed at
the same time. This is another way to speed MATLAB up.

for ilo = 1 : 1000 : n
ihi = min (ilo + 999, n);
i = ilo:ihi;
Code to evaluate function, input is i, output is c.
j = find (c == 45);
if (0 < length (j))

fprintf (1, ’%d\n’, i(j))
break

end
end

http://people.sc.fsu.edu/∼jburkardt/latex/fsu fast 2012/search vector.m 99 / 104

SUCCESS: The Profile

The new program runs about 90 times faster than the first one!

N First Try Second Try Third Try
----------- --------- ---------- ----------

100,000 0.91s
1,000,000 9.24s .34s .12s
10,000,000 91.52s 2.97s 1.19s

100,000,000 29.48s 11.43s

For this program, we computed the function in batches of 100,000
values.

Our third program could solve the problem in about 3 minutes,
instead of 5 hours!

100 / 104

Maximum MATLAB

1 The Unsuccessful Search

2 TIC/TOC

3 What’s the Speed Limit?

4 Making Space

5 Using a Grid

6 A Skinny Matrix

7 A Sparse Matrix

8 The Successful Search

9 CONCLUSION

101 / 104

CONCLUSION

”Thank you Mary, you have entertained us quite enough.”
(Pride and Prejudice)

102 / 104

CONCLUSION

As problem size increase, the storage and work can grow
nonlinearly.

MATLAB behaves very differently depending on whether you are
doing a small or big problem.

Traditional one-item-at-a-time data processing with for loops can
be very expensive, and you should consider using vector notation
where possible.

You must be very careful not to rely on MATLAB to allocate your
arrays, especially if they are defined one element at a time.

If you are working with arrays, you should be aware of the sparse()
option, which can enable you to solve enormous problems quickly.

103 / 104

CONCLUSION

MATLAB code and data is available:

http://people.sc.fsu.edu/~jburkardt/latex/fsu_fast_2012/...
fsu_fast_2012.html

104 / 104

