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The Interpolation Problem in 1D

| have been working for some time in the area of sparse grid
quadrature rules for integrands in high dimensions.

Recently, it has become important to try to extend this work
to the related problem of sparse grid interpolation.

Now sparse grids quadrature rules are linear combinations of
product quadrature rules, which are products of 1D quadrature
rules, which are often formed by constructing an interpolant to
data and integrating it.

So in some sense, | simply have to walk backwards to the 1D
interpolation problem, and then “carry it forward" into higher
dimensions without taking the quadrature step.




The Interpolation Problem in 1D

| am actually interested in the interpolation problem in high
dimension; however, both high dimensionality and
interpolation, separately, have tricky features, which, when
combined, can create disastrous problems.

Therefore, in this talk, | want to warm up to the high
dimensional problem by going over some natural interpolation
approaches in the lowest possible dimension, where we can
actually draw pictures of what we're doing and make some
intelligent guesses as to what has gone wrong.




The Interpolation Problem in 1D

One motivation for this talk is to try to counter the idea that
interpolation is simple, and that, given an arbitrary set of
m-dimensional data values {x;}, that it is a simple matter to
“invert the interpolation map” and thus produce a function
g(x) that interpolates the data.

Even in 1D, we can easily encounter interpolation problems
that will cause severe problems if not handled correctly.




The Interpolation Problem in 1D

A second motivation is to look at the strengths and limitations
of polynomial interpolation.

You may be familiar with the idea that a polynomial can't
approximate a step function, and that a sequence of
polynomial interpolants may seem to be doing a better and
better job of approximation until some kind of instability
appears, after which the results deteriorate violently.

Since polynomial interpolation has many advantages, we'd like
to ask whether we can deal with some of its limitations.




The Interpolation Problem in 1D

A third motivation is to emphasize that the interpolation
process involves a lot of choices.

To say that a function g(x) interpolates our data {x;,y;}
really doesn’t say very much about g(x) at all!

We generally have a lot of choices about what space to select
g(x) from, and usually interpolation is only an intermediate
goal to some other quantity of interest to us, which might be
the integral, the maximum, the average, and so on.




The Interpolation Problem in 1D

Even though this discussion is limited to the 1D problem, it
should suggest to you that

@ bad data locations {x;} can doom the process;
@ a bad basis for the interpolating space can cause
unbounded error;
@ a function may interpolate your data but do almost
anything elsewhere;
@ polynomials can, actually, do a good interpolation job,
even for high degree.
Because we can draw pictures of the 1D interpolation problem,
we can see and understand some of the issues that will also
arise (but invisibly!) in the higher-dimensional problem.




The Interpolation Problem in 1D

The interpolation problem can be thought of as a kind of
“connect the dots” puzzle.

However, behind this simple puzzle, there are a variety of
hidden choices, expectations, and pitfalls, especially when we
think about such problems in a higher dimensional space!
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INT1D: Interpolation for a 1D Argument

The simplest interpolation problem arise when we wish to
represent a process in the form y = f(x), where x is a
1-dimensional input argument, and y is the 1-dimensional
observable output.

The actual process f(x) is usually unavailable to us. We think
of f(x) as a function, but it might not even give us repeatable
results for the same input, or there may be a known statistical
error associated with the outputs.

Our task is to look at a finite set of pairs (x;, y;), and make
some useful model of the process f(x).
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INT1D: Prescribed Data

Interpolation of data at prescribed points in 1D:

e Given: a set of m pairs of data (x;, y;);
e Find: a suitable function g(x) so that g(x;) = y; for all i.

This case can arise when a fixed set of data from experiments
is delivered and a representation is desired.

Given that the data set is fixed, it may not be possible to
check a model by asking for more data. We might instead
drop each data point successively and see how well the
reduced data set can “predict” the missing point.
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INT1D: Selectable Data

Interpolation of data at selectable points in 1D:

@ Given: a procedure or function f(x);
e Find: suitable m, query nodes x;, and a function g(x) so
that g(x;) = f(x;) for all .
This case can arise when a function is available which
produces output, but the underlying function is not well
understood, or is expensive to evaluate.

Constructing an interpolant can reveal hidden structure in the
unknown function, or might be expected to approximate f(x)
at a much lower cost (a “surrogate function”).
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INT1D: Two Kinds of Errors (at least!)

If g(x) is a proposed interpolant to our data, the interpolation
error e = y - . ||g(x;) — f(x;)|| should be zero.

However, matching the interpolated data is only the
beginning. We usually construct an interpolant hoping to
approximate f(x) itself over a continuous interval. Thus, we
really want to control the L2 error:

ez\/ / (600) — F)) dx

In test cases, where we know the function f(x), we can easily 4
display the approximation error by plotting g(x) and f(x).
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INT1D: A Discrete Measure

Another useful measure is the estimated arc length.

If we have a set of data specified, we can define the piecewise
linear interpolant to that data, and measure its arc length.

If we now produce an interpolant to the same data, we can
simply evaluate it at, say, 1000 equally spaced points, estimate
its arc length, and compare it to the piecewise linear result.

This is a simple way to detect computationally whether the
computed interpolant is oscillating between the data.

This check can be extended to 2D and 3D problems in a fairly
simple way.

15/123



INT1D: Approximation for a 1D Argument

Occasionally, our approach to the interpolation problem breaks
down. It may still be possible to produce a model of the
underlying function f(x), but perhaps one that only
approximates the observed data.

In that case, we would be solving the approximation problem,
which seeks a function g(x) which minimizes the pointwise
approximation error e = > 7 ||g(x;) — f(x;)|| to our data.

In this case, we give up the interpolation property in the hope
that the resulting function g(x) can be made smoother, or
simpler than an interpolant.

The most common example of this approach is the use of the 4
least-squares polynomial.
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INT1D: An Unrealistic Wish List

Desirable properties for an interpolant to n data values:

continuity: small dx means small §g(x);
differentiability: small dx means linear dg(x);
monotonicity: if data is strictly rising, so is g(x);
convexity: g(x) lies between data values;
non-oscillation: no excessive “wiggles”;
robustness: small errors in x; or y; don't matter much;
locality: nearby data is most important;

cheap to define: cost O(n), O(n?), O(n*)?
cheap to evaluate: cost O(n), O(n?), O(n®)?
extensible: can we add more data values easily?
analytic: can we estimate errors?

adaptable: can we reduce errors that we detect?
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INT1D: Choosing an Interpolation Space

A given set of data has many possible interpolants.

We want to frame the problem in such a way that the answer
g(x) is computable, has some properties from our wish list,
and is a good model of the underlying function f(x).

We describe our problem as determining the unique element
g(x) from some appropriate function space G which is to be
selected because it interpolates our data.

For example, a common choice for G is P""1, the space of
polynomials of degree n — 1 (or “order” n).
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NEAR: The Nearest Neighbor

Almost the simplest interpolatory idea to define the value g(x)
is to locate the nearest data location x; and set g(x) = y;.

Let ¢;(x) be the characteristic function of the interval [a;, b;]
of points closest to data location x;:

(ﬁ,’(X) _ { lifxe [a,-,b,-];

0 otherwise;
Then our interpolant is
n
g(x) = Zy/'¢i(x)
i=1

We will see this kind of representation of the interpolant
repeatedly. The ¢(x) functions act as a basis for G, and the
numbers y; play the role of coordinates in that basis.
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NEAR: Example Interpolants

Nearsst Neighbor Interpolant

Nearsst Neighbor Interpolant
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NEAR: The Nearest Neighbor

Nearest neighbor interpolation guarantees locality, -
extremely so.

However, the interpolant will not even be continuous.

No model of the relationship is provided; at best, this model is
hidden in the arrangement of the data.

A more serious problem is that, to get locality, we have to
examine the entire set of data. Each evaluation of g(x)
requires computing the distance to every data point. In 1D we
could sort the data, in 2D or 3D, we could use triangulation;
after that, this becomes a significant cost.
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PWL: Piecewise Linear Interpolation

A powerful and simple interpolatory idea combines the appeal
of linear functions with the caution of locality; we define the
interpolant as a piecewise function which is linear between
successive data locations.

Let ¢;(x) be the function which linearly rises from 0 to 1 over
[xi_1, x;], drops from 1 to 0 over [x;, x;+1], and is O elsewhere.
Then our interpolant is

g(x) = ZYi¢i(X)

which again gives us the basis for the underlying space G, and /g
an explicit formula for the interpolant in terms of the data.

=
)
N
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PWL: Example Interpolants

Flecsuiss Linsar Interpolant Plocowis Linear Interpolant
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PWL: Example Basis Functions

Plecewise Inear basis fundlions fo problem 5 Pieceuise linear basis functions for problem 8
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PWL: The Piecewise Linear Interpolant

PWL interpolation combines locality, continuity, and
linearity (almost).

In the 1D case, we need to sort the data locations before
processing, in order to create the subintervals [x;, x;11],
although we often don't even think about this, and the data is
typically already sorted for us.

Extending this idea to higher regions, a greater effort is
necessary in order to “sort” the data locations: in 2D, we need
local triangles, in 3D tetrahedrons, and after that simplices,
whose creation becomes a significant cost.

A strength of PWL interpolation is that it is easy to locally
adapt the interpolant. Adding a new data location simply
means we have to replace one interval by two smaller ones.
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VANI: The Vandermonde Interpolant

A straightforward way to approach the problem of interpolating
m sets of data values is to assume a form for the interpolating
function that will have exactly m degrees of freedom c.

Our interpolation conditions will be:

flc;x) =n
f(c;x2) = yo
f(c:Xm) = Ym

A natural choice is a polynomial p(x) of degree m —1,

p(x) =co+ax+ox®+ ..+ cpax™ !
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VANI: The Vandermonde Interpolant

Our interpolation conditions become

2 -1
oxl4+caxxy+axxi+..+Cn1xX =n

2 -1
oxlt+caxxo+*xxs+...+Cn1¥Xy =)o

2 ~1
oxl4+cxXnt+*xX,+ ...d Cno1x X0~ = Ym

or Ax c = y where A is the Vandermonde matrix.

We have only to invert the matrix A to solve for the
coefficients ¢ and hence recover our interpolant p(x).

This is one example of “inverting the interpolation map”.
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VANI: Vandermonde Approach is Problematic

It is known that, if the nodes x; are distinct, then the matrix A
is nonsingular, the system is solvable for ¢, and hence the
polynomial interpolant p(x) can be recovered automatically
from the nodes x; and the data y;.

The Vandermonde matrix may be nonsingular, but in practice
it becomes very poorly conditioned with increasing m:
@ systems with small m can be accurately solved;
@ systems with moderate m are solved with severe errors;
@ systems with large m are numerically singular and cause
linear solvers to fail (you can’t even compute a bad
solution!).
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VANI: Vandermonde Experiment 1

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Condition of A ~ 1.1 x 10?3

Average interpolation error = 7.2 x 10~*
PW Linear length = 3.13 units
Polynomial length = 559.30 units.
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VANI: Vandermonde Experiment 2

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Condition of A ~ 1.3 x 10%

Average interpolation error = 2.9
PW Linear length = 2.66 units
Polynomial length = 2.9 x 10%" units.
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VANI: Vandermonde Experiment 3

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Condition of A ~ 1.6 x 104

Average interpolation error = 1.4 x 107%
PW Linear length = 3.13 units
Polynomial length = 559.30 units.
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VANI: Vandermonde Experiment 4

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Condition of A =~ 356159

Average interpolation error = 2.7 x 107
PW Linear length = 3.25 units
Polynomial length = 5.38 units.
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VANI: Vandermonde Experiment 5

Condition of A ~ 4.1 x 10°

Average interpolation error = 2.3 x 10712
PW Linear length = 3.22 units
Polynomial length = 37.19 units.
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VANI: Vandermonde Experiment 6

Condition of A ~ 2 x 1046

Average interpolation error = 3.6 x 1072
PW Linear length = 1.68 units
Polynomial length = 23.47 units.

37/123



VANI: Vandermonde Experiment 7

Condition of A =~ 367

Average interpolation error = 0
PW Linear length = 2.63 units
Polynomial length = 3.36 units.
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VANI: Vandermonde Basis Functions

Assuming our nodes are equally spaced, the picture of the
basis functions can also be easily interpreted as a
representation of the matrix entries itself.

Matrix column:
@ 1 is 0-degree basis function (all 1's).
@ 2 is linear basis functions ( 0, 1/10, 2/10, ..., 1 );
@ 3 is quadratic basis functions (0, 1/100, 4/100, ..., 1);

39/123



VANI: Vandermonde Basis Functions

. /
v
7/
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VANI: The Vandermonde Matrix

0.0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 1.0000 0.1000 0.0100 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 1.0000 0.2000 0.0400 0.0080 0.0016 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000
0.3 1.0000 0.3000 0.0900 0.0270 0.0081 0.0024 0.0007 0.0002 0.0001 0.0000 0.0000
0.4 1.0000 0.4000 0.1600 0.0640 0.0256 0.0102 0.0041 0.0016 0.0007 0.0003 0.0001
0.5 1.0000 0.5000 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010
0.6 1.0000 0.6000 0.3600 0.2160 0.1296 0.0778 0.0467 0.0280 0.0168 0.0101 0.0060
0.7 1.0000 0.7000 0.4900 0.3430 0.2401 0.1681 0.1176 0.0824 0.0576 0.0404 0.0282
0.8 1.0000 0.8000 0.6400 0.5120 0.4096 0.3277 0.2621 0.2097 0.1678 0.1342 0.1074
0.9 1.0000 0.9000 0.8100 0.7290 0.6561 0.5905 0.5314 0.4783 0.4305 0.3874 0.3487
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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VANA: The Vandermonde Approximant

Since the high value of m is causing the problem, we can try
to relax our requirements so that we are interpolating at m
points, but using a polynomial of degree n < m. Our
approximation conditions become

C0*1+C1*X1+C2>I<X1—|— +Cn1*X1 :yl
c0>x<1+cl>x<x2—|—c2>|<x2+ .+ Cho1 kX _y2
1 2 n—1 __
Gxl+ca*sXxpy+oxXx,+...+Cho1*%X,, " = Ym

and now we have an mxn overdetermined linear system
Ax c = y to solve for the coefficients. As long as the matrix A
has full column rank (uh oh) we can solve this approximation £
problem.
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VANA: Vandermonde Approximant N = 0

Vandermonde Polynomial Approximant of degree 0
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VANA: Vandermonde Approximant N = 1

Vandermonde Polynomial Approximant of degree 1

45/123



VANA: Vandermonde Approximant N = 2

Vandermonde Polynomial Approximant of degree 2

4
2

>

\:13
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VANA: Vandermonde Approximant N = 3

Vandermonde Polynomial Approximant of degree 3
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VANA: Vandermonde Approximant N = 4

Vandermonde Polynomial Approximant of degree 4
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VANA: Vandermonde Approximant N = 5

Vandermonde Polynomial Approximant of degree 5
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VANA: Vandermonde Approximant N = 6

Vandermonde Polynomial Approximant of degree 6
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VANA: Vandermonde Approximant N = 7

Vandermonde Polynomial Approximant of degree 7
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VANA: Vandermonde Approximant N = 8

Vandermonde Polynomial Approximant of degree 8
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VANA: Vandermonde Approximant N = 9

Vandermonde Polynomial Approximant of degree 9
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VANA: Vandermonde Approximant N = 10

Vandermonde Polynomial Approximant of degree 10
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VANA: Vandermonde Approximant N = 11

Warning: Rank = 10

Vandermonde Polynomial Approximant of degree 11
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VANA: Vandermonde Approximant N = 12

Warning: Rank = 8

Vandermonde Polynomial Approximant of degree 12
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VANA: Vandermonde Approximant N = 13

Warning: Rank = 8

Vandermonde Polynomial Approximant of degree 13
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VANA: Vandermonde Approximant N = 14

Warning: Rank = 8

Vandermonde Polynomial Approximant of degree 14
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VANA: Vandermonde Approximant N = 15

Warning: Rank =7

Vandermonde Polynomial Approximant of degree 15
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VANA: Vandermonde Approximant N = 16

Warning: Rank =7

Vandermonde Polynomial Approximant of degree 16
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VANA: Vandermonde Approximant N = 17

Warning: Matrix condition is 10’

Vandermonde Polynomial Approximant of degree 17
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VANA: Comments

Our approximation approach seemed to be going well, and it
was clear that we could have stopped early and gotten an
approximant that was close, not very oscillatory, and not badly
scaled.

If our least squares matrix hadn’t lost column rank, we could
have had more confidence in this approach.

The problem afflicting the least squares matrix involves our
choice of the monomials 1, x, x2, ..., x™ as our basis functions
for polynomials. Even when the interpolation nodes are well
separated, it becomes very difficult to distinguish the
monomial functions of high degree.
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LAGE: Lagrange Basis Functions (Even Spacing)

The Lagrange interpolation procedure has the same goal as we
saw with the Vandermonde interpolation approach, namely,

find the degree n — 1 polynomial interpolant for n data values.
The interpolating space G is the same, but the basis will differ.

Our basis will depend on the data locations {x;}. We want our
i-th basis function ¢;(x) to have the property that it is 1 at x;
and 0 at the other data locations. That way, there should be
no problem distinguishing the basis functions!

¢i(x) = 0i;

If we can make this happen, the interpolant is obvious:

g(x) = Zy/' i(x)
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LAGE: Lagrange Basis Functions (Even Spacing)

It's possible to write a formula for for ¢;(x):

Hj:lJ;éi(X - X))
H;:l,j;éi(xf - Xj)

¢i(x) =

Obviously, it is necessary that the data locations be distinct.

It's not obvious whether the arrangement or spacing of the
nodes has an effect on the results.

So far, we have not addressed this issue. Let's assume the
choice of the number of nodes and their locations are up to us.
And let us make the sensible choice of equally spaced nodes.
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LAGE: Lagrange Basis Functions (Even Spacing)

Lagrange interpolation basis functions O through 10

<-B(;X)->
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LAGE: Lagrange Basis Functions (Even Spacing)

Again, the picture of the basis functions can be interpreted as
a representation of the interpolation matrix entries.

We can see that at node x;, basis function ¢;(x) is 1, and all
others are zero. The interpolation matrix is the identity matrix.

For our evenly spaced nodes, the plot also suggests that all the
basis functions are "well behaved” in the interior, but tend to
grow in size near the endpoints. This suggests that a small
error in a basis function coefficient might be magnified at a
non-interpolation point near the endpoints.

While this seems a minor problem at first, as we go to higher
degree polynomials, the imbalance can explode.
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LAGE: Lagrange/Even Interpolant N+1 = 4

L en Polynomial for 4 nodes
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LAGE: Lagrange/Even Interpolant N+1 = 8

1 en Polynomial odes
i i i
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
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LAGE: Lagrange/Even Interpolant N+1 = 16

1 en Polynomial

for 16 nodes
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LAGE: Lagrange/Even Interpolant N+1 = 32

1 en Polynomial

for 32 nodes
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en Polynomial

LAGE: Lagrange/Even Interpolant N+1 = 64

for 64 nodes
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LAGC: Lagrange Basis (Chebyshev Spacing)

If we are able to choose our interpolation points, then a
common alternative to even spacing is the Chebyshev points,
which are simply the cosines of evenly spaced angles.

Since we can use any set of distinct nodes for the Lagrange
procedure, it is still true that at node x;, basis function ¢;(x)
is 1, and all others are zero.

The new feature is that the basis functions are strongly
localized (their mass is concentrated around their interpolation
node) and throughout the rest of the region, their values are
small. This means that we can avoid the possibility that a
small error in interpolation results in a large error at some far
away point.
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LAGC: Lagrange Basis (Chebyshev Spacing)

The derivation of the Chebyshev (Type 2) nodes:

(i—1)m
n—1

x; = cos( ), i=1,..,n




LAGC: Lagrange Basis (Chebyshev Spacing)

NIVAVAVAVAVAVAYA
WY Yo X
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LAGC: Lagrange Basis (Chebyshev Spacing)

If we repeat the interpolation attempt for the same function as
before, we do not get the error blowing up around the end
intervals this time.

That is because the choice of Chebyshev nodes allows us to
avoid the imbalance that would otherwise occur.

This suggest that high order Lagrange interpolation on an
arbitrary set of nodes is likely to be inaccurate and unstable.
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Lagrange/Chebyshev Interpolant N+1 = 4

Lagrange/Chebyshev Polynomial Interpolant for 4 nodes
140 : N
1.2 \
1h .
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LAGC: Lagrange/Chebyshev Interpolant N+1 = 8

Lagrange/Chebyshev Polynomial Interpolant for 8 nodes
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LAGC: Lagrange/Chebyshev Interpolant N+1 = 16

Lagrange/Chebyshev Polynomial Interpolant for 16 nodes
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LAGC: Lagrange/Chebyshev Interpolant N+1 = 32

Lagrange/Chebyshev Polynomial Interpolant for 32 nodes

'\
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LAGC: Lagrange/Chebyshev Interpolant N+1 = 64

Lagrange/Chebyshev Polynomial Interpolant for 64 nodes

\
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LAGA: Lagrange Approximation

We have seen that the Lagrange formulation of the
interpolating polynomial can handle cases with 64 data points,
but we must expect numerical instability as the number of
data points increases.

What if we are given 1000 data points to interpolate?

Assuming the interpolant will become impossible to evaluate
accurately, we'd consider constructing an approximant. We
have done this for the case where the polynomial is determined
in the Vandermonde procedure. Can we do it for the Lagrange
formulation instead?
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LAGA: Lagrange Approximation

To construct a Lagrange approximant, we have to assume
that there are a set of nd data points to approximate, and a
set of nc control points that define the approximant.

Given 1000 data points in the interval [A,B], our approach
would be to
@ select Chebyshev control locations {xc;} in [A,B];
@ represent the approximant as g(x) = >, yc; li(x);
@ write down the nd approximation equations in nc
variables as A x yc = yd
@ solve the system in a least squares sense.
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LAGA: Lagrange Approximation

In the interpolation problem, the matrix A was the identity
matrix, because we were evaluating the function at the control
points, where exactly one basis function is nonzero.

So by going to an approximation form, we incur the cost of
setting up and solving a dense rectangular (nd x nc) linear
system.

However, we hope to gain a numerically stable low-order
approximant that has been determined by a high number of
data values.
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LAGA: Lagrange/Chebyshev, Degree 16, ND=16

Lagrange/Chebyshev Polynomial Approximant of degree 16 for 16 nodes
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LAGA: Lagrange/Chebyshev, Degree 16, ND=64

Lagrange/Chebyshev Polynomial Approximant of degree 16 for 64 nodes
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LAGA: Lagrange/Chebyshev, Degree 16, ND=1000

Lagrange: Yol Polyi of degree 16 for 1000 nodes

I i i I I I i i |
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BARY: The Barycentric Lagrange Formula

We know that using the Lagrange approach for the
interpolation polynomial gives us a better basis than
Vandermonde does.

We know that choosing points that are biased towards the
interval endpoints gives us a more even set of weights, and
hence a more stable calculation.

When the amount of data is small, we are comfortable using
the standard Lagrange interpolant, but we are concerned
about stability and accuracy if we try to interpolate 1000 data
points with a polynomial of degree 999.

The barycentric Lagrange interpolation formula provides an
efficient and stable scheme for evaluating such high-degree
interpolants.
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BARY: The Barycentric Lagrange Formula

If we let /(x) be defined by

n

1) =[] (x =)

Jj=1

and write w;, the barycentric weight for the j-th data value:

1
w; =
H#;(Xi - X))
the Lagrange interpolant is:
n W
=/ Ty
g(x) =Ux) ) — e’
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BARY: The Barycentric Lagrange Formula

However, this formula can be rearranged so that the high
degree products disappear, replaced by barycentric coefficients

that sum to 1:
D
i=1 x—x; !

g(x) = S

i=1 x—x;

This calculation is more stable; moreover, for a given set of
nodes, the barycentric coefficients do not depend on the data
f;, and hence can be computed once and used to interpolate as
many sets of functions as desired.

If the nodes are chosen to be Chebyshev points, the values of
the w; can also be computed directly from a formula.
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BARY: Matlab Code for Chebyshev Type 2 Nodes

function yi = lagcheby2_interp_id ( nd, xd, yd, ni, xi )
wd = [ 1/2; ones(nd-2,1); 1/2 1 .x (-1) .~ ( (0:nd-1)’ );

numer = zeros ( ni, 1 );
denom = zeros ( ni, 1 );
exact = zeros ( ni, 1 );

for j =1 : nd

t =wd(j) ./ (xi- xd(§) );

numer = numer + t * yd(j);

denom = denom + t;

exact( xi == xd(j) ) = j; <-- Evaluation at a data node?
end

yi = numer ./ denom;

j = find ( exact ); <-- Evaluated at data node?
yi(j) = yd(exact(j)); Return data value there.
return

end

From Berrut and Trefethen reference.
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Bary: Barycentric, ND=4

Barycentric Lagrange Chebyshev2 Interpolant for 4 nodes
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Bary: Barycentric, ND=8

Barycentric Lagrange Chebyshev2 Interpolant for 8 nodes

14

0 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
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Bary: Barycentric, ND=16

Barycentric Lagrange Chebyshev2 Interpolant for 16 nodes
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Bary: Barycentric, ND=32

Barycentric Lagrange Chebyshev2 Interpolant for 32 nodes
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Bary: Barycentric, ND=64

Barycentric Lagrange Chebyshev2 Interpolant for 64 nodes
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Bary: Barycentric, ND=1000

B Lagrange Cl for 1000 nodes
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SHEP: Interpolation of Scattered Data

While the Lagrange interpolant is a powerful tool, in higher
dimensions it is difficult to construct the basis functions unless
the data can be sampled on a product grid.

Product grids in high dimensions become exponentially costly.
It’s worth looking at alternative approaches for interpolation.

One simple idea for interpolation of irregular or scattered data
in an arbitrary dimension space is known as Shepard
interpolation.
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SHEP: Interpolation of Scattered Data

Shepard interpolation originated in the construction of
smooth maps of scattered geographic data such as rainfall,
altitude, population, soil composition.

The goal was to create a plausible model which agreed with
the data, and varied continuously and differentiably in
between, so that, at any point, the nearest measured data
exerted the strongest influence on the model function.

(If we were willing to pay the cost of triangulating the data
locations, we could construct a piecewise linear interpolant,
but in higher dimensions, triangulation is out of the question.)
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SHEP: The Shepard Formula

At an arbitrary sample point x, we determine the 'weight’ or
influence of the data point x; by the formula

1
") = Tl
We normalize the weights:
A B w;(x)
) = S W)

and represent the interpolant by
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SHEP: The P Parameter

Here ||x — x;|| is any suitable distance measure, and p is a
power which is often taken as 2. The value of p influences the
relative importance of local and distant data.

Setting p to 0 makes all data equally important, and the
interpolant is a constant whose value is the data average.

For an m-dimensional problem, it is typical to choose m < p
for best results. Low values of p yield a smoother interpolant,
and high values tend to a “tiled” interpolant in which each
data value dominates in its neighborhood.
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SHEP: Shepard Experiment 1




SHEP: Shepard Experiment 6
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SHEP: Shepard Experiment 7
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SHEP: The Weights

The weights w;(x) are actually basis functions. They show
up in the Shepard interpolation formula in the same way that
the basis functions /(i; x) show up in the Lagrange formula.

The interpolation formula only needs to know the distance
between x and each data value x;. This means that the
formula works in the same way for any dimension.

Thus, the cost is easy to calculate. Each evaluation of the
interpolant costs us n weight calculations.
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SHEP: Shepard Basis for Experiment 7
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RBF: Radial Basis Functions

The Shepard approach used basis functions w;(x), derived
from the inverse of the distance r(x;; x) = ||x — x|| to the
various data points.

It is simple to generalize the Shepard interpolant by the use of
a family of radial basis functions ¢(r) to control the relative
influence of the data values at arbitrary points in the region:

e multiquadric, ¢1(r) = \/r? + ré;

. : . _ 1.

@ inverse multiquadric, ¢(r) = T

e thin plate spline, ¢3(r) = r? log ()

e gaussian, ¢4(r) = e 05"/%;
Here, ry is a scale factor parameter that might be a small
multiple of the typical distance between data locations.
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RBF: Radial Basis Functions

Given n multidimensional data points (x;, y;), and having
chosen a radial basis function ¢(r), the form of the RBF
interpolant is:

g(x) = ZVW*¢(||X_XJ||)

where the weights w are determined by solving (the dense
linear system!):

gla) = wix ol —xl) =yi i=1..n
i=j

which is simply the usual interpolation equations.
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RBF: Experiment 5, RO = 1/8

phil(x)
phi3(x)

Interpolant usng RBF basis phit

Interpolant usng RBF basis pha

phi2(x)
phi4(x)

Interpolant usng RBF basis phz

Interpolant usng RBF basis phié
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RBF: Experiment 5, Using PHI1

r0 = 0.0125 | r0 = 0.0250 | r0 = 0.0500
r0 = 0.1000 | r0 = 0.2000 | r0 = 0.4000
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Conclusions:
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Conclusions:

A bad selection of data locations {x;} can doom the process;

If the data is simply given to us, we need to be concerned if
there are data locations that are very close.

If the data is evenly spaced or uniformly distributed over a
finite region, there can be a tendency for oscillations and other
effects to arise at points far from the center. may are likely to

If we can select the data, then the Chebyshev distribution can
be useful.

If we need to sample a growing sequence of data, we can use a
PDF related to the Chebyshev distribution.
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Conclusions:

A bad representation of the interpolating space can cause
unbounded error;

The “natural” basis for the space of polynomials is not useful
for interpolation.

The same problem arises in higher dimensions. This depends
mainly on the degree of the polynomials, not the number of
interpolation points. In higher dimensions, the degree rises
more slowly, so we may not see the problem quite so soon.
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Conclusions:

A function may interpolate your data and do almost anything
elsewhere.

Every one of the radial basis function interpolants interpolates
the data. And yet for small values of the parameter ry, the
interpolant is essentially zero except very near the data.

Similarly, polynomial interpolants of high degree will begin to
oscillate wildly in between the interpolation points (and for
high enough degree, they won't even interpolate.)
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Conclusions:

High degree polynomials can do a good interpolation job.
When we have a lot of data, it makes sense to use it all.

To avoid oscillations, we could try a Lagrange approximant,
although this requires solving a linear system.

If we can select the locations of the data points, then the
barycentric Lagrange interpolant gives us an explicit, stable,
and efficient representation of the interpolating polynomial,
even in cases where the degree is 1000.
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Conclusions:

The polynomial interpolant for the Vandermonde basis
almost guarantees an ill-conditioned system.

Particularly if the data is specified in advance, (can't select the
data locations) your interpolant may be inaccurate.

Checking that the resulting interpolant simply interpolates the
data gives no guarantee about what is happening at the
non-data locations.

If you can select your data points, and use a Lagrange basis,
and evaluate the interpolant using the barycentric formula, you
may get better results than folklore suggests.
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Conclusions:

These observations for the 1D problem will be useful for
higher dimensions, particularly in the case of product rules,
and of sparse grid rules, which can be constructed from 1d
rules, and which inherit many of their properties.
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