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The Whole Talk in One Page

I am involved in a software project developing sparse grid codes
which allow the user to choose, for each spatial component, the
quadrature family, rate of growth, and anisotropy weight.

The software library is called SGMGA:

1 Sparse Grids

2 Mixed families

3 Growth rules

4 Anisotropic weighting
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Nested Families of Quadrature Rules

I will consider sparse grids as used for high dimensional quadrature.

The cost of a quadrature rule is measured in the number of
function evaluations,

If we are considering smooth integrands, the benefit may be
described in terms of the degree of precision: the rule can exactly
integrate all monomials of that degree or less.

We seek families of rules, indexed by increasing precision.

As the spatial dimension increases, we want to ensure that the cost
of a given precision does not grow exponentially.
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Monomials of Total Degree 5 or Less

A reasonable goal for a family of quadrature rules is that each
member exactly integrate all monomials up to a given total order.
In 2D, a rule that could integrate up to 5th order would need to
capture the monomials shown in blue:

7 ! y7 xy7 x2y7 x3y7 x4y7 x5y7 x6y7 x7y7

6 ! y6 xy6 x2y6 x3y6 x4y6 x5y6 x6y6 x7y6

5 ! y5 xy5 x2y5 x3y5 x4y5 x5y5 x6y5 x7y5

4 ! y4 xy4 x2y4 x3y4 x4y4 x5y4 x6y4 x7y4

3 ! y3 xy3 x2y3 x3y3 x4y3 x5y3 x6y3 x7y3

2 ! y2 xy2 x2y2 x3y2 x4y2 x5y2 x6y2 x7y2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7

4 / 1



A Product Rule Overshoots the Goal

The cost of a product rule of precision P in dimension M is PM . In
2D, we get a square of precision instead of a triangle. In higher
dimensions, most of the cost of a product rule is used to integrate
“red” monomials that don’t actually improve the achieved
precision. (They exponentially outweigh the blue monomials).

7 ! y7 xy7 x2y7 x3y7 x4y7 x5y7 x6y7 x7y7

6 ! y6 xy6 x2y6 x3y6 x4y6 x5y6 x6y6 x7y6

5 ! y5 xy5 x2y5 x3y5 x4y5 x5y5 x6y5 x7y5

4 ! y4 xy4 x2y4 x3y4 x4y4 x5y4 x6y4 x7y4

3 ! y3 xy3 x2y3 x3y3 x4y3 x5y3 x6y3 x7y3

2 ! y2 xy2 x2y2 x3y2 x4y2 x5y2 x6y2 x7y2

1 ! y xy x2y x3y x4 x5y x6y x7y
0 ! 1 x x2 x3 x4 x5 x6 x7

P ! 0 1 2 3 4 5 6 7
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Compare Product and Smolyak Precisions

Smolyak’s sparse grid procedure combines lower order product
rules to more carefully achieve the desired precision level.

If we can afford 1,000,000 evaluations in M-space, a non-Gaussian
product rule has precision roughly 1, 000, 000(1/M).

M P(Product Rule) P(Sparse Grid)

10 4.0 15

20 2.0 9 or 11

30 1.6 9 or 11

50 1.3 7 or 9

100 1.1 7

After dimension 20, you can’t afford a 2-point product rule!
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Construction of an isotropic Sparse Grid

The level L sparse grid in M dimensions is formed from low order
product rules, each defined by a level vector i = i1 + · · ·+ iM ,
where ij is the “level” or index of the j-th 1D rule.

A(L,M) =
∑

L−M<|i|≤L

(−1)L−|i|
(

M − 1
L− |i|

)
(Qi1 ⊗ · · · ⊗ QiM )

While the individual product rules may be anisotropic, the indexing
on the sum allows the resulting grid to be isotropic.

This formula leaves us free to choose the domains, weights,
families and growth rates of the 1D factors Qi .
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Sparse Grid = Sum of Selected Product Rules

Combination Precision Grid
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Add 5x1 Rule:

Combination Precision Grid
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Add 3x3 Rule:

Combination Precision Grid
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Add 1x5 Rule:

Combination Precision Grid
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The Results

To complete this 2D sparse grid, we include contributions from
the two lower order rules, 3x1 and 1x3. Here, we are using a
nested family of rules, so the resulting grid does not change,
although these lower order rules do affect the computed weights
applied to the grid points.

From the precision plot, we can see that the sparse grid claims to
be precise for all monomials of total degree 5. It has achieved this
precision goal using fewer points than a simple 5x5 product rule.
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Product Grid:

Combination Precision Grid
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Mixed Families

SGMGA allows each dimension to choose its quadrature family,
including: Clenshaw-Curtis, Gauss-Patterson, Legendre, generalized
Hermite, generalized Laguerre, Jacobi or a user-created family.

A parameterized family can have different parameters in each
dimension.

This makes it possible to correctly treat cases involving a mixture
of uniform and normally distributed quantities, for instance, or
cases in which a single distribution is used, but the parameters
defining that distribution vary from one dimension to the next.
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Gauss-Hermite X Clenshaw Curtis, Level 4
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Growth-Rules

The indexing of the 1D quadrature family defines the growth rule.
For Gauss Patterson family this is typically:

O = 2L+1 − 1

It is common to have allow this exponential growth to preserve the
benefits of nesting.

We have implemented a slow growth version of such rules; at
each level, we use the lowest order nested rule that will achieve the
necessary precision.

The advantages of the slow growth approach are most apparent in
low dimensions, or for high order.
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Growth Rules: Level 7 CC, Default versus Slow Growth
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Default vs Slow Clenshaw Curtis, Level 0
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Default vs Slow Clenshaw Curtis, Level 1
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Default vs Slow Clenshaw Curtis, Level 2
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Default vs Slow Clenshaw Curtis, Level 3
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Default vs Slow Clenshaw Curtis, Level 4
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Default vs Slow Clenshaw Curtis, Level 5
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Default vs Slow Clenshaw Curtis, Level 6
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The Anisotropic Smolyak Formula

We formed isotropic sparse grids using this constraint on indices:

L−M <
∑
j

ij ≤ L

An anisotropic grid modifies this constraint with a weight vector α:

L ·min(α)−
∑
j

αj <
∑
j

αj · ij ≤ L ·min(α)

The combining cofficient is now defined by:

cα(i) =
∑

j∈{0,1}d

i+j satisfies constraint

(−1)|j|
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[2,1] Hermite, Level 0
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[2,1] Hermite, Level 1

27 / 1



[2,1] Hermite, Level 2
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[2,1] Hermite, Level 3
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[2,1] Hermite, Level 4
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[2,1] Hermite, Level 5
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CONCLUSION: Adaptive Anisotropy

The anisotropy allowed by the SGMGA program must be
prescribed beforehand, in terms of relative weights for each
dimension, which define a linear constraint on level vectors.

The sparse grid is then formed from product grids whose level
vectors lie between corresponding sets of parallel lines (in 2D) or
hyperplanes.

The anisotropic formula can be applied to more general groupings
of level vectors.

An approach that would make sense would be to adaptively seek
level vectors that could be added to the current rule.
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CONCLUSION: Adaptive Anisotropy

Consider adding product rules at “corners” of the diagram.
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CONCLUSION: Current Concerns

A naive computation of the combining coefficient would required
generating 2M checks; we are investigating ways to avoid falling
back into the exponential trap!

It would be useful to have analogues of the nested Gauss-Patterson
family for problems involving Hermite or Laguerre weight functions.

For functions of limited smoothness, we are interested in the
Klimke/Wohlmuth approach using hierarchical piecewise linear
interpolants.
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