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Motivation: Discontinuities

Smooth models are powerful and ubiquitous in computation; they fail
when applied unknowingly to problems in which discontinuities arise.

Given a mathematical model exhibiting discontinuity, we may wish to:

identify the points of discontinuity;

subdivide the geometry into subregions of smooth behavior;

construct piecewise interpolants which are smooth over a subregion;

estimate the volume of a given subregion;

estimate integrals over a given subregion;

As special cases of such models, we may include:

the characteristic function χ(x) of some region; {x : χ(x) = 1};
the points where a scalar function f (x) exceeds a threshold:
{x : f (x) > fmin};
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Motivation: Discontinuities from Threshholds

While our original function might be smooth, using a threshold creates
a discontinuous function, and one or more implicitly defined regions (red).
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Motivation: Detecting and Measuring Discontinuities

We are interested in discontinuities because they arise occasionally
during the analysis of multidimensional functions associated with
stochastic problems, particularly when thresholding is applied by the
analyst, or when the physical system itself actually includes essentially
discontinous behavior.

A typical problem might include spatial variables x and stochastic
parameters ω; although it is easy to visualize functions which are
discontinuous in space, we are more interested in the harder problems in
which discontinuity occurs with respect to the nonphysical parameters.

The dimension of the stochastic parameter set may be large, and it may
be difficult simply to detect that a discontinuity has arisen, let alone to
deal with it. We term this general task High Dimensional Discontinuity
Detection (HDDD).
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Motivation: Uncertainty Quantification, Rare Events

In Uncertainty Quantification (UQ), we may be given a random
variable ω ∈ RN with the PDF ρ(ω), a state variable u(x, ω) governed by
a PDE, and a quantity of interest q(u(:, ω); we seek the probability of
the event {q(u(:, ω)) ≥ q0}, i.e.

P(q(u(:, ω) ≥ q0)) =

∫
I{q(u(:,ω))≥q0}(ω)dρ(ω)

High dimensional discontinuity detection can be used in quantifying
probabilities of rare events and risk assessment analysis for turbulence,
nuclear reactors, groundwater flow, or the re-entry of space vehicles, in
which the physical parameters are only known approximately or are
modeled probabilistically.

(a) Multi-physics coupling

(b) Interfacial coupling (c) Network coupling

Figure 1.1. Three types of coupled systems. (a) Multi-
physics coupling of two-dimensional fluid flow (black stream-
lines) and temperature (color gradient). (b) Interfacial cou-
pling between turbulent air flow and structural dynamics
through the shell of the vehicle (reprinted with permission
from [31]). (c) Network coupling of a high-fidelity electri-
cal circuit device model to a low fidelity network, simulating
radiation damage to the electrical circuit.

or more physical domains each containing separate physical processes, joined by a common
interface. The physical processes are independent in each domain apart from the interaction
at the interface. A relevant example within Sandia is the modeling of a reentry vehicle as
it travels through the atmosphere (see Figure 1.1(b)). The flight of the vehicle through
the atmosphere creates a pressure load on the shell of the vehicle which in turn affects the
structural dynamics of the interior of the vehicle. Here the two domains are the fluid exterior
to the vehicle (compressible, turbulent fluid flow) and the interior of the vehicle (structural
dynamics) coupled through the shell of the vehicle (interface). The physics in each domain is
typically modeled as a set of partial differential equations that are coupled through boundary
conditions. After spatial discretization, a generic two-component interfacially coupled system

9
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Motivation: Estimating Probability Integrals

To estimate the probability that q(ω) exceeds a threshold, extract
sample values ω from parameter space, solve for q, and record the
proportion of times q(ω) exceeds the threshold. The error decreases at
the usual Monte-Carlo rate.
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Motivation: PDE’s with random input

In the UQ setting, our mathematical model might look like:

{
−∇ · (a(x, ω)∇u(x, ω)) = f (x, ω) in D × Ω,

u(x, ω) = 0 on ∂D × Ω,

with x ∈ D and ω ∈ Ω where (Ω,F ,P) is a complete probability space.

We assume the random fields a(x, ω) and f (x, ω) depend on a finite
number of random variables y(ω) so that

a(x, ω) = a(x, y(ω)), f(x, ω) = f(x, y(ω))

Estimating the effect of uncertainty means evaluating the model over the
probability domain: Γ =

∏N
i=1 Γi ⊂ RN . In the simplest cases, our

investigation involves integration over the entire space with a weight, or
over a subset defined by some hypercube.
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Motivation: Fundamental Problems

We often begin with a bounded domain Γ ⊂ RN which is a product
region, but it may be the case that we are interested in a subdomain D
which can only be described implicitly. We may choose to represent D
using a characteristic function f (x) : Γ→ R defined by

f (x) =

{
1, if x ∈ D ⊂ Γ,

0, otherwise .

Can we detect regions in Γ that are near the boundary ∂D. of the
discontinuity of f (x)?

Can we detect and handle regions in Γ forming components of D?

Can we accurately and efficiently estimate the integral:∫

Γ

f (x)g(x)dx =

∫

D

g(x)dx ?
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Motivation: Detecting and Measuring Discontinuities

Existing methods for detecting discontinuities include:

adaptive triangle mesh refinement;

adaptive Centroidal Voronoi Tessellation (CVT);

ENO / WENO (weakly) essentially non oscillatory methods;

discontinuous Galerkin methods;

polynomial annihilation.
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Motivation: Detecting the Discontinuity Interface

Given no other information, we can search for the discontinuity
interface by repeatedly evaluating the characteristic function f (x).

Even though we think of the result as simply 0 or 1, each evaluation of
the characteristic function may require an expensive simulation.

A Monte Carlo or random sampling approach is easy to set up, but
suffers from slow convergence does not take advantage of any structure
in the problem, and can return unstructured results.

A method which is adaptive, and produces organized information, is the
hierarchical adaptive sparse grid (HASG) method [Zenger 1991,
Griebel 1998]; this produces a sparse grid around the discontinuity
surface, which can be refined as desired, and provides a good
convergence rate.
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HASG: Hierarchical Adaptive Sparse Grid

The HASG method uses 1d hierarchical subspaces:

For each dimension n = 1, . . . ,N, define Vn := L2(Γn)

The desired approximation is based on a sequence of subspaces
{Vin}∞in=0 of Vn of increasing dimension Min which is dense in Vn,
i.e., ∪∞in=0Vin = Vn, and nested:

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vin ⊂ Vin+1 ⊂ · · · ⊂ Vn

Take Vin to be the span of a nodal piecewise polynomial basis of order p:

Vin = span{φin
jn

(xn) | 0 ≤ jn ≤ 2in},

where in is the scaling level of the basis functions φin
jn

with compact

support, i.e., supp(φin
jn

) = O(2−in ) and φin
jn

(xn) is a polynomial of degree p.
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HASG: 1D Basis Function Hierarchy

Piecewise linear, quadratic, and cubic subspace sequences:

These functions are discussed in [Bungartz, Griebel 2004].
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HASG: Multidimensions

In the multi-dimensional case, define VN := L2(Γ).
Construct a sequence of subspaces {VN

L }∞L=0 of VN using

VN
L =

⋃

g(i)≤L

N⊗

n=1

Vin =
⋃

g(i)≤L

span

{ N∏

n=1

φin
jn

(xn)

∣∣∣∣ 0 ≤ jn ≤ 2in

}
,

where

i = (i1, . . . , iN ) ∈ NN
+ is a multi-index;

g(i) ≤ L defines the resolution of the approximation in VN
L .

Our choice of g(i) can select various subspaces:

Full tensor product hierarchical subspace: g(i) = max
n=1...,N

in

Isotropic sparse hierarchical subspace: g(i) = |i| ≡ i1 + · · ·+ iN
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HASG 1D Example: Level 6 Adaptive Interpolation

This adaptive grid has 21 points; a full grid would have used 65 points
in order to achieve the same resolution (all points on level 6)
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HASG 2D Example: Level 0, 1, 2 Grids

In a 2D adaptive sparse grid, points where a large surplus is detected
(red, then green and blue) spawn 2 “children” in X and 2 in Y. The
adaptive grid uses 12 points, where the isotropic sparse grid uses 17.
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HASG: Convergence

Given a function f (x) with bounded mixed derivatives up to order p,
the convergence rate is:

O(hp+1(log h−1)N−1)

where p the is order of the polynomial basis [Bungartz, Griebel 2004].

For discontinuous functions, HASG can incur very high costs, even in
dimensions as low as 4, because:

The sparse-grid interpolant does not converge in L∞ norm, which
means the surplus does not decay to zero.

The adaptivity generates a dense grid around the surface.

Many grid points do not contribute much to the approximation.

We don’t use high-order hierarchical basis functions.
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HASG: Examples in 2D and 3D

We approximate a characteristic function f (x) with x = (x1, . . . , xN ) as

f (x) =





1,
√
x2

1 + · · ·+ x2
N ≤ 1

0, otherwise

The 2D adaptive sparse grid requires 5,925 grid points;
the 3D grid uses 21,501 grid points.
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HASG: 2D/3D/4D Error Comparison with Monte Carlo

Figure: The error is measured by
∣∣∫ f (x)dx −

∫
IN

L (f )(x)dx
∣∣
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HYPER: A Hyperspherical Approach to HDDD

Consider again the characteristic function f (x) of an N-dimensional
argument restricted to some hyperrectangle.

We seek to capture the discontinuity surface, an N-1-dimensional
manifold, by building upper and lower bound surfaces.

We want to estimate the integral

∫
f (x)dx accurately.

A Possible Approach:

If the discontinuity surface of f (x) is smooth or at least continuous,
building an approximate manifold could be more efficient than
approximating f (x) directly.

Then we could transform the manifold in N-dimensional space to a
function in an N-1-dimensional subspace by a hyper-spherical
transformation, build an adaptive sparse grid approximation for the
manifold, then transform it back to the original Cartesian system.
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HYPER: Assumptions

We make assumptions about the characteristic function f (x) :

The discontinuity surface is an N-1 dimensional closed manifold, or
can be approximated so;

The discontinuity surface consists of a single connected component;

The manifold is convex, or at least a substantial portion of it forms
a convex set.

An “observation” point is given, or can be found, which lies inside
the manifold, and from which all, or substantially all, of the manifold
can be “seen” directly. (Such a point could be encountered during
the analysis of the full region, or else determined by random
sampling.)
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HYPER: Hyperspherical Coordinate System

A hyperspherical coordinate system is a generalization of the 2D polar
and 3D spherical coordinate systems:

One radial coordinate r ;

One angular coordinate θ1 ranging over [0, 2π);

N − 2 angular coordinates θ2, . . . , θN−1 ranging over [0, π).

We can convert hyperspherical coordinates to Cartesian coordinates:

x1 =r cos(θ1)

x2 =r sin(θ1) cos(θ2)

x3 =r sin(θ1) sin(θ2) cos(θ3)

...

xN−1 =r sin(θ1) · · · sin(θN−2) cos(θN−1)

xN =r sin(θ1) · · · sin(θN−2) sin(θN−1)
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HYPER: Partition of the Domain

Now consider a bounded domain Γ ⊂ RN and a characteristic function
f (x) : Γ→ R defined by:

f (x) =

{
1, if x ∈ D ⊂ Γ,

0, otherwise ,

where D is a closed, convex domain, and ∂D is the discontinuity surface.

Our goal is to find two bounded domains Dup and Dlow such that

Dlow ⊂ D ⊂ Dup ⊂ Γ

dist (∂Dup, ∂Dlow ) ≤ ε
where ε is a prescribed accuracy.

It is easy to see that f (x) = 0 for x ∈ ∂Dup and f (x) = 1 for x ∈ ∂Dlow .
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HYPER: Algorithm (part 1)

Random sampling in Γ to find x0 ∈ D ⊂ Γ such that f (x0) = 1.

Transform the Cartesian coordinates x1, . . . , xN to the hyperspherical
coordinates r , θ1, . . . , θN−1 with origin x0.

Due to the convexity of the domain D, ∂D can be represented by a
function r = g(θ) on the bounded N-1 dimensional sub-domain

Γθ =
N−1∏

n=1

[0, π]× [0, 2π]

where for any θ = (θ1, . . . , θN−1) ∈ Γθ, (g(θ), θ) is on ∂D.

Build an L-level sparse grid HN−1
L on Γθ with M grid points.

HN−1
L = {θi ∈ Γθ, for i = 1, . . . ,M}
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HYPER: Algorithm part 2

At grid point θi ∈ HN−1
L for i = 1, . . . ,M, i.e. along the direction

corresponding to θi , find two values g low
i and gup

i using the bisection
method with accuracy tolerance ε, such that

g low
i ≤ g(θi ) ≤ gup

i and |g low
i − gup

i | ≤ ε

Build sparse-grid interpolants g low (θ) and gup(θ) based on
{g low

i , i = 1, . . . ,M} and {gup
i , i = 1, . . . ,M}, respectively. Then we

have
(gup(θ), θ) =⇒ ∂Dup(
g low (θ), θ

)
=⇒ ∂Dlow

# function evaluations = # sparse-grid points × # bisection trials

According to smoothness of the interface ∂D, different types of
basis functions can be used.
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HYPER: Transformation of unit ball, unit cube

Surface in 3D, manifold with central or off-centered origin:
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HYPER: Compare HS-SG and HASG for Unit Ball

For the unit ball, the hyperspherical approach use 137 grid points, the
HASG approach 44,921 grid points, or 22,631 in the compressed version.
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HYPER: Compare HS-SG and HASG for Cylinder

For a cylinder, the hyperspherical approach use 283 grid points, the
HASG approach 37,713 grid points, or 15,407 in the compressed version.
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HYPER: Seeking the region where PDF(X) > tol

For a PDF of a 2D argument, we seek the region where pdf(x,y) > 0.4.
By tightening the tolerance of the bisection solver, we refine our estimate
of the “discontinuity” region.
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HYPER: HASG versus MC, HYPER versus MC

We approximate a characteristic function f (x) with x = (x1, . . . , xN ) as

f (x) =





1,
√
x2

1 + · · ·+ x2
N ≤ 1

0, otherwise

where x0 = (0.3, 0.3, . . . , 0.3).
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Summary

Our study is motivated by UQ applications, such as quantifying rare
events and risk assessment.

Conventional adaptive sparse grid methods incur an explosive cost
growth for discontinuity detection, even in low dimensions;

Under some assumptions, we build sparse grid approximations in a
hyperspherical coordinate system that characterize the
high-dimensional discontinuity surface.

Bounding surfaces capture the shape of the discontinuity surface.

The convergence rate is significantly improved.

G. Zhang C. Webster, M. Gunzburger, J. Burkardt,
A hyper-spherical sparse grid approach for high-dimensional
discontinuity detection,
ORNL Tech Report, submitted: Mathematics of Computation, 2014.

THANK YOU!
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