
Integration, Quadrature, and Sparse Grids

John Burkardt
Department of Computational Science

Florida State University
...

Research Group Seminar
...

http://people.sc.fsu.edu/∼jburkardt/presentations/...
fsu 2010 sparse.pdf

10 September 2010

1 / 1

I Promise That Things Will Become Clear!

2 / 1

Integration: Begin

1 INTEGRATION

2 Quadrature

3 Interpolatory Quadrature

4 Product Rules

5 Smolyak Quadrature

6 Sparse Grid Software

7 Conclusion

3 / 1

Integration

Integration is is used for the mathematical expression of physical
laws.

A complicated thing is understood by adding tiny components.

Integration is the limit of a summing operation.

∫ b

a
f (x) dx = lim

h→0

∑
Partition[a,b]

f (xi)∆xi

which (we will need to remember!) suggests that a sum can
approximate an integral if the maximum subinterval size is small.

4 / 1

Integration

Geometric interpretation: area under the curve y = f (x).

G [a, b] =

∫ b

a
f (x) dx

Sampling interpretation: average value (integral divided by
length).

f (x) =

∫ b
a f (x) dx

(b − a)

5 / 1

Integration: Multiple Dimensions

6 / 1

Integration: Multiple Dimensions

We are so used to seeing double integrals as iterated integrals that
we don’t even think about it.

If the integration region is regular enough, then the integral over
an area can be treated as the integral along one dimension of the
integral along the other.

Volume[pool] =

∫
base

depth(x , y) dA =

∫ d

c

(∫ b

a
depth(x , y) dx

)
dy

This means that if we can figure out how to approximate an
integral in 1D, then we automatically have a way to approximate in
2D, 3D, or any dimension. (It will work, but it might not be the
best way!)

7 / 1

Integration: Multiple Dimensions: More than 3!

Modern computations now involve integrals over high dimensions.

Financial mathematics: 30D or 360D

ANOVA decompositions: 10D or 20D

Queue simulation (expected average wait)

Stochastic differential equations: 10D, 20D, 50D

Particle transport (repeated emission/absorption)

Light transport (scattering)

Path integrals over a Wiener measure (Brownian motion)

Quantum properties (Feynman path integral)

Modeling unobservable groundwater flow

8 / 1

Integration: No Formulas for Interesting Problems!

Freshman memorize “antiderivatives” of formulas f (x).∫
x3 dx =

x4

4
+ C

But most formulas have no antiderivative!

And most things we want to integrate are not formulas but implicit
functions! ∫

Ω
∇vh · ∇ψi +∇ph ψi dΩ = ?

and computationally, the only thing we can do is ask for the value
of such an implicit function at various points.

9 / 1

Integration: Many functions are implicit

In many cases, the function we want to integrate is not a formula.
Its value is only obtainable by an expensive indirect computation.

For example, we might have a temperature function u(x , y , z ;ω)
which depends on low dimensional spatial parameters and a
stochastic parameter ω.

If we choose a value of ω, we can solve the state equations for u as
a function of (x,y,z) by integrating over the geometric space (2D,
3D?).

If we want to know the influence of the stochastic parameter, we
have to integrate over all possible value of ω, to get an expected
value function u(x , y , z). But ω may lie in a 10D or 50D space.

10 / 1

Quadrature: Begin

1 Integration

2 QUADRATURE

3 Interpolatory Quadrature

4 Product Rules

5 Smolyak Quadrature

6 Sparse Grid Software

7 Conclusion

11 / 1

Quadrature: Approximating an 1D Integral

Quadrature allows us to estimate integrals by weighted sums.∫
f (x) dx ≈

N∑
i=1

wi f (xi)

where the wi and xi may be chosen by a variety of criteria.

12 / 1

Quadrature: 1D Monte Carlo

The Monte Carlo algorithm views the integral as an average:∫
f (x) dx ≈

∑N
i=1 f (xi)

N

and concentrates on choosing x values that are well spread out.

13 / 1

Quadrature: 1D Monte Carlo

To improve an MC estimate, increase N, the size of your sample.

The Law of Large Numbers says that convergence will be like
√

N.
To reduce the error by a factor of 10 (one more decimal place)
requires 100 times the data.

If more accuracy needed, current values can be included;

Accuracy hampered because of large “gaps” in sampling.

Accuracy improvement rate is independent of spatial
dimension.

14 / 1

Quadrature: 1D Monte Carlo

Notice the ”gaps” and ”clusters” as this 1D sequence fills in.

15 / 1

Quadrature: 2D Monte Carlo

Notice the ”gaps” and ”clusters” in this 2D sample.

16 / 1

Quadrature: 6D Monte Carlo Error

N Estimate Error

1 0.796541 0.160759
16 0.652621 0.016838

256 0.637351 0.001569
65536 0.635926 0.000144

4194304 0.635856 0.000074

∞ 0.635782 0.0000

17 / 1

Quadrature: 6D Monte Carlo Error

If we try five times, we get five different sets of results.

18 / 1

Quadrature: 2D Quasi Monte Carlo

Quasi-Monte Carlo methods produce well spaced sampling.

19 / 1

Quadrature: 2D Latin Hypercube

Latin Hypercube Sampling ensures good spacing in each 1D
component (but allows gaps and clusters in multidimensions.)

20 / 1

Interpolatory Quadrature: Begin

1 Integration

2 Quadrature

3 INTERPOLATORY QUADRATURE

4 Product Rules

5 Smolyak Quadrature

6 Sparse Grid Software

7 Conclusion

21 / 1

Interpolatory Quadrature: An Alternative to Sampling

Sampling methods focus on the properties of X, the set of sample
points.

No attempt is made to exploit the information returned in F(X).

(Exception: Importance sampling and variance reduction versions
of Monte Carlo methods modify their behavior based on the values
of F(X) encountered.

If the function f (x) is “well-behaved”, the sample values F(X)
contain strong clues about f (x) and its integral.

22 / 1

Interpolatory Quadrature: 1D Example

Is f (x) approximately a sum of monomials (powers of x)?

f (x) ≈ 4.5 + 6.3x + 0.8x2 + 2.1x3 + 0.7x4 + ...

If so, the beginning of the formula can be determined and
integrated exactly.

This assumption is not true for step functions, piecewise
functions, functions with poles or singularities or great oscillation.

23 / 1

Interpolatory Quadrature: 1D Example

To find the initial part of the representation, sample the function.

Evaluating at one point can give us the constant.

f(x) ≈ 4.5...+ 6 .3x + 0 .8x2 + 2 .1x3 + 0 .7x4 + ...

A second evaluation gives us the coefficient of x :

f(x) ≈ 4.5 + 6.3x...+0 .8x2 + 2 .1x3 + 0 .7x4 + ...

Evaluating at N points gives the first N coefficients.

24 / 1

Interpolatory Quadrature: Integrating Monomials

An approximate formula can be integrated exactly.

With N samples, we can integrate the first N monomials,

1, x , x2, ..., xN−1,

and all functions made up of them.

The error behaves like hN , where h is the spacing between sample
points.

Increasing N increases the monomials we can “capture”.

25 / 1

Interpolatory Quadrature: A Function to Integrate

A function f(x) is given.

26 / 1

Interpolatory Quadrature: Selected Function Values

We evaluate it at N points.

27 / 1

Interpolatory Quadrature: The interpolant

We determine the approximating polynomial.

28 / 1

Interpolatory Quadrature: The integrated interpolant

We integrate the approximating polynomial exactly.

29 / 1

Interpolatory Quadrature: Features

uses a regular grid of N points;

Evaluates each f (x);

Computes a weighted average of the function values.

To reuse data, the grids must be “nested”.

The error can drop with an exponent of N

30 / 1

Interpolatory Quadrature: Nested Rules

Our nested rules roughly double the number of points at each step.

31 / 1

Interpolatory Quadrature: Monomial Accuracy

Interpolatory quadrature works well if f (x) can be well
approximated by a sum of monomials.

A 1D rule has accuracy N if it “captures” all monomials from
1, x , x2, up to xN .

The lowest monomial we can’t capture determines the error. A rule
of accuracy N can’t capture xN and so its error behaves like hN+1.

These monomials are the creatures we are “stalking”.

32 / 1

Product Rules: Begin

1 Integration

2 Quadrature

3 Interpolatory Quadrature

4 PRODUCT RULES

5 Smolyak Quadrature

6 Sparse Grid Software

7 Conclusion

33 / 1

Product Rules

A 2D product rule can be made by taking two 1D rules and
combining pairs of values.

The number of points in a product grid is the product of the sizes
of the 1D rules.

The resulting rule captures monomials up to xN1yN2 where N1
and N2 are the individual accuracies.

34 / 1

Product Rules: a 9x5 rule

A product of 9 point and 5 point rules.

35 / 1

Product Rules: Point Growth with Dimension

Suppose we take products of a modest 4 point rule:

1D: 4 points;

2D: 16 points;

3D: 64 points;

4D: 256 points;

5D: 1024 points;

10D: a million points;

20D: a trillion points.

100D: don’t ask!

Conclusion: Product rules can’t go very far!

36 / 1

Product Rules: Component Degree and Total Degree

In multi-dimensions, what is the DEGREE of a monomial?

If we consider the component degree, (the maximum of the
degrees of the component variables) then monomials of component
degree 4 include x4 and x3y 2 and even x4y 4.

If we consider the total degree, we sum all the exponents. Then
monomials of total degree 4 are exactly

x4, x3y , x2y 2, xy 3, y 4.

The asymptotic accuracy of a quadrature rule is determined by the
highest total degree N for which we can guarantee that all
monomials will be integrated exactly.

As soon as we miss one monomial of a given total degree, our rule
will have “run out of accuracy”.

37 / 1

Product Rules: Monomials of Degree 4

0 1
1 x y
2 x2 xy y 2

3 x3 x2y xy 2 y 3

4 x4 x3y x2y 2 xy 3 y 4

5 x4y x3y 2 x2y 3 xy 4

6 x4y 2 x3y 3 x2y 4

7 x4y 3 x3y 4

8 x4y 4

Monomials up to 4th degree. Those below the line are not
needed ..they don’t help the asymptotic accuracy.

38 / 1

Product Rules

As the dimension increases, the useless monomials predominate.

Suppose we take products of a modest rule of accuracy 10, and
limit the exponent total to 10. How many “good” and “useless”
monomials do we capture?

Dim Good Useless

1D 10 0
2D 55 45
3D 120 880
4D 210 9790
5D 252 99748

Conclusion: A ”cut down” product rule might work!

39 / 1

Smolyak Quadrature: Begin

1 Integration

2 Quadrature

3 Interpolatory Quadrature

4 Product Rules

5 SMOLYAK QUADRATURE

6 Sparse Grid Software

7 Conclusion

40 / 1

Smolyak Quadrature

Sergey Smolyak (1963) added low order grids together.

Each of his combined “sparse grids”:

had the same asymptotic accuracy as a product grid.

was a subset of the points of the product grid.

used far fewer points.

41 / 1

Smolyak Quadrature

Number of points in a Smolyak grid, for dimensions 1 to 5, and 10,
and 1D point counts 1, 3, 5, ...65.

Dim 1 2 3 4 5 10
1D Rule

1 1 1 1 1 1 1
3 3 5 7 9 11 21
5 5 13 25 41 61 221
9 9 29 69 137 241 1581

17 17 65 177 401 801 8801
33 33 145 441 1105 2433 41265
65 65 321 1073 2929 6993 171425

These point counts and accuracy assume a 1D Clenshaw-Curtis
grid.

42 / 1

Smolyak Quadrature

Level and 1D accuracy (= point count) versus Multidimensional
accuracy.
(We also include 10D point count.)

Level 1D count 10D count Accuracy

0 1 1 0,1
1 3 21 0,1,2,3
2 5 221 0,1,2,3,4,5
3 9 1581 0,1,2,3,4,5,6,7
4 17 8801 0,1,2,3,4,5,6,7,8,9
5 33 41265 0,1,2,3,4,5,6,7,8,9,10,11
6 65 171425 0,1,2,3,4,5,6,7,8,9,10,11,12,13

Multidimensional accuracy = 2 * LEVEL + 1.

43 / 1

Smolyak Quadrature: 2D Order 17 Product Rule

A 17x17 product grid (289 points).

44 / 1

Smolyak Quadrature: 2D Level4 Smolyak Grid

An“equivalent” sparse grid (65 points).

45 / 1

Smolyak Quadrature

To capture only “desirable” monomials, we essentially add product
grids which are sparse in one direction if dense in the other.

Because of nesting, the grids reuse many points.

The big savings comes from entirely eliminating most of the points
of the full product grid.

The improvement is greater as the dimension or level increases.

46 / 1

Smolyak Quadrature: 2D Level4 17x1 component

47 / 1

Smolyak Quadrature: 2D Level4 9x3 component

48 / 1

Smolyak Quadrature: 2D Level4 5x5 component

49 / 1

Smolyak Quadrature: 2D Level4 3x9 component

50 / 1

Smolyak Quadrature: 2D Level4 1x17 component

51 / 1

Smolyak Quadrature: 3D Level5 Smolyak Grid

Sparse grid = 441 points; Product grid would have 35,937.

52 / 1

Smolyak Quadrature: 6D Sparse Grid Quadrature Error

N Estimate Error

1 0.062500 0.573282
13 0.600000 0.0357818
85 0.631111 0.00467073

389 0.636364 0.000582152
1457 0.635831 0.0000492033
4865 0.635778 0.00000375410

∞ 0.635782 0.0000
53 / 1

Smolyak Quadrature: Monte Carlo vs Sparse Grid

SG N SG Estimate — MC N MC Estimate

1 0.062500 — 1 0.796541
13 0.600000 — 16 0.652621
85 0.631111 — 256 0.637351

389 0.636364 — 4096 0.633428
1457 0.635831 — 65536 0.635926
4865 0.635778 — 1048576 0.635666

∞ 0.635782 — ∞ 0.635782
54 / 1

A Few Words of Wisdom

”When good results are obtained in integrating a high-dimensional
function, we should conclude first of all that an especially tractable
integrand was tried and not that a generally successful method has
been found.

”A secondary conclusion is that we might have made a very good
choice in selecting an integration method to exploit whatever
features of f made it tractable.”

Art Owen, Stanford University.

55 / 1

Routines for DAKOTA: Begin

1 Integration

2 Quadrature

3 Interpolatory Quadrature

4 Product Rules

5 Smolyak Quadrature

6 SPARSE GRID SOFTWARE

7 Conclusion

56 / 1

Sparse Grid Software

I have been working on several software libraries for sparse grid
integration. The libraries are available in C++, FORTRAN90 and
MATLAB. They include functions which:

given dimension D and level L, determine the number of
points N.

allocate space for abscissas X and weights W.

determine the abscissas and weights.

approximate the integral as a weighted sum of function values.

provide test integrand functions, to estimate the accuracy of
the rules.

Step 1 requires the function ”sparse grid cc size” and step 3 is
carried out by ”sparse grid cc”.

57 / 1

Sparse Grid Software: Rule Generation

N = sparse_grid_cc_size (D, L);

W = new double[N];

X = new double[D*N];

sparse_grid_cc (D, L, N, W, X);

sum = 0;

for (p = 0; p < N; p++)

{

sum = sum + W[p] * f (X+p*D);

}

58 / 1

Sparse Grid Software: Accuracy Check

If the rule of level L is implemented correctly, it should exactly
integrate every monomial up to total degree 2 ∗ L + 1.

The routine ”monomial quadrature” can check this.

int E = { 3, 1, 2 };

error = monomial_quadrature (D, E, N, W, X);

59 / 1

Sparse Grid Software: Accuracy Result

Error Total Degree Monomial Exponents

0.000000 0 0, 0

0.000000 1 1, 0
0.000000 1 0, 1

0.250000 2 2, 0
0.000000 2 1, 1
0.250000 2 0, 2

0.500000 3 3, 0
0.250000 3 2, 1
0.250000 3 1, 2
0.500000 3 0, 3

60 / 1

Conclusion: Begin

1 Integration

2 Quadrature

3 Interpolatory Quadrature

4 Product Rules

5 Smolyak Quadrature

6 Sparse Grid Software

7 CONCLUSION

61 / 1

Conclusion: Future Work

Precompute quadrature rules, for parallel application

Composite version for decomposition of a few dimensions.

Allow some dimensions to be approximated more carefully.

Detect anisotropy in the data.

Estimate quadrature error.

Investigate rules for [0,∞) and (−∞,∞).

62 / 1

Conclusion: The End

High dimensional integration is a feature of modern
algorithms

Accurate Monte Carlo results take a long time

Product rules quickly become useless

“Smooth” data can be well integrated by Smolyak grids

Abstract probability spaces may generate suitably smooth data

63 / 1

Conclusion: Software

SMOLPACK, a C library by Knut Petras for sparse integration.

SPINTERP, ACM TOMS Algorithm 847, a MATLAB library by
Andreas Klimke for sparse grid interpolation.

SPARSE GRID CC a directory on my website containing
examples of sparse grids generated from Clenshaw Curtis rules.

64 / 1

Conclusion: References

Volker Barthelmann, Erich Novak, Klaus Ritter, High
Dimensional Polynomial Interpolation on Sparse Grids, Advances in
Computational Mathematics, Volume 12, Number 4, March 2000,
pages 273-288.

Thomas Gerstner, Michael Griebel, Numerical Integration Using
Sparse Grids,, Numerical Algorithms, Volume 18, Number 3-4,
January 1998, pages 209-232.

Sergey Smolyak, Quadrature and Interpolation Formulas for
Tensor Products of Certain Classes of Functions, Doklady
Akademii Nauk SSSR, Volume 4, 1963, pages 240-243.

65 / 1

