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Let the Exploration Begin!
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Integration

Integration is a natural expression of physical laws.

A complicated thing is understood by adding tiny components.

Integration computes the area under a curve.

G [a, b] =

∫ b

a
f (x) dx

It can also be seen as an averaging process.

f (x) =

∫ b
a f (x) dx

(b − a)
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Integration: Multiple Dimensions

Volume[pool ] =

∫ d

c

∫ b

a
depth(x , y) dx dy
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Integration: Multiple Dimensions: More than 3!

Mathematicians left 3D space long ago!

I Financial mathematics: 30D or 360D

I ANOVA decompositions: 10D or 20D

I Queue simulation (expected average wait)

I Stochastic differential equations: 10D, 20D, 50D

I Particle transport (repeated emission/absorption)

I Light transport (scattering)

I Path integrals over a Wiener measure (Brownian motion)

I Quantum properties (Feynman path integral)
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Integration: No Formulas for Interesting Problems!

Freshman memorize “antiderivatives” of formulas f (x).∫
x3 dx =

x4

4
+ C

But most formulas have no antiderivative!

And most things we want to integrate are not formulas!∫
Ω
∇vh · ∇ψi +∇ph ψi dΩ = ?
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1D Quadrature: Approximating an Integral

Quadrature allows us to estimate integrals.

This integration region is 1D. Similar methods apply in 2D (the
swimming pool) and higher dimensions.
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1D Quadrature: Monte Carlo

The Monte Carlo algorithm recalls the definition of an integral as
an averaging process.

I “Choose” N random points N points xi ;

I Evaluate each f (xi );

I Average the values.
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1D Quadrature: Monte Carlo

To improve an MC estimate, increase N, the size of your sample.

The Law of Large Numbers says that convergence will be like
√

N.
To reduce the error by a factor of 10 (one more decimal place)
requires 100 times the data.

I If more accuracy needed, current values can be included;

I Accuracy improves at the rate
√

N.

I Accuracy hampered because of large “gaps” in sampling.

I Accuracy is independent of spatial dimension.
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1D Quadrature: Monte Carlo

Notice the clustering and gaps.
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2D Quadrature: Monte Carlo

Notice the ”gaps”
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6D Quadrature: Monte Carlo Error

N Estimate Error

1 0.796541 0.160759
16 0.652621 0.016838

256 0.637351 0.001569
65536 0.635926 0.000144

4194304 0.635856 0.000074

∞ 0.635782 0.0000
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6D Quadrature: Monte Carlo Error

If we try five times, we get five different sets of results.
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1D Quadrature: QuasiMonte Carlo

The Quasi-Monte Carlo rules try to improve the accuracy of the
Monte Carlo method by choosing points a little less randomly.

I Average function values at N “quasi-random” points x ;

I If more accuracy needed, current values can be included;

I Accuracy improved because of regularity of sampling .

I Rate of improvement with N only slightly better than MC.
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1D Quadrature: QuasiMonte Carlo

This QMC rule leaves no gaps.
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2D Quadrature: QuasiMonte Carlo

This QMC rule leaves no gaps.
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2D Quadrature: Latin Square

Rules based on Latin Squares sample each 1D range evenly.
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Alternatives to Sampling?

A strength of sampling methods: they make no assumptions
about f (x), so they are just as good on “misbehaving” functions
as on well-behaved ones.

But this is also a weakness. Sampling ignores the extra information
a well-behaved function supplies.

If our function f (x) is well-behaved, we can come up with better
approaches.
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1D Quadrature: Interpolatory

Is f (x) approximately a sum of monomials (powers of x)?

f (x) ≈ 4.5 + 6.3x + 0.8x2 + 2.1x3 + 0.7x4 + ...

If so, the beginning of the formula can be determined and
integrated exactly.

This assumption is not true for step functions, piecewise
functions, functions with poles or singularities or great oscillation.
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1D Quadrature: Interpolatory

To determine the initial part of the function’s representation, we
sample the function.

Evaluating at one point can give us the constant.

f(x) ≈ 4.5...+ 6 .3x + 0 .8x2 + 2 .1x3 + 0 .7x4 + ...

Evaluating at a second point gives us the coefficient of x as well:

f(x) ≈ 4.5 + 6.3x...+0 .8x2 + 2 .1x3 + 0 .7x4 + ...

Evaluating at N points allows us to determine the first N
coefficients.
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1D Quadrature: Interpolatory

From well spaced function values, we get an approximate formula
which we can integrate exactly.

Such a method will integrate perfectly the first N monomials,

1, x , x2, ..., xN−1,

as well as any linear combination.

The error is typically of the form hN , where h is the spacing
between sample points.

Increasing N increases the monomials we can “capture”.
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1D Quadrature: Interpolatory

A function f(x) is given.
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1D Quadrature: Interpolatory

We evaluate it at N points.
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1D Quadrature: Interpolatory

We determine the approximating polynomial.
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1D Quadrature: Interpolatory

We integrate the approximating polynomial exactly.
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1D Quadrature: Interpolatory

I uses a regular grid of N points;

I Evaluates each f (x);

I Computes a weighted average of the function values.

I To reuse data, the grids must be “nested”.

I The error can drop with an exponent of N
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1D Quadrature: Interpolatory

Our nested rules roughly double in size at each step.
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Monomials

Interpolatory quadrature works well if f (x) can be well
approximated by a sum of monomials.

A 1D rule has accuracy N if it “captures” all monomials from
1, x , x2, up to xN .

The lowest monomial we can’t capture determines the error. A rule
of accuracy N can’t capture xN and so its error behaves like hN+1.

These monomials are the creatures we are “stalking”.
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Product Rules

A product rule constructs a grid from 1D grids:
In 2D, choose rules for the X and Y directions;
the grid is all combinations of the x ’s and y ’s.

The number of points in a product grid is the product of the sizes
of the 1D rules.

The resulting rule captures monomials up to xN1yN2 where N1
and N2 are the individual accuracies.
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Product Rules

A product of 9 point and 5 point rules.
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Product Rules

Suppose we take products of a modest 4 point rule:

I 1D: 4 points;

I 2D: 16 points;

I 3D: 64 points;

I 10D: a million points;

I 20D: a trillion points.

I 100D: don’t ask!

Conclusion: Product rules can’t go very far!
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Product Rules

The degree of a monomial xN1yN2 is N1 + N2. Unlike the 1D
case, in 2D there are many monomials of a given degree.

There are six (x , y) monomials of degree 5:

x5, x4y , x3y 2, x2y 3, xy 4, y 5.

For a rule to have accuracy 5, it must capture all these monomials,
as well as all the lower order ones.

So there’s a lot of work to do. But in fact, we’re actually doing
too much work.
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Product Rules

A rule only need to “capture” monomials up to a degree N.

In 2D, we need monomials xN1yN2 for which N1 + N2 ≤ N.

But a product rule captures all monomials for which either
N1 ≤ N or N2 ≤ N.
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Monomials up to 4th degree

0 1
1 x y
2 x2 xy y 2

3 x3 x2y xy 2 y 3

4 x4 x3y x2y 2 xy 3 y 4

5 x4y x3y 2 x2y 3 xy 4

6 x4y 2 x3y 3 x2y 4

7 x4y 3 x3y 4

8 x4y 4

Monomials appearing below the line are not needed.
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Product Rules

As the dimension increases, the useless monomials predominate.

Suppose we take products of a modest rule of accuracy 10, and
limit the exponent total to 10. How many “good” and “useless”
monomials do we capture?

Dim Good Useless

1D 10 0
2D 55 45
3D 120 880
4D 210 9790
5D 252 99748

Conclusion: A ”cut down” product rule might work!
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Smolyak Quadrature

Sergey Smolyak added low order grids together.

His combined “sparse grid”:

I had the same accuracy as a product grid.

I was a subset of the points of the product grid.

I used far fewer points.
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2D Quadrature:

A 17x17 product grid (289 points).
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2D Quadrature: Level4 Sparse Grid

An“equivalent” sparse grid (65 points).
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2D Quadrature: Level4 Sparse Grid

To capture only “desirable” monomials, we essentially add product
grids which are sparse in one direction if dense in the other.

Because of nesting, the grids reuse many points.

The big savings comes from entirely eliminating most of the points
of the full product grid.

The improvement is greater as the dimension or level increases.
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2D Quadrature: Level4 17x1 component
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2D Quadrature: Level4 9x3 component
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2D Quadrature: Level4 5x5 component
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2D Quadrature: Level4 3x9 component
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2D Quadrature: Level4 1x17 component
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3D Quadrature: Level5 Sparse Grid

Sparse grid = 441 points; Product grid would have 35,937.
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6D Quadrature: Sparse Grid Error

N Estimate Error

1 0.062500 0.573282
13 0.600000 0.0357818
85 0.631111 0.00467073

389 0.636364 0.000582152
1457 0.635831 0.0000492033
4865 0.635778 0.00000375410

∞ 0.635782 0.0000
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6D Quadrature: Monte Carlo vs Sparse Grid

SG N SG Estimate — MC N MC Estimate

1 0.062500 — 1 0.796541
13 0.600000 — 16 0.652621
85 0.631111 — 256 0.637351

389 0.636364 — 4096 0.633428
1457 0.635831 — 65536 0.635926
4865 0.635778 — 1048576 0.635666

∞ 0.635782 — ∞ 0.635782
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High Dimensional Quadrature: A Quote

”When good results are obtained in integrating a high-dimensional
function, we should conclude first of all that an especially tractable
integrand was tried and not that a generally successful method has
been found.

”A secondary conclusion is that we might have made a very good
choice in selecting an integration method to exploit whatever
features of f made it tractable.”

Art Owen, Stanford University.
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The Diffusion Equation

−∇ · (a(x , y)∇u(x , y)) = f (x , y)

u is some quantity, like temperature;

a is the conductivity, which says how easily a hot place warms up
nearby cold places.

I heat conduction;

I subsurface water flow;

I particle diffusion;

I Black-Scholes equation (flow of money!).
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The Diffusion Equation: Uncertain Conductivity

Suppose we only know a mean value of conductivity, and that
there are significant, unknown, deviations from this mean.
Then a has a stochastic component ω, which our solution u will
inherit.

−∇ · (a(ω; x , y)∇u(ω; x , y)) = f (x , y)

If we pick ω, the equation becomes deterministic again.

But if we don’t know ω, our solution is also unknowable!

Can we still extract information from the equation?
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The Diffusion Equation: Expected Values

Even though our solution is “random”, we can reasonably ask for
the average or expected value; (and variances, and higher
moments).

Once again, the integral is the perfect tool to carry out this
operation. Instead of integrating over a range of numbers, we need
to integrate over a range of stochastic perturbations ω from some
function space Ω.

E (u(x , y)) =

∫
Ω

u(ω; x , y) pr(ω) dω

This averaging process is a little like modeling the climate instead
of the weather.
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The Diffusion Equation: Approximate Integral

We approximate the function space Ω by an M-dimensional space
ΩM , of linear sums of perturbations ωM .

We now estimate the integral of u(ωM ; x , y) in ΩM .

Monte Carlo: select a random set of parameters ωM , solve for u,
multiply by the probability, and average.

Sparse grid: choose a level, defining a grid of ωM values in ΩM ,
solve for each u, multiply by the probability, and take a weighted
average.
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The Diffusion Equation: Monte Carlo
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The Diffusion Equation: Smolyak
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Conclusion: Future Research

I Store quadrature rules explicitly, as tables.

I Make a ”slightly” composite rule.

I Detect anisotropy in the data.

I Modify the algorithm so that some dimensions may be
approximated more carefully.

I Estimate the quadrature error cheaply.
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Conclusion: The End

I High dimensional integration is a feature of modern
algorithms

I Accurate Monte Carlo results take a long time

I Product rules quickly become useless

I “Smooth” data can be well integrated by Smolyak grids

I High dimensional probability spaces, for example, generate
smooth data
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Conclusion: Software

SMOLPACK, a C library by Knut Petras for sparse integration.

SPINTERP, ACM TOMS Algorithm 847, a MATLAB library by
Andreas Klimke for sparse grid interpolation.

SPARSE GRID CC a directory on my website containing
examples of sparse grids generated from Clenshaw Curtis rules.

Burkardt High Dimensional Sparse Grids Stalking the Wild Integral



Conclusion: References

Volker Barthelmann, Erich Novak, Klaus Ritter, High
Dimensional Polynomial Interpolation on Sparse Grids, Advances in
Computational Mathematics, Volume 12, Number 4, March 2000,
pages 273-288.

Thomas Gerstner, Michael Griebel, Numerical Integration Using
Sparse Grids,, Numerical Algorithms, Volume 18, Number 3-4,
January 1998, pages 209-232.

Sergey Smolyak, Quadrature and Interpolation Formulas for
Tensor Products of Certain Classes of Functions, Doklady
Akademii Nauk SSSR, Volume 4, 1963, pages 240-243.

Burkardt High Dimensional Sparse Grids Stalking the Wild Integral


