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MATLAB Parallel Computing: Some Announcements

While we have your attention...
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MATLAB Parallel Computing: Some Announcements

ITHACA is an IBM iDataPlex cluster recently installed by Virginia
Tech’s Advanced Research Computing facility.

It is intended to gradually take over the high performance
computing load from System X.

ITHACA supports OpenMP, MPI and Parallel MATLAB
programming.

Right Now: Friendly users accepted for Ithaca
(talk to John Burkardt if you are interested,);

Mid October: Ithaca opened to general users
(accounts given out through online application.).
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MATLAB Parallel Computing: Some Announcements

MATLAB Training is available this fall.

These classes will be presented by the MathWorks. Some of these
classes are tentative. Check the FDI website for details.

2 October: Simulink (daylong);

3 October: SimMechanics (daylong);

8 October: MATLAB Programming Techniques.

8 October: Parallel Computing with MATLAB.

29 October: Parallel Computing with MATLAB (daylong).

19 November: Real-time Data Acquisition and Control.

19 November: Statistical Methods in MATLAB.
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MATLAB Parallel Computing: Things Change

“Why There Isn’t Parallel MATLAB”
”There actually have been a few experimental versions of
MATLAB for parallel computers... We have learned enough from
these experiences to make us skeptical about the viability of a fully
functional MATLAB running on today’s parallel machines.”

Cleve Moler, 1995.
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MATLAB Parallel Computing: Things Change

(Let There Be) “Parallel MATLAB”
”We now have parallel MATLAB.”

Cleve Moler, 2007.
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Introduction: MATLAB

MATLAB is a computing environment that is halfway between a
programming language (where a user must do everything) and a
menu-driven application (where the user only makes high level
decisions).

Users always have the ability to lay out the precise details of an
algorithm themselves.

They rely on MATLAB commands to access intelligent, flexible,
and optimized versions of standard algorithms.
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Introduction: MATLAB Adds Parallelism

The MathWorks has recognized that parallel computing is
necessary for scientific computation.

The underlying MATLAB core and algorithms are being extended
to work with parallelism.

An explicit set of commands has been added to allow the user to
request parallel execution or to control distributed memory.

New protocols and servers allow multiple copies of MATLAB to
carry out the user’s requests, to transfer data and to communicate.

MATLAB’s parallelism can be enjoyed by novices and exploited by
experts.
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Introduction: Local Parallelism

MATLAB has developed a Parallel Computing Toolbox which is
required for all parallel applications.

The Toolbox allows a user to run a job in parallel on a desktop
machine, using up to 8 ”workers” (additional copies of MATLAB)
to assist the main copy.

If the desktop machine has multiple processors, the workers will
activate them, and the computation should run more quickly.

This use of MATLAB is very similar to the shared memory parallel
computing enabled by OpenMP; however, MATLAB requires much
less guidance from the user.
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Introduction: Remote Parallelism

MATLAB has developed a Distributed Computing Server or DCS.

Assuming the user’s code runs properly under the local parallel
model, then it will also run under DCS with no further changes.

With the DCS, the user can start a job on the desktop that gets
assistance from workers on a remote cluster.
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Introduction: Local and Remote MATLAB Workers
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Introduction: SPMD for Distributed Data

If a cluster is available, the shared memory model makes less sense
than a distributed memory model.

In such a computation, very large arrays can be defined and
manipulated. Each computer does not have a copy of the same
array, but instead a distinct portion of the array. In this way, the
user has access to a memory space equal to the sum of the
memories of all the participating computers.

MATLAB provides the spmd command to allow a user to declare
such distributed arrays, and provides a range of operators that are
appropriate for carrying out computations on such arrays.
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Introduction: BATCH for Remote Jobs

MATLAB also includes a batch command that allows you to write
a script to run a job (parallel or not, remote or local) as a separate
process.

This means you can use your laptop or desktop copy of MATLAB
to set up and submit a script for running a remote job. You can
exit the local copy of MATLAB, turn off your laptop or do other
work, and later check on the remote job status and retrieve your
results.

Many computer clusters that have parallel MATLAB installed
require users to submit their jobs in batch mode.
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Introduction: PMODE: Interactive Parallel Mode

A typical parallel MATLAB user working interactively still sees the
familiar MATLAB command window, which we may think of as
being associated with the “master” copy of MATLAB.

However, MATLAB also allows a user to open a parallel command
window. This is known as pmode.

Commands given in pmode are executed simultaneously on all the
workers. Within pmode, the user has access to distributed arrays,
parallel functions, and message-passing functions that are not
visible or accessible in the normal command window.
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Introduction: MATLAB + MPI

Parallel MATLAB uses a version of MPI (MPICH2).

In most cases, a user is happy not to see the underlying MPI
activity that goes on.

However, MATLAB includes a rich set of calls that allow the user
to employ the typical MPI activities of sending and receiving
messages, broadcasting data, defining synchronization barriers and
so on.
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Local Parallel Computing

If your desktop or laptop computer is fairly recent, it may have
more than one processor; the processors may have multiple cores.

Executing MATLAB in the regular way only engages one core,
leaving the others idle. (However, some MATLAB linear algebra
routines will notice these idle cores and engage them for subtasks).

The Parallel Computing Toolbox runs up to 8 cooperating copies
of MATLAB, taking direct advantage of the extra power.

You’ll need:

the right version of MATLAB;

the Parallel Computing Toolbox;

a MATLAB M-file that uses new parallel keywords.
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Local Parallel Computing: What Do You Need?

Your machine must have multiple cores.

Your MATLAB must be version 2008a or later.

***To check MATLAB’s version, go to the HELP menu, and
choose About Matlab.

Your MATLAB must include the Parallel Computing Toolbox.

***To list all your toolboxes, type the MATLAB command ver.
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Local Parallel Computing: Running A Program

Suppose you have a MATLAB M-file modified to compute in
parallel (we’ll explain that later!).

To do local parallel programming, start MATLAB the regular way.

This copy of MATLAB will be called the client copy; the extra
copies created later are known as workers or sometimes as labs.

Running in parallel requires three steps:

1 request a number of (local) workers;

2 issue the normal command to run the program. The client
MATLAB will call on the workers for help as needed;

3 release the workers.

Burkardt/Cliff MATLAB Parallel Computing



Local Parallel Computing: Example of Running A Program

Suppose you have an M file named samson.m.

To run samson.m in parallel, type:

matlabpool open local 4

samson

matlabpool close

When we want to run on a cluster, we’ll only have to replace the
word local by another suitable word, which defines the
“configuration” (how MATLAB rounds up the workers.)
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Local Parallel Computing: Running A Program

If all is well, the program runs the same as before... but faster.

Output will still appear in the command window in the same way,
and the data will all be available to you.

What has happened is simply that some of the computations were
carried out by other cores in a way that was hidden from you.

The program may seem like it ran faster, but it’s important to
measure the time exactly.
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Local Parallel Computing: Timing A Program

To time a program, you can use tic and toc:

matlabpool open local 4

tic

samson

toc

matlabpool close

tic starts the clock, toc stops the clock and prints the time.
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Local Parallel Computing: Timing A Program

To measure the speedup of a program, you can try different
numbers of workers:

for labs = 0 : 4

if ( 0 < labs ) matlabpool ( ’open’, ’local’, labs )

tic

samson

toc

if ( 0 < labs ) matlabpool ( ’close’ )

end

Because labs is a variable, we use the “function” form of
matlabpool.
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The PARFOR Command

The simplest way of parallelizing a MATLAB program focuses on
the for loops in the program.

If a for loop is suitable for parallel execution, replace the word for
by the word parfor (meaning “parallel for”).

When the MATLAB program is run in parallel, the work in each
parfor loop will be distributed among the workers.
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The PARFOR Command: When Can It Be Used?

What determines whether a for loop is suitable for parallelization?

The crucial question that must be answered satisfactorily is this:

Can the iterations of the loop be performed in any order without
affecting the results?

If the answer is ”yes”, then generally the loop can be parallelized.
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REMARK: These Are Just Examples!

We’re going to look at some examples of the use of the parfor
keyword to make loops execute in parallel.

These are not realistic examples; the loops are short, and the
operations are simple, and it would be easier to use MATLAB’s
built in operations to replace the entire loop by a simple command.

But these examples are for illustration, only. They give you an idea
of how parfor can be used.
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The PARFOR Command: When Can It Be Used?

As a simple example of a loop that can be parallelized, think about
the task of normalizing each column of a matrix. We find the
largest entry in a column and divide the column by that value.

What happens in each column is independent.
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The PARFOR Command: When Can It Be Used?

for j = 1 : n

c = 0.0

for i = 1 : m

c = max ( c, a(i,j) );

end

if ( c ~= 0 )

for i = 1 : m

a(i,j) = a(i,j) / c;

end

end

end
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The PARFOR Command: Whan Can it Be Used?

As an example of when the parfor command cannot be used,
consider the following difference equation:

u(1:m) = rand (1, m );

for j = 1 : n

for i = 2 : m - 1

v(i) = u(i-1) - 2 * u(i) + u(i+1);

end

u(2:m-1) = v(2:m-1);

end

The iterations (on j) are not independent. Each iteration needs
results from the previous one. (We could, however, use a parfor on
the i loop.)
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The PARFOR Command: Data Sharing

Using parfor for parallel computing is very similar to the OpenMP
shared memory model.

The MATLAB workers correspond to separate threads of execution.

In general, we think of all the data as being “shared” - that is,
every worker can see or change any variable.

Variables that cannot be shared so simply include private
variables and reduction variables.

OpenMP requires you to identify such variables; MATLAB tries to
determine what do do implicitly, based on how the variables are
used in the loop.
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The PARFOR Command: BREAK and RETURN

A loop containing break or return cannot run in parallel;
the sequential code breaks at the first occurrence of the test.
The parallel code can’t do the same.

function value = prime ( i )

value = 1;

for j = 2 : i - 1;

if ( mod ( i, j ) == 0 )

value = 0;

break

end

end

return

end

You cannot replace for by parfor here!
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The PRIME NUMBER Example

For our first example, we want a simple computation involving a
loop which we can set up to run for a long time.

We’ll choose a program that determines how many prime numbers
there are between 1 and N.

If we want the program to run longer, we increase the variable N.
Doubling N makes the run time increase by a factor of 4.

Notice that this program includes a loop that has a break
statement. That’s OK, because we do not parallelize that loop!
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The PRIME NUMBER Example

f u n c t i o n t o t a l = pr ime number ( n )

%% PRIME NUMBER r e t u r n s the number o f p r imes between 1 and N.

t o t a l = 0 ;

f o r i = 2 : n

pr ime = 1 ;

f o r j = 2 : i − 1
i f ( mod ( i , j ) == 0 )

pr ime = 0 ;
break

end
end

t o t a l = t o t a l + pr ime ;

end

r e t u r n
end
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The PRIME NUMBER Example

We can parallelize the loop whose index is i, replacing for by
parfor. The computations for different values of i are independent.

But there’s a break inside this loop! Why is that not a problem?

There is one variable that is not independent of the loops, namely
total. This is simply computing a running sum (a reduction
variable), and we only care about the final result. MATLAB is
smart enough to be able to handle this computation in parallel.

To make the program parallel, we replace for by parfor. That’s all!
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The PRIME NUMBER Example: How to Run It

l a b n u m a r r a y = [ 0 , 1 , 2 , 4 ] ;
f o r lab num = l a b n u m a r r a y ( 1 : 4 )

f p r i n t f ( 1 , ’\n ’ ) ;

i f ( 0 < lab num )
m a t l a b p o o l ( ’ open ’ , ’ l o c a l ’ , lab num )

end

n = 5 0 ;

w h i l e ( n <= 500000 )
t i c ;
p r i m e s = p r i m e n u m b e r p a r a l l e l ( n ) ;
wtime = toc ;
f p r i n t f ( 1 , ’ %8d %8d %8d %14 f\n ’ , lab num , n , pr imes , wtime ) ;
n = n ∗ 1 0 ;

end

i f ( 0 < lab num )
m a t l a b p o o l ( ’ c l o s e ’ )

end

end
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The PRIME NUMBER Example: Timing

PRIME_NUMBER_PARALLEL_RUN

Run PRIME_NUMBER_PARALLEL with 0, 1, 2, and 4 labs.

N 1+0 1+1 1+2 1+4

50 0.067 0.179 0.176 0.278

500 0.008 0.023 0.027 0.032

5000 0.100 0.142 0.097 0.061

50000 7.694 9.811 5.351 2.719

500000 609.764 826.534 432.233 222.284
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The PRIME NUMBER Example: Timing Comments

There are many thoughts that come to mind from these results!

Why does 500 take less time than 50? (It doesn’t, really).

How can ”1+1” take longer than ”1+0”?
(It does, but it’s probably not as bad as it looks!)

This data suggests two conclusions:

Parallelism doesn’t pay until your problem is big enough;

AND

Parallelism doesn’t pay until you have a decent number of workers.
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Behind the Magic:

What is behind the curtain of MATLAB’s Magic?
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Behind the Magic: MATLAB’s Implicit Parallelization

In other parallel languages, the user declares how variables are to
be handled. This means more work, but also indicates that some
ambiguous situations are safe to parallelize.

MATLAB figures out how to parallelize the user’s code implicitly;
that is, it looks at the code, and figures out by itself how the
variables are used, and which ones must be treated in special ways.
This is easy for the user, but it also means that some parallelizable
operations will not be parallelized by MATLAB!

In particular, if an array is involved, MATLAB will only parallelize
the loop if the array can be “sliced”, that is, if each iteration of
the loop only refers to a distinct, separate portion of the array.

Let us look at how MATLAB’s classification of your variables
determines whether you can run in parallel.
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Behind the Magic: Variable Classification

a = 0;

c = pi;

z = 0;

r = rand ( 1, 10 );

parfor i = 1 : 10 <-- i is a "(parfor) loop index"

a = i; <-- a is a "temporary";

z = z + i; <-- z is a "reduction"

b(i) = r(i); <-- b and r are "sliced";

if ( i <= c ) <-- c is "broadcast"

d = 2 * a; <-- d is "trouble"

end

end
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Behind the Magic: Variable Classification

When MATLAB encounters a parfor loop, it must classify all the
variables used in the loop, in order to determine how to carry out
the operations in parallel.

MATLAB’s variable classes are:

loop index, the parfor index;

sliced, any array uniquely indexed by the loop index;

broadcast, defined before the loop, not set inside the loop;

reduction, accumulates a result in a standard way;

temporary, assigned, then used, in each iteration.
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Behind the Magic: The (parfor) Loop Index

The loop index is the index of the loop to which the parfor has
been applied. The range of this index is divided up (in an
unpredictable way) among the workers.

The loop index is also used to determine which arrays used in the
loop must be divided among the workers.

Of course, the parfor loop may occur inside a loop, and may
contain loops. The indices of those loops are treated as regular
variables (broadcast or temporary).

MATLAB requires that the range of a parfor loop index be
consecutive integers.
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Behind the Magic: Sliced Variables

Sliced variables are vectors or arrays whose entries can be
uniquely associated with a particular loop iteration.

Assume the parfor loop index is i. Then the following are examples
of sliced vectors:

parfor i = 1 : n

a(i) = b(i) + c(i+1) + d(i-2) + e(n+1-i);

end
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Behind the Magic: Sliced Variables

Unfortunately, in many calculations, the way we use arrays does
not correspond to what MATLAB wants. In particular, if loop
iteration i works with vector entries i and i+1, then MATLAB
cannot slice the variable the way it wants.

For example, entry x(45) is needed by two distinct loop iterations,
with i=44 and 45:

for i = 1 : n - 1

dudx(i) = ( u(i+1) - u(i) ) / dx;

end
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Behind the Magic: Sliced Variables

Here are two ways to get around the problem:

up1(1:n-1) = u(2:n);

parfor i = 1 : n - 1

dudx(i) = ( up1(i) - u(i) ) / dx;

end

or

parfor i = 1 : n - 1

dudx(i) = u(i+1);

end

parfor i = 1 : n - 1

dudx(i) = ( dudx(i) - u(i) ) / dx;

end
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Behind the Magic: Broadcast Variables

Broadcast variables are defined by what they are not:

1 not the loop index;

2 not sliced variables;

3 not assigned a value inside the loop.

Broadcast variables are only used on the right hand side of
assignment statements, and don’t change during the loop.

So their initial values can be broadcast to all workers before the
iterations begin, and there’s nothing more to worry about.
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Behind the Magic: Broadcast Variables

In this loop, x, dx, dy, j and c(j) are broadcast variables.

(Meanwhile, i is the (parfor) loop index, u(i) and d(i) are sliced
variables, and y is a temporary.)

dx = 0.25;

for j = 1 : n

x = j * dx;

dy = j * 0.01;

parfor i = 1 : n

y = i * dy;

u(i) = c(j) * d(i) * f ( x, y ) / dx / dy;

end

end
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Behind the Magic: Reduction Variables

Reduction variables occur when certain functions such as max,
min, sum or prod are used iteratively.

These operations are “semi-parallel”, that is, each worker can
compute part of the result, as long as the partial results are put
together in the end in the correct way.

During parallel execution of the loop, a reduction variable does not
have a definable value - it is really just a set of partial results.

MATLAB recognizes and automatically parallelizes many
reductions.
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Behind the Magic: Reduction Variables

In this loop, total, big and fact are reduction variables.

MATLAB is able to handle this calculation in parallel.
The user simply replaces for by parfor:

total = 0.0;

big = - Inf;

fact = 1;

for i = 1 : n

total = total + x(i);

big = max ( big, x(i) );

fact = fact * x(i);

end
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Behind the Magic: Reduction Variables

Because they are shared over many workers, reduction variables
do not have a definable value inside a parallel loop.

If your loop tries to test, use or print a reduction variable while it is
being formed, MATLAB can’t parallelize the loop.

total = 0.0;

for i = 1 : n

total = total + x(i);

if ( 1.0 < total )

large_enough = 1;

end

cum(i) = total;

fprintf ( 1, ’ Current total is %f\n’, total );

end

You cannot replace for by parfor here!
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Behind the Magic: Temporary Variables

Temporary variables are often shorthand for a long expression.
Such a variable is redefined and then used within each iteration of
a loop.

If MATLAB can’t classify a variable otherwise, it assumes it is
temporary. It then checks to ensure that, on every iteration, the
variable is assigned and then used. If not, it generates an error.

So if you have mishandled a sliced or reduction variable, MATLAB
will try to classify it as a temporary. You may get a confusing
message about an uninitialized temporary variable.
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Behind the Magic: Temporary Variables

In this loop, angle, nm1, c, s, and ui are temporary variables.

MATLAB can parallelize this as soon as for is replaced by parfor:

u = rand ( 1, n );

v = rand ( 1, n );

for i = 1 : n

nm1 = n - 1;

angle = ( i - 1 ) * pi / nm1;

c = cos ( angle );

s = sin ( angle );

ui = u(i);

u(i) = c * u(i) + s * v(i);

v(i) = - s * ui + c * v(i);

end
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Bumps in the Road: And How to Avoid Some of Them

Are there hazards awaiting the new user?
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Bumps in the Road:

A big concern when using parallel programming is that the
parallelized code can actually run more slowly than the original.
(This is a semantic question, about programming performance.)

But right now we ask a more basic question - What programming
causes MATLAB to refuse to parallelize your parfor loop.
(This is a syntactic question, about programming language.)

If you enable mlint in MATLAB’s editor, you will get warnings right
there, with the offending loop highlighted, and an error message.

Otherwise, you will get error messages at run time, which are
sometimes less specific.
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Bumps in the Road: WrapAround Variables

A common programming practice that will make parallelization
impossible occurs when the data used in one iteration of the loop
is not available until a previous iteration has been computed.

Parallel MATLAB can’t handle such a calculation properly, since
the iteration where the variable is set may happen on a different
processor than the iteration where the variable is needed.

Moreover, the iteration that needs the value might be computed
before the iteration that sets the value.

Sometimes the loop can be rewritten; other times, the problem
cannot be fixed because the computation is inherently recursive.
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Bumps in the Road: WrapAround Example

Suppose you compute the X locations of a set of nodes this way:

dx = 0.25;

x = zeros (1,n);

for i = 2 : n

x(i) = x(i-1) + dx;

end

Parallel MATLAB’s cannot be applied to this loop as it is written.
This loop assumes the iterations will be done in exactly the usual
order.

Luckily, this calculation can be rewritten to parallelize.
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Bumps in the Road: WrapAround Variables

Another example of temporary variable use involves counting how
many times some condition has occurred, perhaps using this value
as an index to store the corresponding value.

In this loop, we are looking for nonzero entries of the matrix A,
and storing them in a compressed vector. The variable k, which
counts how many such entries we have seen so far, is a
”wraparound” temporary, whose value, set in one loop iteration, is
needed in a later loop iteration.

It is not possible to ask MATLAB to carry out this operation in
parallel simply by replacing the for loop by a parfor. A better
choice might be to explore the find command!
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Bumps in the Road: WrapAround Variables

k = 0;

for i = 1 : m

for j = 1 : n

if ( a(i,j) ~= 0.0 )

k = k + 1

a2(k) = a(i,j);

i2(k) = i;

j2(k) = j;

end

end

end
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Bumps in the Road: Recursive Variables

Suppose we approximate the solution of a differential equation:

dt = 0.25;

u = zeros (1,n);

for i = 2 : n

u(i) = u(i-1) + dt * f( t, u(i-1) );

end

There is no way to parallelize this loop. The value of u(i) cannot
be computed until the value of u(i-1) is known, and that means
the loop iterations cannot be executed in arbitrary order.

Similar issues arise when a Newton iteration is being carried out.

Burkardt/Cliff MATLAB Parallel Computing



Bumps in the Road: Arrays that Won’t Slice

PARFOR is easy because MATLAB does a lot of work for you.

MATLAB is usually intelligent enough to determine how to classify
and handle the variables in a loop.

But if it gets confused, there is no easy mechanism to help
MATLAB or to argue with it!
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Bumps in the Road: Arrays that Won’t Slice

n = 1 0 0 ;
Q = z e r o s ( n , n ) ;

p a r f o r i = 1 : n
f o r j = i : n

i f ( j == i )
Q( i , j ) = 1 ;

e l s e
Q( i , j ) = s q r t ( i / j ) ;

end

end
end

Q
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Bumps in the Road: Arrays that Won’t Slice

MATLAB 2008b refuses to allow this program to run in parallel,
complaining that it cannot determine the status of the variable Q.

Q should “obviously” be a sliced variable. It’s an indexed variable
whose entries can be divided up among different processors in a
simple way.

However, MATLAB’s decisions are “‘final”, so if we really want the
code to run in parallel, we have to reword it so that MATLAB is
happy with it. One way is to use a vector in the loop, and copy its
entries into Q.
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Bumps in the Road: Arrays that Won’t Slice

n = 1 0 0 ;
Q = z e r o s ( n , n ) ;

p a r f o r i = 1 : n

z = z e r o s ( 1 , n ) ;

f o r j = i : n

i f ( j == i )
z ( j ) = 1 ;

e l s e
z ( j ) = s q r t ( i / j ) ;

end

end

Q( i , : ) = z ;

end

Q
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Bumps in the Road: Arrays that Won’t Slice

Here is another example of a calculation that is completely parallel,
in X, in Y, (and even in time T). Again, MATLAB refuses to
parallelize the loop over X and Y.

Q should “obviously” be a sliced variable. It’s an indexed variable
whose entries can be divided up among different processors in a
simple way.

However, MATLAB’s decisions are “‘final”, so if we really want the
code to run in parallel, we have to reword it so that MATLAB is
happy with it. One way is to use a vector in the loop, and copy its
entries into Q.
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Bumps in the Road: Arrays that Won’t Slice

for t=1:Nt

tm=dt*(t-1);

a=eps*sin(w*tm);

b=1-2*eps*sin(w*tm);

for i=1:Nx+1

for j=1:Ny+1

f=a*x(i,j)*x(i,j)+b*x(i,j);

dfx=2*a*x(i,j)+b;

u(i,j,t)=-pi*A*sin(pi*f)*cos(pi*y(i,j));

v(i,j,t)= pi*A*cos(pi*f)*sin(pi*y(i,j))*dfx;

end

end

end
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Bumps in the Road: Arrays that Won’t Slice

If we turn the doubly-dimensioned array into a vector, MATLAB
allows us to parallelize over the vector index K.

We have to use the relationships

k =i + (j − 1) ∗ (Nx + 1);

i =mod(k,Nx + 1);

j =floor(k/(Nx + 1)) + 1;

or we could use the builtin MATLAB commands ind2sub and
sub2ind.
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Bumps in the Road: Arrays that Won’t Slice

for t=1:Nt

tm=dt*(t-1);

a=eps*sin(w*tm);

b=1-2*eps*sin(w*tm);

parfor k = 1 : kmax

% i = mod ( k - 1, Nx + 1 ) + 1;

% j = floor ( k / ( Nx + 1 ) ) + 1;

f=a*x(k)*x(k)+b*x(k);

dfx=2*a*x(k)+b;

u(k,t)=-pi*A*sin(pi*f)*cos(pi*y(k));

v(k,t)= pi*A*cos(pi*f)*sin(pi*y(k))*dfx;

end

end
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The MD Example

The MD program runs a simple molecular dynamics simulation.

The problem size N counts the number of molecules being
simulated.

The program takes a long time to run, and it would be very useful
to speed it up.

There are many for loops in the program, but it is a mistake to try
to parallelize everything!

MATLAB has a profile command that can report where the CPU
time was spent - which is where we should try to parallelize.
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The MD Example: Run MATLAB’s Profiler

profile on

md

profile viewer

Step Potential Kinetic (P+K-E0)/E0

Energy Energy Energy Error

1 498108.113974 0.000000 0.000000e+00

2 498108.113974 0.000009 1.794265e-11

... ... ... ...

9 498108.111972 0.002011 1.794078e-11

10 498108.111400 0.002583 1.793996e-11

CPU time = 415.740000 seconds.

Wall time = 378.828021 seconds.
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The MD Example
This is a static copy of a profile report

Home

Profile Summary
Generated 27-Apr-2009 15:37:30 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)

md 1 415.847 s 0.096 s

compute 11 415.459 s 410.703 s

repmat 11000 4.755 s 4.755 s

timestamp 2 0.267 s 0.108 s

datestr 2 0.130 s 0.040 s

timefun/private/formatdate 2 0.084 s 0.084 s

update 10 0.019 s 0.019 s

datevec 2 0.017 s 0.017 s

now 2 0.013 s 0.001 s

datenum 4 0.012 s 0.012 s

datestr>getdateform 2 0.005 s 0.005 s

initialize 1 0.005 s 0.005 s

etime 2 0.002 s 0.002 s

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from

the process of profiling.

Profile Summary file://localhost/Users/burkardt/public_html/m_src/md/md_profile.txt/file0.html

1 of 1 4/27/09 3:39 PM
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The MD Example: The COMPUTE Function

f u n c t i o n [ f , pot , k i n ] = compute ( np , nd , pos , v e l , mass )

f = z e r o s ( nd , np ) ;
pot = 0 . 0 ;
p i 2 = p i / 2 . 0 ;

f o r i = 1 : np
Ri = pos − repmat ( pos ( : , i ) , 1 , np ) ; % ar r a y o f v e c t o r s to ’ i ’
D = s q r t ( sum ( Ri . ˆ 2 ) ) ; % ar r a y o f d i s t a n c e s
Ri = Ri ( : , ( D > 0 . 0 ) ) ;
D = D( D > 0 . 0 ) ; % save on l y pos v a l u e s
D2 = D .∗ ( D <= p i 2 ) + p i 2 ∗ ( D > p i 2 ) ; % t run c a t e the p o t e n t i a l .
pot = pot + 0 . 5 ∗ sum ( s i n ( D2 ) . ˆ 2 ) ; % accumulate pot . ene rgy
f ( : , i ) = Ri ∗ ( s i n ( 2∗D2 ) . / D ) ; % f o r c e on p a r t i c l e ’ i ’

end

k i n = 0 . 5 ∗ mass ∗ sum ( d i a g ( v e l ’ ∗ v e l ) ) ; % k i n e t i c ene rgy

r e t u r n
end
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The MD Example: Speedup

By inserting a PARFOR in COMPUTE, here is our speedup:
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The SPMD Command

SPMD: for Single Program, Multiple Data:

The parfor command is easy to use, but it only lets us do
parallelism in terms of loops. The only choice we make is whether
a loop is to run in parallel. We can’t determine how the loop
iterations are divided up, we can’t be sure which lab runs which
iteration, we can’t examine the work of any individual lab.

The SPMD command allows a programmer more control over how
parallelism is done. Using SPMD is like working with a very
simplified version of MPI.
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The SPMD Command

Let’s assume we’ve issued a matlabpool command, and have a
client (that is, the “main” copy of MATLAB) and a number of
workers or labs.

The first thing to notice about a program using SPMD is that
certain blocks of code are delimited:

fprintf ( 1, ’ Set up the integration limits:\n’ );

spmd

a = ( labindex - 1 ) / numlabs;

b = labindex / numlabs;

end

Burkardt/Cliff MATLAB Parallel Computing



The SPMD Command

The spmd delimiter marks a section of code which is to be carried
out by each lab, and not by the client.

The fact that the MATLAB program can be marked up into
instructions for the client and instructions for the workers explains
the single program part of SPMD.

But how do multiple workers do different things if they see the
same instructions? Luckily, each worker is assigned a unique
identifier, the value of the variable labindex.

The worker also gets the value of numlabs, the total number of
workers. This information is enough to ensure that each worker
can be assigned different tasks. This explains the multiple data
part of SPMD!
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The SPMD Command

Now let’s go back to our program fragment. But first we must
explain that we are trying to approximate an integral over the
interval [0,1]. Using SPMD, we are going to have each lab pick a
portion of that interval to work on, and we’ll sum the result at the
end. Now let’s look more closely at the statements:

fprintf ( 1, ’ Set up the integration limits:\n’ );

spmd

a = ( labindex - 1 ) / numlabs;

b = labindex / numlabs;

end
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The SPMD Command

Each worker will compute different values of a and b. These values
are stored locally on that worker’s memory.

The client can access the values of these variables, but it must
specify the particular lab from whom it wants to check the value,
using “curly brackets”: a{i}.

The variables stored on the workers are called composite variables;
they are somewhat similar to MATLAB’s cell arrays.

It’s important to respect the rules for composite variable names. In
particular, if a is used on the workers, then the name a is also
“reserved” on the client program (although there it’s an indexed
variable). The client should not try to use the name a for other
variables!
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The SPMD Command

So we could print all the values of a and b in two ways:

spmd

a = ( labindex - 1 ) / numlabs;

b = labindex / numlabs;

fprintf ( 1, ’ A = %f, B = %f\n’, a, b );

end

or

spmd

a = ( labindex - 1 ) / numlabs;

b = labindex / numlabs;

end

for i = 1 : numlabs

fprintf ( 1, ’ A = %f, B = %f\n’, a{i}, b{i} );

end
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The SPMD Command

Assuming we’ve defined our limits of integration, we now want
to carry out the trapezoid rule for integration:

spmd

x = linspace ( a, b, n );

fx = f ( x );

quad_part = ( fx(1) + 2 * sum(fx(2:n-1)) + fx(n) )

/2 /(n-1);

fprintf ( 1, ’ Partial approx %f\n’, quad_part );

end

with result:

2 Partial approx 0.874676

4 Partial approx 0.567588

1 Partial approx 0.979915

3 Partial approx 0.719414
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The SPMD Command

We really want one answer, the sum of all these approximations.

One way to do this is to gather the answers back on the client:

quad = sum ( quad_part{1:4} );

fprintf ( 1, ’ Approximation %f\n’, quad );

with result:

Approximation 3.14159265
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QUAD SPMD Source Code

f u n c t i o n v a l u e = quad spmd ( n )

f p r i n t f ( 1 , ’ Compute l i m i t s \n ’ ) ;
spmd

a = ( l a b i n d e x − 1 ) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f ( 1 , ’ Lab %d works on [% f ,% f ] .\ n ’ , l a b i n d e x , a , b ) ;

end

f p r i n t f ( 1 , ’ Each l a b e s t i m a t e s p a r t o f t h e i n t e g r a l .\n ’ ) ;
spmd

i f ( n == 1 )
q u a d p a r t = ( b − a ) ∗ f ( ( a + b ) / 2 ) ;

e l s e
x = l i n s p a c e ( a , b , n ) ;
f x = f ( x ) ;
q u a d p a r t = ( b − a ) ∗ ( f x ( 1 ) + 2 ∗ sum ( f x ( 2 : n−1) ) + f x ( n ) ) . . .

/ 2 . 0 / ( n − 1 ) ;
end
f p r i n t f ( 1 , ’ Approx %f\n ’ , q u a d p a r t ) ;

end

f p r i n t f ( 1 , ’ Use GPLUS to sum t h e p a r t s .\n ’ ) ;
spmd

quad = g p l u s ( q u a d p a r t ) ;
i f ( l a b i n d e x == 1 )

f p r i n t f ( 1 , ’ A p pr o x i m at i on = %f\n ’ , quad )
end

end

r e t u r n
end
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The SPMD Command

MATLAB also provides commands to combine values directly on
the labs. The command we need is called gplus(); it computes the
sum across all the labs of the given variable, and returns the value
of that sum to each lab:

spmd

x = linspace ( a, b, n );

fx = f ( x );

quad_part = ( fx(1) + 2 * sum(fx(2:n-1)) + fx(n) )

/2 /(n-1);

quad = gplus(quad_part);

if ( labindex == 1 )

fprintf ( 1, ’ Approximation %f\n’, quad );

end

end
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The SPMD Command: Reduction Operators

gplus() is implemented by the gop() command, which carries
out an operation across all the labs.
gplus(a) is really shorthand for gop ( @plus, a ), where plus is
the name of MATLAB’s function that actually adds numbers.
Other reduction operations include:

gop(@max,a), maximum of a;

gop(@min,a), minimum of a;

gop(@and.a), AND of a;

gop(@or.a), OR of a;

gop(@xor.a), XOR of a;

gop(@bitand.a), bitwise AND of a;

gop(@bitor.a), bitwise OR of a;

gop(@bitxor.a), bitwise XOR of a.
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The SPMD Command: MPI-Style Messages

SPMD supports some commands that allow the programmer to do
message passing, in the MPI style:

labSend, send data to another lab;

labReceive, receive data from another lab;

labSendReceive, interchange data with another lab.

For details, you will need to see the MATLAB HELP facility!
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fmincon and UseParallel

In most cases, making use of parallelism requires some re-coding,
perhaps even serious restructuring of your approach. Beginning
with Version 4.0 (R2008a) of the Optimization Toolbox we can
easily take advantage of parallelism in constructing finite-difference
estimates of the gradient of the cost functional and the Jacobian
of any nonlinear constraint functions.

Using the optimset command we simply set the flag
UseParallel to (the string) always.

In the run opt example we seek an optimal steering history for a
boat moving in a spatially varying current. The control history is
approximated as piecewise constant on a given time-grid. The
optimization parameter is the vector of the values of the steering
angle on the intervals. The cost functional and constraints depend
on the final position of the boat in the plane.
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fmincon and UseParallel

The main work in evaluating these functions is the (numerical)
integration of the dynamics with a prescribed steering history.

The dynamics are given by

ẋ(t) = −κy(t) + cos(θ(t))

ẏ(t) = sin(θ(t))

with initial condition x(0) = y(0) = 0.
The problem is to maximize x(tf ) with the constraint y(tf ) > yf
(tf , yf , and κ are given).
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The RUN OPT Example

f u n c t i o n z s t a r = r u n o p t ( f name , n )
% Funct i on to run a f i n i t e d imen s i o n a l o p t im i z a t i o n problem
% based on a d i s c r e t i z a t i o n o f a Mayer problem i n op t ima l c o n t r o l .

% f name p o i n t s to a use r−s u p p l i e d f u n c t i o n wi th a s i n g l e i n pu t argument
% n i s a d i s c r e t i z a t i o n paramete r . The f i n i t e−d imen s i o n a l problem a r i s e s
% by t r e a t i n g the ( s c a l a r ) c o n t r o l as p i e c ew i s e con s t an t
% The f u n c t i o n r e f e r e n c e d by f name must d e f i n e the e l ement s o f
% the u n d e r l y i n g op t ima l c o n t r o l problem . See ’ zermelo ’ as an example .

%% Problem data

PAR = f e v a l ( s t r 2 f u n c ( f name ) , n ) ;

% some l i n e s omi t ted

%% Algor i thm s e t up
OPT = o p t i m s e t ( o p t i m s e t ( ’ fmincon ’ ) , . . .

’ L a r g e S c a l e ’ , ’ o f f ’ , . . .
’ A l g o r i t h m ’ , ’ a c t i v e−s e t ’ , . . .
’ D i s p l a y ’ , ’ i t e r ’ , . . .
’ U s e P a r a l l e l ’ , ’ Always ’ ) ;

h c o s t = @( z ) g e n e r a l c o s t ( z , PAR ) ;
h c n s t = @( z ) g e n e r a l c o n s t r a i n t ( z , PAR ) ;

%% Run the a l g o r i t hm
[ z s t a r , f s t a r , e x i t ] = . . .

fmincon ( h c o s t , z0 , [ ] , [ ] , [ ] , [ ] , LB , UB, h c n s t , OPT) ;
i f e x i t >=0 && i s f i e l d (PAR, ’ p l o t ’ )

f e v a l (PAR . p l o t , z s t a r , PAR)
end

Burkardt/Cliff MATLAB Parallel Computing



The RUN OPT Example: source material

A folder with the software and example output is in the
parallel matlab folder on your desktop. The folder looks like:
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Cell Arrays

cell arrays are rectangular arrays, whose content can be any
Matlab variable, including a cell array

>> A = eye(2); B = ones(2); C = rand(3,4); D = ’a string’;

>> G = { A B ; C D};

>> G

G = [2x2 double] [2x2 double]

[3x4 double] ’a string’

>> isa(G, ’cell’)

ans = 1
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Cell Arrays: Two ways of indexing

A cell array may be indexed in two ways:

1 G(1) - the result of cell indexing is a cell array

2 G{1} - the result of content indexing is the contents of the
cell(s)

>> F1 = G(1, 1:2)

F1 = [2x2 double] [2x2 double]

>> isa(F1, ’cell’)

ans = 1
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Cell Arrays: Two ways of indexing

G{1} - the result of content indexing is the cell’s contents

>> F2 = G{1, 2}

F2= 1 1

1 1

>> whos

Name Size Bytes Class Attributes

A 2x2 32 double

B 2x2 32 double

C 3x4 96 double

D 1x8 16 char

F1 1x2 184 cell

F2 2x2 32 double

G 2x2 416 cell
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SPMD mode: composite variables

SPMD mode creates a composite object on the client
composite objects are indexed in the same ways as cell arrays

>> spmd

V = eye(2) + (labindex -1);

end

>> V{1}

ans = 1 0

0 1

>> V{2}

ans = 2 1

1 2

>> whos

Name Size Bytes Class Attributes

V 1x2 373 Composite
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Codistributed Arrays

Codistributed arrays allow the user to build (m × n) matrices so
that, for example, each ’lab’ stores/operates on a contiguous block
of columns. More general (rectangular) constructs are possible but
are not covered here.

We shall demonstrate these ideas in pmode

>> pmode start 4

Starting pmode using the parallel configuration ’local’.

Waiting for parallel job to start...

Connected to a pmode session with 4 labs.

Many of the builtin Matlab matrix constructors can be assigned
the class ’codistributed’. For example:

M = speye(1000, codistributor());
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Codistributed arrays (cont’d)

’codistributor’ is the constructor and specifies which dimension is
used to distribute the array. With no argument, we take the
default, which is ’1d’ or one-dimensional. By default, two
dimensional arrays are distributed by columns.

codistributor(M) returns information about the distributed
structure of the array M.

If the number of columns is an integer multiple of the number of
’labs’, then the (default) distribution of columns among the labs is
obvious. Else we invoke codistributor (or other Matlab
supplied procedure).

localPart(M) returns the part of the codistributed array on this
lab.
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Codistributed arrays (cont’d)

%%%% run these in Matlab

pmode start 4

M = speye(1000, codistributor() )

M = ones(1000, codistributor() )

codistributor(M)

M = ones(1000, 1, codistributor() )

codistributor(M)

%%%%
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Codistributed arrays (cont’d)

One can construct local arrays on the labs and assemble them into
a codistributed array:

%%%% run these in Matlab

M = rand(100, 25) + labindex;

Mc = codistributed(M);

max(max(abs(M - localPart(Mc))))

Mc(12,13)

%%%%

Of course, in applications the construction on each lab will involve
user-defined code. We will now demonstrate this idea for an
unsteady heat equation in two space dimensions.
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2D Heat Equation

An example: 2D unsteady heat equation

σCp
∂T

∂t
=

∂

∂x

(
kx
∂T

∂x

)
+

∂

∂y

(
ky
∂T

∂y

)
+ F (x , y , t)

(x , y)∈ {(x , y) | 0 ≤ x ≤ L, 0 ≤ y ≤ w}⊂ IR2, t > 0 ,

where:

F (x , y , t) is a specified source term,

σ > 0 is the areal density of the material,

Cp > 0 is the thermal capacitance of the material, and

kx > 0 (ky > 0) is the conductivity in the x direction (the
y -direction).
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2D Heat Equation (cont’d)

Boundary conditions for our problem are:

∂T (x , 0)

∂y
=
∂T (x ,w)

∂y
= 0 ,

kx
∂T (L, y)

∂x
= f (y) ,

kx
∂T (0, y)

∂x
= α(y) (T (0, y)− β(y)) .
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2D Heat Equation (cont’d)

We use backward Euler in time and finite-elements in space to
arrive at∫

Ω

(
T n+1 − T n − ∆t

σ Cp
F (x , y , tn+1)

)
Ψ dω

+
∆t

σ Cp

[∫
Ω

(
k∇T n+1 · ∇Ψ

)
dω +

∫
∂Ω

(
k∇T n+1 · n̂

)
Ψ dσ

]
= 0 ,

where T n(x , y)
4
= T (n ∆t, x , y), and Ψ ∈ H1(Ω) is a test function.
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2D Heat Equation (cont’d)

Imposing the specified boundary conditions, the boundary term
evaluates to∫

∂Ω

(
k∇T n+1 · n̂

)
Ψ dσ =

∫ w

0
f (y)Ψ(L, y) dy

−
∫ 0

w
α(y)

[
T n+1(0, y)− β(y)

]
Ψ(0, y) dy .

Details are described in the 2D heat ex.pdf file in the distribution
material.

Burkardt/Cliff MATLAB Parallel Computing



2D Heat Equation (cont’d)

We use quadratic functions on triangular elements

Impose a regular nx × ny = ((2`+ 1)× (2m + 1)) grid.

Using the odd-labeled points we generate ` m rectangles; diagonals
divide these into 2 ` m triangles.

Here’s the case nx = ny = 5 (8 elements, 25 grid points):
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2D Heat Equation (cont’d)

Seek an approximate solution: T n
N(x , y) =

∑N
=1 zn

 Φ(x , y) .

∑


[∫
Ω

Φ(x , y) Φı(x , y) dω

+
∆t

σ Cp

(∫
Ω

(k∇Φ · ∇Φı) dω +

∫ 0

w
α(y) Φ(0, y) Φı(0, y) dy

)]
zn+1


−
∑


[∫
Ω

Φ(x , y) Φı(x , y) dω

]
zn
 −
[

∆t

σ Cp

∫
Ω

F (x , y , tn+1)Φı dω

]

− ∆t

σ Cp

[∫ w

0
f (y)Φı(L, y) dy +

∫ 0

w
α(y)β(y)Φı(0, y) dy

]
= 0

In matrix terminology

(M1 + M2) zn+1 − M1 zn + F(tn+1) + b = 0 .
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Modifying a Code

We began with a serial code for building M1,M2,F and b.

Here, we briefly note the changes to build codistributed

versions of these.
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ASSEMB CO Source Code (begin)

f u n c t i o n [M1, M2, F , b , x , e conn ] = assemb co ( param )
% The FEM equa t i on f o r the temp . d i s t a t t ime t {n+1} s a t i s f i e s
% (M 1 + M 2) zˆ{n+1} − M 1 zˆn + F + b = 0

%% I n i t i a l i z a t i o n & geometry
%−−−−l i n e s omi t ted
%% Set up c o d i s t r i b u t e d s t r u c t u r e

% column p o i n t e r s and such f o r c o d i s t r i b u t e d a r r a y s
Vc = c o d c o l o n ( 1 , n e q u a t i o n s ) ;
lP = l o c a l P a r t ( Vc ) ; l P 1 = lP ( 1 ) ; l P e n d = lP ( end ) ;
dPM = d i s t r i b u t i o n P a r t i t i o n ( c o d i s t r i b u t o r ( Vc ) ) ;
c o l s h f t = [ 0 cumsum(dPM( 1 : end−1 ) ) ] ;

% l o c a l s p a r s e a r r a y s
M1 lab = s p a r s e ( n e q u a t i o n s , dPM( l a b i n d e x ) ) ; M2 lab = M1 lab ;
b l a b = s p a r s e (dPM( l a b i n d e x ) , 1 ) ; F l a b = b l a b ;

%% Bu i l d the f i n i t e e l ement ma t r i c e s − Begin l oop ove r e l ement s
f o r n e l =1: n e l e m e n t s

n o d e s l o c a l = e conn ( n e l , : ) ;% which nodes a r e i n t h i s e l ement
% sub s e t o f nodes / columns on t h i s l a b
l a b n o d e s l o c a l = m y e x t r a c t ( n o d e s l o c a l , lP 1 , l P e n d ) ;
i f ˜ i sempty ( l a b n o d e s l o c a l ) % con t i nu e the c a l c u l a t i o n f o r t h i s e lmnt

%−−− c a l c u l a t e l o c a l a r r a y s − l i n e s omi t ted
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ASSEMB CO Source Code (end)

%% Assemble c o n t r i b u t i o n s i n t o the g l o b a l system ma t r i c e s ( on t h i s l a b )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%

f o r n t = 1 : n e l d o f % l o c a l DOF − t e s t f cn
t g l b = n o d e s l o c a l ( n t ) ; % g l o b a l DOF − t e s t f cn
f o r n u = 1 : s i z e ( l a b n o d e s l o c a l , 1)

n l o c j = l a b n o d e s l o c a l ( n u , 1 ) ; % l o c a l DOF i n c u r r e n t n e l
n g l b j = l a b n o d e s l o c a l ( n u , 2) . . .

−c o l s h f t ( l a b i n d e x ) ; % g l o b a l DOF
M1 lab ( t g l b , n g l b j ) = M1 lab ( t g l b , n g l b j ) . . .

+ M1 loc ( n t , n l o c j ) ;
M2 lab ( t g l b , n g l b j ) = M2 lab ( t g l b , n g l b j ) . . .

+ param . dt∗M2 loc ( n t , n l o c j ) ;
end

%
i f t g l b >= l P 1 && t g l b <= l P e n d % i s node on t h i s l a b ?

t l o c = t g l b − c o l s h f t ( l a b i n d e x ) ;
b l a b ( t l o c , 1 ) = b l a b ( t l o c , 1 ) − param . dt∗ b l o c ( n t , 1 ) ;
F l a b ( t l o c , 1 ) = F l a b ( t l o c , 1 ) − param . dt∗F l o c ( n t , 1 ) ;

end
end % f o r n t

end % i f not empty
end % n e l

%
% Assemble the l a b c o n t r i b u t i o n s i n a c o d i s t r i b u t e d format

M1 = c o d i s t r i b u t e d ( M1 lab , c o d i s t r i b u t o r ( ’ 1d ’ , 2 ) ) ;
M2 = c o d i s t r i b u t e d ( M2 lab , c o d i s t r i b u t o r ( ’ 1d ’ , 2 ) ) ;
b = c o d i s t r i b u t e d ( b l a b , c o d i s t r i b u t o r ( ’ 1d ’ , 1 ) ) ;
F = c o d i s t r i b u t e d ( F l a b , c o d i s t r i b u t o r ( ’ 1d ’ , 1 ) ) ;
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Example: 5× 5 grid on 4 labs

There are 8 triangular elements, and 25 nodes.
The nodes are color-coded for the four labs.

Note that lab 1 (green) requires evaluation on 4 of 8 elements,
while lab 2 (blue) requires 7 of 8.

Clearly, our naive nodal assignment to labs leaves the
computational load badly balanced.
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Demo: 5× 5 grid on 4 labs

%%%% run these in Matlab

pmode start 4

Vc = codcolon(1, 25)

dPM = distributionPartition(codistributor(Vc))

col_shft = [ 0 cumsum(dPM(1:end-1))]

whos

%%%%
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RUN ASSEMB CO Source Code

% Sc r i p t to as semb le ma t r i c e s f o r a 2D d i f f u s i o n problem

%% se t path
addpath ’ . / s u b s s o u r c e / oned ’ ; addpath ’ . / s u b s s o u r c e /twod ’

%% se t paramete r v a l u e s and as semb le a r r a y s
param = p d a t a ( ) ;
[M1, M2, F , b , x , e conn ] = assemb co ( param ) ;

%% clean−up path
rmpath ’ . / s u b s s o u r c e / oned ’ ; rmpath ’ . / s u b s s o u r c e /twod ’

%% Steady s t a t e s o l u t i o n s
z tmp = − f u l l (M2)\ f u l l ( F+b ) ; % Temperature d i s t r i b u t i o n
z s s = g a t h e r ( z tmp , 1 ) ;

%% Plo t and save a s u r f a c e p l o t
i f l a b i n d e x == 1

xx = x ( 1 : param . nodesx , 1 ) ;
yy = x ( 1 : param . nodesx : param . nodesx∗param . nodesy , 2 ) ;
f i g u r e
s u r f ( xx , yy , reshape ( z s s , param . nodesx , param . nodesy ) ’ ) ;
x l a b e l ( ’\b f x ’ ) ; y l a b e l ( ’\b f y ’ ) ; z l a b e l ( ’\b f T ’ )
t a x i s = a x i s ;
p r i n t −dpng f i g s s . png
c l o s e a l l

end
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The RUN ASSEMB CO Example: source material

A folder with the software, example output and descriptive
material is in the parallel matlab folder on your desktop. The
folder should look like:
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VT Parallel MATLAB: The Past

Until recently, Advanced Research Computing at Virginia Tech had
very limited support for MATLAB.

MATLAB was only available on the Sun cluster known as Dante.
(The MathWorks dropped support for the SGI Altix system some
years ago).

Although the Parallel Computing Toolbox was available, there were
some incompatibilities between the system and the software, which
meant that parallel performance was poor.

Because of strong user interest, a better platform was needed.
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VT Resources: The New Ithaca System

In June 2009, ARC received a new IBM iDataPlex cluster known as
Ithaca.

Ithaca will be opened to the general computing community in
October 2009. In the meantime, a limited number of “friendly
users” will be able to work on the machine, trying it out, porting
codes, and reporting problems.

Ithaca is an expandable system; as it takes over the load from
System X and other research clusters, more racks will be added.
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VT Resources: The New Ithaca System

The current system has

84 nodes, each with 24 GB of memory (some have 48 GB)

168 processors, each node has two Intel Nehalem processors

672 cores, each processor has 4 cores
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VT Resources: The File System

Ithaca shares the sysx file system already used by System X and
the other ARC computing clusters. Any files you stored or created
on System X can be seen and used by Ithaca.

To copy files between Ithaca and your local system, use the sftp
program:

sftp my_name@ithaca.arc.vt.edu

cd ithaca/my_project

put my_m_file.m

get my_output.txt

quit
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VT Resources: Logging in to Ithaca

For interactive access to Ithaca, log in using the ssh command.

ssh my_name@ithaca.arc.vt.edu

Especially if you are going to run MATLAB interactively, you will
want to use the -X switch, to enable X-window graphics!

ssh -X my_name@ithaca.arc.vt.edu

If you don’t do this, and start MATLAB, you’ll get the warning:

Warning: No display specified.

You will not be able to display graphics on the screen.
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VT Resources: Running MATLAB Interactively

MATLAB can be run interactively on Ithaca.

To access some of your M-files during the session, start the session
from the directory that contains those files.

Start with the interactive command:

matlab

You will get the familiar interactive command window, which will
stay until you enter quit or exit.

If you issue plot commands, the usual plot window will show up.
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VT Resources: Running MATLAB Interactively

If you’ve enabled X Window graphics, MATLAB will open a
separate command window. In that case, it’s really convenient to
be able to move to the Ithaca command window and issue
commands there as well.

But Ithaca won’t let you do this unless you use the &
(“ampersand”) switch at the end of the command that starts
MATLAB:

matlab &

This means start up MATLAB, but also give me UNIX
commandline access immediately. The MATLAB command
window will be available by selecting it.
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VT Resources: Running parallel MATLAB Locally

Even though Ithaca is a cluster, when you log in, you see only one
node, which has 8 cores.

You can easily run parallel MATLAB locally, with up to 8 workers.

matlabpool open local 8

samson

matlabpool close

The ”local” keyword refers to the local configuration. A
configuration tells MATLAB how to get the workers you ask for.
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VT Resources: Configurations

When computing in parallel, it’s the cores that do the work.

When you log into Ithaca and start MATLAB, you have local
access to one node, which has 8 cores, and that means you can get
at most 8 MATLAB workers.

If more workers are desired, you have to tell MATLAB to find some
more nodes and coordinate them.

MATLAB only knows how to do this if, in the matlabpool
command, you replace the local configuration by the ithaca
configuration which explains where all the nodes are and how to
get them.
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VT Resources: Setting Up the Ithaca Configuration

Start MATLAB;

Select the Parallel menu, then Manage Configurations;

Select the File menu, then Import;

Select the file /apps/share/ithacaq.mat and click Import;

Your configuration list should now include local and ithaca:

Double click on ithaca, which should open a dialogue box;

In DataLocation insert your PID in
/home/YOUR USERNAME;

In SubmitArguments replace -lwalltime=HH:MM:SS, by
-lwalltime=00:10:00;

Click OK to save the configuration;

Click Start Validation;

Once validation has completed, exit MATLAB.
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VT Resources: Validate the Ithaca Configuration

The time limit you specify for this configuration will apply to all
jobs you submit. You can go back into the Parallel menu and
change this value if you need to.

If the validation process fails, then there is something wrong with
the configuration file, the other parameters you typed, file
permissions, or the setup of MATLAB. Check your steps one more
time, and then report the problem to ARC.

From now on, you have two configurations defined, local and
ithaca. You choose the appropriate configuration on the
matlabpool command.
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VT Resources: MATLAB On Multiple Ithaca Nodes

If you want to run MATLAB on more than 8 cores, you need to use
more than 1 node. The ithaca configuration takes care of getting
the necessary nodes and starting up MATLAB workers on them.
You specify the configuration in your matlabpool command:

matlabpool open ithaca 16

samson

matlabpool close
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VT Resources: Running MATLAB Indirectly

If your MATLAB program takes a long time to run, or is
complicated, it may make sense to run MATLAB “indirectly”.

Technically, this is still an interactive session, but your command
input will come from a file (perhaps “input.m”).

To keep MATLAB from trying to set up the command window
you may want to include the -nodisplay switch.

The typical command gets a little complicated now:

matlab -nodisplay < input.m > output.txt &

The & at the end of the command line allows you to issue other
commands while waiting for matlab to complete.
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VT Resources: Running MATLAB as a Queue Job

Suppose you want to run many jobs, or jobs that take a long
time to start or run, and you don’t want to remain logged in to
Ithaca, running MATLAB and waiting.

You can submit jobs to the ARC queueing system. The system will
take care of running all the jobs on the available resources, and
preserving the printed output in files. You can submit your jobs to
the queue and log out.

The queueing system on Ithaca uses the same set of PBS
commands to set time limits, number of nodes and so on.

What follows is an example of a job that runs a parallel MATLAB
program under the queueing system.
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VT Resources: Running MATLAB as a Queue Job

#!/bin/bash

#PBS -lwalltime=00:05:00

#PBS -lnodes=2:ppn=8

#PBS -W group_list=matlab

#PBS -A matlab0001

#PBS -q ithaca_q@admin01

#PBS -lpartition=ITHACA

cd $PBS_O_WORKDIR

export PATH=/nfs/software/bin:$PATH

matlab -nodisplay < example_run.m > example_output.txt
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VT Resources: User Accounts

You have been assigned an Ithaca account temporarily. These
accounts are intended to let you carry out the class assignments,
and familiarize yourself with the system. They will expire within a
week.

Ithaca will be open to general users in October.

If you are interested in parallel MATLAB on Ithaca, and want to
get an early start, you can participate in our Friendly User
program, which will give you an account to develop, test and
benchmark your programs.
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Conclusion: User Access

The new IBM cluster will encourage a parallel MATLAB
community.

Any faculty, any graduate student will be able to request an
account using:

IBM System Account Request Application Form

which will be available (once the system is ready) at:

http://www.arc.vt.edu/arc/UserAccounts.php

You’ll need your PID and password to access the form.

Burkardt/Cliff MATLAB Parallel Computing



Conclusion: Job Submission

Users will find it convenient to work with MATLAB interactively
for program development and debugging.

However, jobs that use many nodes or run for a long time are
better handled by the queueing system.

The commands in your job file might move to the appropriate
directory, start up MATLAB with an input command file. The
output will be preserved in the queue log, or can be written to a
separate text file.
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Conclusion: MathWorks Training

This class is intended as an overview to parallel MATLAB and
Ithaca.

The Mathworks has official training classes on parallel MATLAB.

If we can get 20 people to register, we can have the Mathworks
give a half-day presentation on parallel MATLAB.

We hope that this class has given you enough information so that
you can experiment with parallel MATLAB, and come to the
MathWorks training session with some hard questions!
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MATLAB Parallel Computing: Reminder

Please don’t forget!
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MATLAB Parallel Computing: Reminder

ITHACA is an IBM iDataPlex cluster recently installed by Virginia
Tech’s Advanced Research Computing facility.

It is intended to gradually take over the high performance
computing load from System X.

ITHACA supports OpenMP, MPI and Parallel MATLAB
programming.

Right Now: Friendly users accepted for Ithaca
(talk to John Burkardt if you are interested,);

Mid October: Ithaca opened to general users
(accounts given out through online application.).
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MATLAB Parallel Computing: Reminder

MATLAB Training is available this fall.

These classes will be presented by the MathWorks. Some of these
classes are tentative. Check the FDI website for details.

2 October: Simulink (daylong);

3 October: SimMechanics (daylong);

8 October: MATLAB Programming Techniques.

8 October: Parallel Computing with MATLAB.

29 October: Parallel Computing with MATLAB (daylong).

19 November: Real-time Data Acquisition and Control.

19 November: Statistical Methods in MATLAB.
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