
MATLAB Parallel Computing

John Burkardt
Information Technology Department

Virginia Tech
..........

FDI Summer Track V:
Using Virginia Tech High Performance Computing

http://people.sc.fsu.edu/∼jburkardt/presentations/fdi 2009 matlab.pdf

26-28 May 2009

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing: Things Change

“Why There Isn’t Parallel MATLAB”
”There actually have been a few experimental versions of
MATLAB for parallel computers... We have learned enough from
these experiences to make us skeptical about the viability of a fully
functional MATLAB running on today’s parallel machines.”

Cleve Moler, 1995.

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing: Things Change

(Let There Be) “Parallel MATLAB”
”We now have parallel MATLAB.”

Cleve Moler, 2007.

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resource

Conclusion

Burkardt MATLAB Parallel Computing

Introduction: MATLAB

MATLAB is a computing environment that is halfway between a
programming language (where a user must do everything) and a
menu-driven application (where the user only makes high level
decisions).

Users always have the ability to lay out the precise details of an
algorithm themselves.

They rely on MATLAB commands to access intelligent, flexible,
and optimized versions of standard algorithms.

Burkardt MATLAB Parallel Computing

Introduction: MATLAB Adds Parallelism

MATLAB has recognized that parallel computing is necessary for
scientific computation.

The underlying MATLAB core and algorithms are being extended
to work with parallelism.

An explicit set of commands has been added to allow the user to
request parallel execution or to control distributed memory.

New protocols and servers allow multiple copies of MATLAB to
carry out the user’s requests, to transfer data and to communicate.

MATLAB’s parallelism can be enjoyed by novices and exploited by
experts.

Burkardt MATLAB Parallel Computing

Introduction: Local Parallelism

MATLAB has developed a Parallel Computing Toolbox which is
required for all parallel applications.

The Toolbox allows a user to run a job in parallel on a desktop
machine, using up to 4 ”workers” (additional copies of MATLAB)
to assist the main copy.

If the desktop machine has multiple processors, the workers will
activate them, and the computation should run more quickly.

This use of MATLAB is very similar to the shared memory parallel
computing enabled by OpenMP; however, MATLAB requires much
less guidance from the user.

Burkardt MATLAB Parallel Computing

Introduction: Remote Parallelism

MATLAB has developed a Distributed Computing Server or DCS.

Assuming the user’s code runs properly under the local parallel
model, then it will also run under DCS with no further changes.

With the DCS, the user can start a job on the desktop that gets
assistance from workers on a remote cluster.

Burkardt MATLAB Parallel Computing

Introduction: Local and Remote MATLAB Workers

Burkardt MATLAB Parallel Computing

Introduction: SPMD for Distributed Data

If a cluster is available, the shared memory model makes less sense
than a distributed memory model.

In such a computation, very large arrays can be defined and
manipulated. Each computer does not have a copy of the same
array, but instead a distinct portion of the array. In this way, the
user has access to a memory space equal to the sum of the
memories of all the participating computers.

MATLAB provides the spmd command to allow a user to declare
such distributed arrays, and provides a range of operators that are
appropriate for carrying out computations on such arrays.

Burkardt MATLAB Parallel Computing

Introduction: BATCH for Remote Jobs

MATLAB also includes a batch command that allows you to write
a script to run a job (parallel or not, remote or local) as a separate
process.

This means you can use your laptop or desktop copy of MATLAB
to set up and submit a script for running a remote job. You can
exit the local copy of MATLAB, turn off your laptop or do other
work, and later check on the remote job status and retrieve your
results.

Many computer clusters that have parallel MATLAB installed
require users to submit their jobs in batch mode.

Burkardt MATLAB Parallel Computing

Introduction: PMODE: Interactive Parallel Mode

A typical parallel MATLAB user working interactively still sees the
familiar MATLAB command window, which we may think of as
being associated with the “master” copy of MATLAB.

However, MATLAB also allows a user to open a parallel command
window. This is known as pmode.

Commands given in pmode are executed simultaneously on all the
workers. Within pmode, the user has access to distributed arrays,
parallel functions, and message-passing functions that are not
visible or accessible in the normal command window.

Burkardt MATLAB Parallel Computing

Introduction: MATLAB + MPI

Parallel MATLAB uses a version of MPI (MPICH2).

In most cases, a user is happy not to see the underlying MPI
activity that goes on.

However, MATLAB includes a rich set of calls that allow the user
to employ the typical MPI activities of sending and receiving
messages, broadcasting data, defining synchronization barriers and
so on.

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resource

Conclusion

Burkardt MATLAB Parallel Computing

Local Parallel Computing

If your desktop or laptop computer is fairly recently, it is probably
a multicore machine.

“Regular” MATLAB only gets the power of one core.

But MATLAB’s local parallel computing option engages up to 4
cores at the same time.

You’ll need:

the right version of MATLAB;

a copy of the Parallel Computing Toolbox;

the source code of your MATLAB program.

Burkardt MATLAB Parallel Computing

Local Parallel Computing: What Software Do You Have?

Your MATLAB must be version 2008a or later.

(Sadly, you may find that MathWorks has stopped issuing new
releases for your slightly old computer, such as my desktop Apple
G5 PowerPC machine.)

Your MATLAB must include the Parallel Computing Toolbox.

To get a list of all your toolboxes, type:

ver

Burkardt MATLAB Parallel Computing

Local Parallel Computing: Running A Program

Suppose you have a MATLAB M-file modified to compute in
parallel (we’ll explain that later!).

To do local parallel programming, start MATLAB the regular way.

This copy of MATLAB will be called the client copy; the extra
copies created later are known as workers or sometimes as labs.

Running in parallel requires three steps:

1 request a number of (local) workers;

2 issue the normal command to run the program. The client
MATLAB will call on the workers for help as needed;

3 release the workers.

Burkardt MATLAB Parallel Computing

Local Parallel Computing: Example of Running A Program

Suppose you have an M file named samson.m.

To run samson.m in parallel, type:

matlabpool open local 4

samson

matlabpool close

On a cluster, we can replace local by another argument that will
allow us to create workers on multiple machines!

Burkardt MATLAB Parallel Computing

Local Parallel Computing: Running A Program

If all is well, the program runs the same as before... but faster.

Output will still appear in the command window in the same way,
and the data will all be available to you.

What has happened is simply that some of the computations were
carried out by other cores in a way that was hidden from you.

The program may seem like it ran faster, but it’s important to
measure the time exactly.

Burkardt MATLAB Parallel Computing

Local Parallel Computing: Timing A Program

To measure the speed of a program, you can use tic and toc:

matlabpool open local 4

tic

samson

toc

matlabpool close

Burkardt MATLAB Parallel Computing

Local Parallel Computing: Timing A Program

To measure the speedup of a program, you can try different
numbers of workers:

for labs = 0 : 4

if (0 < labs) matlabpool (’open’, ’local’, labs)

tic

samson

toc

if (0 < labs) matlabpool (’close’)

end

Because labs is a variable, we use the “function” form of
matlabpool.

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resource

Conclusion

Burkardt MATLAB Parallel Computing

The PARFOR Command

The simplest way of parallelizing a MATLAB program focuses on
the for loops in the program.

If a for loop is suitable for parallel execution, replace the word for
by the word parfor (meaning “parallel for”).

When the MATLAB program is run in parallel, the work in each
parfor loop will be distributed among the workers.

Burkardt MATLAB Parallel Computing

The PARFOR Command: When Can It Be Used?

What determines whether a for loop is suitable for parallelization?

The crucial question that must be answered satisfactorily is this:

Can the iterations of the loop be performed in any order without
affecting the results?

If the answer is ”yes”, then generally the loop can be parallelized.

Burkardt MATLAB Parallel Computing

The PARFOR Command: When Can It Be Used?

As a simple example of a loop that can be parallelized, think about
the task of normalizing each column of a matrix. We find the
largest entry in a column and divide the column by that value.

What happens in each column is independent.

Burkardt MATLAB Parallel Computing

for j = 1 : n

c = 0.0

for i = 1 : m

c = max (c, a(i,j));

end

if (c ~= 0)

for i = 1 : m

a(i,j) = a(i,j) / c;

end

end

end

Burkardt MATLAB Parallel Computing

The PARFOR Command: Whan Can it Be Used?

As one example of when the parfor command cannot be used,
think of the following difference equation:

u(1:m) = rand (1, m);

for j = 1 : n

for i = 2 : m - 1

v(i) = u(i-1) - 2 * u(i) + u(i+1);

end

u(2:m-1) = v(2:m-1);

end

The iterations (on j) are not independent. Each iteration needs
results from the previous one.

Burkardt MATLAB Parallel Computing

The PARFOR Command: Data Sharing

Using parfor for parallel computing is very similar to the OpenMP
shared memory model.

The MATLAB workers correspond to separate threads of execution.

In general, we think of all the data as being “shared” - that is,
every worker can see or change any variable.

Some kinds of variables cannot be shared so simply. This includes
private variables and reduction variables. OpenMP requires you
to identify such variables, but MATLAB will attempt to do this for
you automatically.

Burkardt MATLAB Parallel Computing

The PARFOR Command: Reduction Variables

In some parallelization systems, special care must be taken for
what are called reduction variables.

Typically, these occur when certain functions such as the max,
min, sum or prod are applied to an indexed loop value.

The problem is that the loop iterations are not completely
independent in such a calculation - they must cooperate, but in a
very simple way.

MATLAB can parallelize a loop even if it contains reduction
variables; the user does not need to make any special action.

Burkardt MATLAB Parallel Computing

The PARFOR Command: Reduction Example

In this loop, the variables total, big and fact are reduction
variables.

MATLAB is able to handle this calculation in parallel.
The user simply replaces for by parfor:

total = 0.0;

big = - Inf;

fact = 1;

for i = 1 : n

total = total + x(i);

big = max (big, x(i));

fact = fact * x(i);

end

Burkardt MATLAB Parallel Computing

The PARFOR Command: BREAK and RETURN

A loop containing break or return cannot run in parallel.

There is no way to tell in advance when loop will break.

This simple prime check is an example.

function value = prime (i)

value = 1;

for j = 2 : i - 1;

if (mod (i, j) == 0)

value = 0;

break

end

end

return

end

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resource

Conclusion

Burkardt MATLAB Parallel Computing

The PRIME NUMBER Example

For our first example, we want a simple computation involving a
loop which we can set up to run for a long time.

We’ll choose a program that determines how many prime numbers
there are between 1 and N.

If we want the program to run longer, we increase the variable N.
Doubling N makes the run time increase by a factor of 4.

Notice that this program includes a loop that has a break
statement. That’s OK, because we do not parallelize that loop!

Burkardt MATLAB Parallel Computing

The PRIME NUMBER Example

f u n c t i o n t o t a l = pr ime number (n)

%% PRIME NUMBER r e t u r n s the number o f p r imes between 1 and N.

t o t a l = 0 ;

f o r i = 2 : n

pr ime = 1 ;

f o r j = 2 : i − 1
i f (mod (i , j) == 0)

pr ime = 0 ;
break

end
end

t o t a l = t o t a l + pr ime ;

end

r e t u r n
end

Burkardt MATLAB Parallel Computing

The PRIME NUMBER Example

We can parallelize the loop whose index is I. The computations for
two different values of I are completely independent.

There is one variable that is not independent of the loops, namely
total. This is simply computing a running sum (a reduction
variable), and we only care about the final result. MATLAB is
smart enough to be able to handle this computation in parallel.

To make the program parallel, we replace for by parfor. That’s all!

(...OK, we also have to use the matlabpool command...)

We don’t need to specify local in the matlabpool command,
because that is the default value.

Burkardt MATLAB Parallel Computing

The PRIME NUMBER Example

l a b num a r r a y = [0 , 1 , 2 , 4] ;
f o r lab num = lab num a r r a y (1 : 4)

f p r i n t f (1 , ’\n ’) ;

i f (0 < lab num)
mat l abpoo l (’ open ’ , ’ l o c a l ’ , lab num)

end

n = 100 ;

f o r i = 1 : 3
t i c ;
p r imes = p r im e n umb e r p a r a l l e l (n) ;
wtime = toc ;
f p r i n t f (1 , ’ %8d %8d %8d %14 f\n ’ , lab num , n , pr imes , wtime) ;
n = n ∗ 100 ;

end

i f (0 < lab num)
mat l abpoo l (’ c l o s e ’)

end

end

Burkardt MATLAB Parallel Computing

The PRIME NUMBER Example: Timing

PRIME_NUMBER_PARALLEL_RUN

Run PRIME_NUMBER_PARALLEL with 0, 1, 2, and 4 labs.

N 1+0 1+1 1+2 1+4

50 0.067 0.179 0.176 0.278

500 0.008 0.023 0.027 0.032

5000 0.100 0.142 0.097 0.061

50000 7.694 9.811 5.351 2.719

500000 609.764 826.534 432.233 222.284

Burkardt MATLAB Parallel Computing

The PRIME NUMBER Example: Timing Comments

There are many thoughts that come to mind from these results!

Why does 500 take less time than 50? (It doesn’t, really).

How can ”1+1” take longer than ”1+0”?
(It does, but it’s probably not as bad as it looks!)

This data suggests two conclusions:

Parallelism doesn’t pay until your problem is big enough;

AND

Parallelism doesn’t pay until you have a decent number of workers.

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resource

Conclusion

Burkardt MATLAB Parallel Computing

More Abour PARFOR: Temporary Variables

Another feature of some parallelization systems involves the
treatment of temporary variables. In the simplest case, a
temporary variable is a scalar that is redefined and then used
within each iteration of a loop.

A temporary variable is often simply a shorthand for a cumbersome
expression.

Many parallelization systems require such variables to be declared
as private, so that each worker has its own copy of the variable.

MATLAB does not require any such special treatment of such
temporary variables.

Burkardt MATLAB Parallel Computing

More Abour PARFOR: Temporary Variables

In this loop, the variable angle is a temporary variable.

MATLAB is able to handle this calculation in parallel without any
special action from the user, who simply has to replace for by
parfor:

for i = 1 : n

angle = (i - 1) * pi / (n - 1);

t(i) = cos (angle);

end

Burkardt MATLAB Parallel Computing

More Abour PARFOR: WrapAround Variables

The most common programming practice that will make
parallelization impossible occurs when the data used in one
iteration of the loop is not available until a previous iteration has
been computed.

Parallel MATLAB can’t handle such a calculation properly, since
the iteration where the variable is set may happen on a different
processor than the iteration where the variable is needed.

Moreover, the iteration that needs the value might be computed
before the iteration that sets the value.

Sometimes the loop can be rewritten; other times, the problem
cannot be fixed because the computation is inherently recursive.

Burkardt MATLAB Parallel Computing

More Abour PARFOR: WrapAround Example

Suppose you compute the X locations of a set of nodes this way:

dx = 0.25;

x = zeros (1,n);

for i = 2 : n

x(i) = x(i-1) + dx;

end

Parallel MATLAB’s cannot be applied to this loop as it is written.
This loop assumes the iterations will be done in exactly the usual
order.

Luckily, this calculation can be rewritten to parallelize.

Burkardt MATLAB Parallel Computing

More Abour PARFOR: WrapAround Variables

Another example of temporary variable use involves counting how
many times some condition has occurred, perhaps using this value
as an index to store the corresponding value.

In this loop, we are looking for nonzero entries of the matrix A,
and storing them in a compressed vector. The variable k, which
counts how many such entries we have seen so far, is a
”wraparound” temporary, whose value, set in one loop iteration, is
needed in a later loop iteration.

It is not possible to ask MATLAB to carry out this operation in
parallel simply by replacing the for loop by a parfor. A better
choice might be to explore the find command!

Burkardt MATLAB Parallel Computing

More Abour PARFOR: WrapAround Variables

k = 0;

for i = 1 : m

for j = 1 : n

if (a(i,j) ~= 0.0)

k = k + 1

a2(k) = a(i,j);

i2(k) = i;

j2(k) = j;

end

end

end

Burkardt MATLAB Parallel Computing

More Abour PARFOR: Recursive Variables

Suppose we approximate the solution of a differential equation:

dt = 0.25;

u = zeros (1,n);

for i = 2 : n

u(i) = u(i-1) + dt * f(t, u(i-1));

end

There is no way to parallelize this loop. The value of u(i) cannot
be computed until the value of u(i-1) is known, and that means
the loop iterations cannot be executed in arbitrary order.

Similar issues arise when a Newton iteration is being carried out.

Burkardt MATLAB Parallel Computing

More Abour PARFOR: MATLAB Gets Confused

PARFOR is easy because MATLAB does a lot of work for you.

MATLAB is usually intelligent enough to determine how to classify
and handle the variables in a loop.

But if it gets confused, there is no easy mechanism to help
MATLAB!

Burkardt MATLAB Parallel Computing

More Abour PARFOR: MATLAB Gets Confused

n = 100 ;
Q = z e r o s (n , n) ;

p a r f o r i = 1 : n
f o r j = i : n

i f (j == i)
Q(i , j) = 1 ;

e l s e
Q(i , j) = s q r t (i / j) ;

end

end
end

Q

Burkardt MATLAB Parallel Computing

More Abour PARFOR: MATLAB Gets Confused

MATLAB 2008b refuses to run this program, complaining that it
cannot determine the status of the variable Q.

It’s not clear what MATLAB is concerned about, and there’s no
way to convince MATLAB to compile the code.

One way to work around such an error is to store the inner loop
results in a temporary vector. When the loop is exited, copy the
temporary vector into Q.

Burkardt MATLAB Parallel Computing

More Abour PARFOR: MATLAB Gets Confused

n = 100 ;
Q = z e r o s (n , n) ;

p a r f o r i = 1 : n

z = z e r o s (1 , n) ;

f o r j = i : n

i f (j == i)
z (j) = 1 ;

e l s e
z (j) = s q r t (i / j) ;

end

end

Q(i , :) = z ;

end

Q

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resource

Conclusion

Burkardt MATLAB Parallel Computing

The MD Example

The MD program runs a simple molecular dynamics simulation.

The problem size N counts the number of molecules being
simulated.

The program takes a long time to run, and it would be very useful
to speed it up.

There are many for loops in the program, but it is a mistake to try
to parallelize everything!

MATLAB has a profile command that can report where the CPU
time was spent - which is where we should try to parallelize.

Burkardt MATLAB Parallel Computing

The MD Example: Run MATLAB’s Profiler

profile on

md

profile viewer

Step Potential Kinetic (P+K-E0)/E0

Energy Energy Energy Error

1 498108.113974 0.000000 0.000000e+00

2 498108.113974 0.000009 1.794265e-11

...

9 498108.111972 0.002011 1.794078e-11

10 498108.111400 0.002583 1.793996e-11

CPU time = 415.740000 seconds.

Wall time = 378.828021 seconds.

Burkardt MATLAB Parallel Computing

The MD Example
This is a static copy of a profile report

Home

Profile Summary
Generated 27-Apr-2009 15:37:30 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)

md 1 415.847 s 0.096 s

compute 11 415.459 s 410.703 s

repmat 11000 4.755 s 4.755 s

timestamp 2 0.267 s 0.108 s

datestr 2 0.130 s 0.040 s

timefun/private/formatdate 2 0.084 s 0.084 s

update 10 0.019 s 0.019 s

datevec 2 0.017 s 0.017 s

now 2 0.013 s 0.001 s

datenum 4 0.012 s 0.012 s

datestr>getdateform 2 0.005 s 0.005 s

initialize 1 0.005 s 0.005 s

etime 2 0.002 s 0.002 s

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from

the process of profiling.

Profile Summary file://localhost/Users/burkardt/public_html/m_src/md/md_profile.txt/file0.html

1 of 1 4/27/09 3:39 PM

Burkardt MATLAB Parallel Computing

The MD Example: The COMPUTE Function

f u n c t i o n [f , pot , k i n] = compute (np , nd , pos , v e l , mass)

f = z e r o s (nd , np) ;
pot = 0 . 0 ;
p i 2 = p i / 2 . 0 ;

f o r i = 1 : np
Ri = pos − repmat (pos (: , i) , 1 , np) ; % ar r a y o f v e c t o r s to ’ i ’
D = s q r t (d i a g (Ri ’ ∗ Ri)) ; % ar r a y o f d i s t a n c e s
Ri = Ri (: , (D > 0 .0)) ;
D = D(D > 0 .0) ; % save on l y pos v a l u e s
D2 = D .∗ (D <= p i2) + p i 2 ∗ (D > p i 2) ; % t run c a t e the p o t e n t i a l .
pot = pot + 0 .5 ∗ sum (s i n (D2) . ˆ 2) ; % accumulate pot . ene rgy
f (: , i) = Ri ∗ (s i n (2∗D2) . / D) ; % f o r c e on p a r t i c l e ’ i ’

end

k i n = 0 .5 ∗ mass ∗ sum (d i a g (v e l ’ ∗ v e l)) ; % k i n e t i c ene rgy

r e t u r n
end

Burkardt MATLAB Parallel Computing

The MD Example: Speedup

By inserting a PARFOR in COMPUTE, here is our speedup:

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resources

Conclusion

Burkardt MATLAB Parallel Computing

VT Resources: The (Unsatisfactory) Past

Until recently, the central computing facilities at Virginia Tech had
only very limited support for MATLAB.

MATLAB was only available on the Sun cluster known as Dante.
(The MathWorks dropped support for the SGI Altix system some
years ago).

Although the Parallel Computing Toolbox was available, there were
some incompatibilities between the system and the software, which
meant that parallel performance was poor.

Because of strong user interest, a better platform was needed.

Burkardt MATLAB Parallel Computing

VT Resources: The (Temporary) Present

The VT central computing facilities developed an experimental and
temporary MATLAB cluster which shares file space with System X.

The cluster is known as matlab1.

It is relatively small and relatively unknown
It has been used to experiment with parallel MATLAB.

This cluster uses just 4 32-bit Xeon dual processors;
a user can get up to 8 parallel MATLAB workers.

A very limited number of users have access to matlab1.

Burkardt MATLAB Parallel Computing

VT Resources: Logging in to matlab1

Users access matlab1 by first logging into a System X node:
sysx1, sysx2, sysx3 or sysx4.

They then can use ssh to log into matlab1.

ssh my_name@sysx1.arc.vt.edu <--from you to sysx1.

ssh matlab1 <--from sysx1 to matlab1.

Burkardt MATLAB Parallel Computing

VT Resources: Logging in to matlab1

If you want MATLAB’s command window to show up,
or you wish to have graphics displayed, then:

1 your terminal program must be an xterm;

2 your ssh connection to System X must use the -X switch;

3 your ssh connection to matlab1 must use the -X switch;

ssh -X my_name@sysx1.arc.vt.edu <--from you to sysx1.

ssh -X matlab1 <--from sysx1 to matlab1.

Burkardt MATLAB Parallel Computing

VT Resources: Transferring files to matlab1

Since matlab1 shares the sysx file system with the System X
nodes, a user can move files back and forth simply by establishing
an sftp connection to one of the System X nodes.

sftp my_name@sysx1.arc.vt.edu

cd sysx/my_project

put my_m_file.m

get my_output.txt

quit

Burkardt MATLAB Parallel Computing

VT Resources: Running MATLAB Interactively

On matlab1, MATLAB can be run interactively.

Connect from an X terminal; include -X on your ssh commands.

To access some of your M-files during the session, start the session
from the directory that contains those files.

Start with the interactive command:

matlab

You will get the familiar interactive command window, which will
stay until you enter quit or exit.

If you issue plot commands, the usual plot window will show up.

Burkardt MATLAB Parallel Computing

VT Resources: Running MATLAB Locally

Even though matlab1 is a cluster, when you log in, you see only
one machine. This particular machine has just 2 cores. You can
run parallel MATLAB in the usual way, but you’re only going to be
able to ask for 2 workers!

matlabpool open local 2

samson

matlabpool close

Burkardt MATLAB Parallel Computing

VT Resources: Running MATLAB Over the Cluster

Since the cluster has 4 nodes, each with 2 processors, you can ask
for 8 workers, but only if you replace the local switch by something
that tells MATLAB how to access the other machines:

matlabpool open jmconfig1 8

samson

matlabpool close

Burkardt MATLAB Parallel Computing

VT Resources: Running MATLAB Indirectly

If your MATLAB program takes a long time to run, or is
complicated, it may make sense to run MATLAB “indirectly”.

Technically, this is still an interactive session, but your input will
now come from a file (perhaps “input.m”).

To keep MATLAB from trying to set up the command window
you may want to include the -nodisplay switch.

The typical command gets a little complicated now:

matlab -nodisplay < input.m > output.txt &

The & at the end of the command line allows you to issue other
commands while waiting for matlab to complete.

Burkardt MATLAB Parallel Computing

VT Resources: Moving to the Future

Experience with the experimental matlab1 system has shown that
parallel MATLAB runs efficiently, and that there is a good demand
by users for more open access.

For these reasons, Virginia Tech has committed to creating a more
powerful computer system to provide parallel MATLAB to the user
community.

Burkardt MATLAB Parallel Computing

VT Resources: The (Immediate) Future

At Virginia Tech, a new computer cluster is arriving in June 2009,
to be made available to users by July.

This IBM system is a cluster of 84 Nehalem processors, each
having 8 cores, for a total of 672 cores.

The cluster will have 64 licenses for Parallel MATLAB.

This means that if there are several Parallel MATLAB jobs running
on the cluster at the same time, the total number of workers, over
all those jobs, can be no more than 64.

The number of simultaneous MATLAB licenses will be increased to
128 once there is enough usage.

Burkardt MATLAB Parallel Computing

MATLAB Parallel Computing

Introduction

Local Parallel Computing

The PARFOR Command

The PRIME NUMBER Example

More About PARFOR

The MD Example

Virginia Tech Parallel MATLAB Resources

Conclusion

Burkardt MATLAB Parallel Computing

Conclusion: User Access

The new IBM cluster will encourage a parallel MATLAB
community.

Any faculty, any graduate student will be able to request an
account using:

IBM System Account Request Application Form

which will be available (once the system is ready) at:

http://www.arc.vt.edu/arc/UserAccounts.php

You’ll need your PID and password to access the form.

Burkardt MATLAB Parallel Computing

Conclusion: Job Submission

Short interactive debugging runs will probably be allowed on the
login node.

To access multiple MATLAB workers, users will need to set up a
configuration file, which will make it easy to submit batch jobs.

MATLAB’s new batch feature will cooperate with VT’s current
queueing system.

Burkardt MATLAB Parallel Computing

Conclusion: MathWorks Training

The Mathworks will be presenting a class through the FDI which
will present the features of parallel MATLAB in great detail.

This course is tentatively scheduled for June 2009.

Details about this class will be available soon.

Burkardt MATLAB Parallel Computing

Conclusion: Parallel MATLAB Is Ready to Try

Parallel hardware and communications software has become stable,

The MathWorks has realized that, in order to serve its engineering
and science customers, it is time for it to offer access to parallel
programming.

The parfor command is a simple way for many MATLAB
programmers to get much of the benefit of parallel programming.

Burkardt MATLAB Parallel Computing

Conclusion: More Will Be Needed Soon

Right now, if MATLAB can’t automatically handle a parfor loop,
there is no easy way for the user to help.

Online documentation is very brief.

Distributed computing with spmd is somewhat “mysterious”.

As Parallel MATLAB becomes popular, we hope there will be good
textbooks, software packages and classes.

Burkardt MATLAB Parallel Computing

