15-May-2025 07:54:38 hermite_product_polynomial_test(): MATLAB/Octave version 6.4.0 Test hermite_product_polynomial(). hermite_product_polynomial_test01(): comp_next_grlex() is given a composition, and computes the next composition in grlex order. Rank Sum Components 1 0: 0 0 2 1: 0 1 3 1: 1 0 4 2: 0 2 5 2: 1 1 6 2: 2 0 7 3: 0 3 8 3: 1 2 9 3: 2 1 10 3: 3 0 11 4: 0 4 12 4: 1 3 13 4: 2 2 14 4: 3 1 15 4: 4 0 16 5: 0 5 17 5: 1 4 18 5: 2 3 19 5: 3 2 20 5: 4 1 comp_unrank_grlex() is given a rank and returns the corresponding set of multinomial exponents. Rank Sum Components 18 5: 2 3 10 3: 3 0 16 5: 0 5 3 1: 1 0 7 3: 0 3 comp_random_grlex() randomly selects a composition between given lower and upper ranks. Rank Sum Components 12 4: 1 3 12 4: 1 3 6 2: 2 0 19 5: 3 2 8 3: 1 2 COMP_RANK_GRLEX returns the rank of a given composition. Rank Sum Components 15 4: 4 0 148 16: 11 5 hermite_product_polynomial_test015(): hep_coefficients() computes the coefficients and exponents of the Hermite polynomial He(n,x). He(1,x) = + 1 * x^(1). He(2,x) = - 1 * x^(0) + 1 * x^(2). He(3,x) = - 3 * x^(1) + 1 * x^(3). He(4,x) = + 3 * x^(0) - 6 * x^(2) + 1 * x^(4). He(5,x) = + 15 * x^(1) - 10 * x^(3) + 1 * x^(5). hermite_product_polynomial_test02(): hep_values() stores values of the Hermite polynomial He(o,x). hep_value() evaluates a Hermite polynomial. Tabulated Computed O X He(O,X) He(O,X) Error 0 5.000000 1 1 0 1 5.000000 5 5 0 2 5.000000 24 24 0 3 5.000000 110 110 0 4 5.000000 478 478 0 5 5.000000 1950 1950 0 6 5.000000 7360 7360 0 7 5.000000 25100 25100 0 8 5.000000 73980 73980 0 9 5.000000 169100 169100 0 10 5.000000 179680 179680 0 11 5.000000 -792600 -792600 0 12 5.000000 -5.93948e+06 -5.93948e+06 0 5 0.000000 0 0 0 5 0.500000 6.28125 6.28125 0 5 1.000000 6 6 0 5 3.000000 18 18 0 5 10.000000 90150 90150 0 hermite_product_polynomial_test03(): hepp_value() evaluates a Hermite product polynomial. polynomial_value() evaluates a polynomial. Evaluate at X = ( 0.732022, -0.69989, 0.822233 ) Rank I1 I2 I3: He(I1,X1)*He(I2,X2)*He(I3,X3) P(X1,X2,X3) 1 0 0 0 1 1 2 0 0 1 0.822233 0.822233 3 0 1 0 -0.69989 -0.69989 4 1 0 0 0.732022 0.732022 5 0 0 2 -0.323934 -0.323934 6 0 1 1 -0.575473 -0.575473 7 0 2 0 -0.510153 -0.510153 8 1 0 1 0.601892 0.601892 9 1 1 0 -0.512335 -0.512335 10 2 0 0 -0.464144 -0.464144 11 0 0 3 -1.91081 -1.91081 12 0 1 2 0.226718 0.226718 13 0 2 1 -0.419465 -0.419465 14 0 3 0 1.75683 1.75683 15 1 0 2 -0.237127 -0.237127 16 1 1 1 -0.421259 -0.421259 17 1 2 0 -0.373443 -0.373443 18 2 0 1 -0.381634 -0.381634 19 2 1 0 0.32485 0.32485 20 3 0 0 -1.80381 -1.80381 hermite_product_polynomial_test04(): hepp_to_polynomial() is given a Hermite product polynomial and determines its polynomial representation. Using spatial dimension M = 2: HePP #1 = He(0,X)*He(0,Y) = + 1 * x^(0,0). HePP #2 = He(0,X)*He(1,Y) = + 1 * x^(0,1). HePP #3 = He(1,X)*He(0,Y) = + 1 * x^(1,0). HePP #4 = He(0,X)*He(2,Y) = - 1 * x^(0,0) + 1 * x^(0,2). HePP #5 = He(1,X)*He(1,Y) = + 1 * x^(1,1). HePP #6 = He(2,X)*He(0,Y) = - 1 * x^(0,0) + 1 * x^(2,0). HePP #7 = He(0,X)*He(3,Y) = - 3 * x^(0,1) + 1 * x^(0,3). HePP #8 = He(1,X)*He(2,Y) = - 1 * x^(1,0) + 1 * x^(1,2). HePP #9 = He(2,X)*He(1,Y) = - 1 * x^(0,1) + 1 * x^(2,1). HePP #10 = He(3,X)*He(0,Y) = - 3 * x^(1,0) + 1 * x^(3,0). HePP #11 = He(0,X)*He(4,Y) = + 3 * x^(0,0) - 6 * x^(0,2) + 1 * x^(0,4). hermite_product_polynomial_test(): Normal end of execution. 15-May-2025 07:54:38