function [ n_data, alpha, beta, x, fx ] = weibull_cdf_values ( n_data ) %*****************************************************************************80 % %% WEIBULL_CDF_VALUES returns some values of the Weibull CDF. % % Discussion: % % In Mathematica, the function can be evaluated by: % % Needs["Statistics`ContinuousDistributions`"] % dist = WeibullDistribution [ alpha, beta ] % CDF [ dist, x ] % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 19 September 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, real ALPHA, the first parameter of the distribution. % % Output, real BETA, the second parameter of the distribution. % % Output, real X, the argument of the function. % % Output, real FX, the value of the function. % n_max = 12; alpha_vec = [ ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.2000000000000000E+01, ... 0.3000000000000000E+01, ... 0.4000000000000000E+01, ... 0.5000000000000000E+01 ]; beta_vec = [ ... 0.5000000000000000E+00, ... 0.5000000000000000E+00, ... 0.5000000000000000E+00, ... 0.5000000000000000E+00, ... 0.2000000000000000E+01, ... 0.3000000000000000E+01, ... 0.4000000000000000E+01, ... 0.5000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01 ]; fx_vec = [ ... 0.8646647167633873E+00, ... 0.9816843611112658E+00, ... 0.9975212478233336E+00, ... 0.9996645373720975E+00, ... 0.6321205588285577E+00, ... 0.4865828809674080E+00, ... 0.3934693402873666E+00, ... 0.3296799539643607E+00, ... 0.8946007754381357E+00, ... 0.9657818816883340E+00, ... 0.9936702845725143E+00, ... 0.9994964109502630E+00 ]; x_vec = [ ... 0.1000000000000000E+01, ... 0.2000000000000000E+01, ... 0.3000000000000000E+01, ... 0.4000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01, ... 0.3000000000000000E+01, ... 0.3000000000000000E+01, ... 0.3000000000000000E+01, ... 0.3000000000000000E+01 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; alpha = 0.0; beta = 0.0; x = 0.0; fx = 0.0; else alpha = alpha_vec(n_data); beta = beta_vec(n_data); x = x_vec(n_data); fx = fx_vec(n_data); end return end