function [ n_data, a, x, fx ] = poisson_cdf_values ( n_data ) %*****************************************************************************80 % %% POISSON_CDF_VALUES returns some values of the Poisson CDF. % % Discussion: % % CDF(X)(A) is the probability of at most X successes in unit time, % given that the expected mean number of successes is A. % % In Mathematica, the function can be evaluated by: % % Needs["Statistics`DiscreteDistributions`] % dist = PoissonDistribution [ a ] % CDF [ dist, x ] % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 29 September 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Daniel Zwillinger, % CRC Standard Mathematical Tables and Formulae, % 30th Edition, CRC Press, 1996, pages 653-658. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, real A, the parameter of the function. % % Output, integer X, the argument of the function. % % Output, real FX, the value of the function. % n_max = 21; a_vec = [ ... 0.02E+00, ... 0.10E+00, ... 0.10E+00, ... 0.50E+00, ... 0.50E+00, ... 0.50E+00, ... 1.00E+00, ... 1.00E+00, ... 1.00E+00, ... 1.00E+00, ... 2.00E+00, ... 2.00E+00, ... 2.00E+00, ... 2.00E+00, ... 5.00E+00, ... 5.00E+00, ... 5.00E+00, ... 5.00E+00, ... 5.00E+00, ... 5.00E+00, ... 5.00E+00 ]; fx_vec = [ ... 0.9801986733067553E+00, ... 0.9048374180359596E+00, ... 0.9953211598395555E+00, ... 0.6065306597126334E+00, ... 0.9097959895689501E+00, ... 0.9856123220330293E+00, ... 0.3678794411714423E+00, ... 0.7357588823428846E+00, ... 0.9196986029286058E+00, ... 0.9810118431238462E+00, ... 0.1353352832366127E+00, ... 0.4060058497098381E+00, ... 0.6766764161830635E+00, ... 0.8571234604985470E+00, ... 0.6737946999085467E-02, ... 0.4042768199451280E-01, ... 0.1246520194830811E+00, ... 0.2650259152973617E+00, ... 0.4404932850652124E+00, ... 0.6159606548330631E+00, ... 0.7621834629729387E+00 ]; x_vec = [ ... 0, 0, 1, 0, ... 1, 2, 0, 1, ... 2, 3, 0, 1, ... 2, 3, 0, 1, ... 2, 3, 4, 5, ... 6 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; a = 0.0; x = 0; fx = 0.0; else a = a_vec(n_data); x = x_vec(n_data); fx = fx_vec(n_data); end return end