function [ n_data, x, fx ] = normal_01_cdf_values ( n_data ) %*****************************************************************************80 % %% NORMAL_01_CDF_VALUES returns some values of the Normal 01 CDF. % % Discussion: % % In Mathematica, the function can be evaluated by: % % Needs["Statistics`ContinuousDistributions`"] % dist = NormalDistribution [ 0, 1 ] % CDF [ dist, x ] % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 30 September 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, real X, the argument of the function. % % Output, real FX, the value of the function. % n_max = 17; fx_vec = [ ... 0.5000000000000000E+00, ... 0.5398278372770290E+00, ... 0.5792597094391030E+00, ... 0.6179114221889526E+00, ... 0.6554217416103242E+00, ... 0.6914624612740131E+00, ... 0.7257468822499270E+00, ... 0.7580363477769270E+00, ... 0.7881446014166033E+00, ... 0.8159398746532405E+00, ... 0.8413447460685429E+00, ... 0.9331927987311419E+00, ... 0.9772498680518208E+00, ... 0.9937903346742239E+00, ... 0.9986501019683699E+00, ... 0.9997673709209645E+00, ... 0.9999683287581669E+00 ]; x_vec = [ ... 0.0000000000000000E+00, ... 0.1000000000000000E+00, ... 0.2000000000000000E+00, ... 0.3000000000000000E+00, ... 0.4000000000000000E+00, ... 0.5000000000000000E+00, ... 0.6000000000000000E+00, ... 0.7000000000000000E+00, ... 0.8000000000000000E+00, ... 0.9000000000000000E+00, ... 0.1000000000000000E+01, ... 0.1500000000000000E+01, ... 0.2000000000000000E+01, ... 0.2500000000000000E+01, ... 0.3000000000000000E+01, ... 0.3500000000000000E+01, ... 0.4000000000000000E+01 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; x = 0.0; fx = 0.0; else x = x_vec(n_data); fx = fx_vec(n_data); end return end