function [ n_data, t, n, fx ] = log_series_cdf_values ( n_data ) %*****************************************************************************80 % %% LOG_SERIES_CDF_VALUES returns some values of the log series CDF. % % Discussion: % % In Mathematica, the function can be evaluated by: % % Needs["Statistics`DiscreteDistributions`] % dist = LogSeriesDistribution [ t ] % CDF [ dist, n ] % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 19 September 2004 % % Author: % % John Burkardt % % Reference: % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, real T, the parameter of the function. % % Output, integer N, the argument of the function. % % Output, real FX, the value of the function. % n_max = 29; fx_vec = [ ... 0.9491221581029903E+00, ... 0.9433541128559735E+00, ... 0.9361094611773272E+00, ... 0.9267370278044118E+00, ... 0.9141358246245129E+00, ... 0.8962840235449100E+00, ... 0.8690148741955517E+00, ... 0.8221011541254772E+00, ... 0.7213475204444817E+00, ... 0.6068261510845583E+00, ... 0.5410106403333613E+00, ... 0.4970679476476894E+00, ... 0.4650921887927060E+00, ... 0.4404842934597863E+00, ... 0.4207860535926143E+00, ... 0.4045507673897055E+00, ... 0.3908650337129266E+00, ... 0.2149757685421097E+00, ... 0.0000000000000000E+00, ... 0.2149757685421097E+00, ... 0.3213887739704539E+00, ... 0.3916213575531612E+00, ... 0.4437690508633213E+00, ... 0.4850700239649681E+00, ... 0.5191433267738267E+00, ... 0.5480569580144867E+00, ... 0.5731033910767085E+00, ... 0.5951442521714636E+00, ... 0.6147826594068904E+00 ]; n_vec = [ ... 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 1, 1, 0, 1, ... 2, 3, 4, 5, 6, ... 7, 8, 9, 10 ]; t_vec = [ ... 0.1000000000000000E+00, ... 0.1111111111111111E+00, ... 0.1250000000000000E+00, ... 0.1428571428571429E+00, ... 0.1666666666666667E+00, ... 0.2000000000000000E+00, ... 0.2500000000000000E+00, ... 0.3333333333333333E+00, ... 0.5000000000000000E+00, ... 0.6666666666666667E+00, ... 0.7500000000000000E+00, ... 0.8000000000000000E+00, ... 0.8333333333333333E+00, ... 0.8571485714857149E+00, ... 0.8750000000000000E+00, ... 0.8888888888888889E+00, ... 0.9000000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00, ... 0.9900000000000000E+00 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; t = 0.0; n = 0; fx = 0.0; else t = t_vec(n_data); n = n_vec(n_data); fx = fx_vec(n_data); end return end