function [ n_data, mu, beta, x, fx ] = laplace_cdf_values ( n_data ) %*****************************************************************************80 % %% LAPLACE_CDF_VALUES returns some values of the Laplace CDF. % % Discussion: % % In Mathematica, the function can be evaluated by: % % Needs["Statistics`ContinuousDistributions`"] % dist = LaplaceDistribution [ mu, beta ] % CDF [ dist, x ] % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 19 September 2004 % % Author: % % John Burkardt % % Reference: % % Milton Abramowitz and Irene Stegun, % Handbook of Mathematical Functions, % US Department of Commerce, 1964. % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, real MU, the mean of the distribution. % % Output, real BETA, the shape parameter. % % Output, real X, the argument of the function. % % Output, real FX, the value of the function. % n_max = 12; beta_vec = [ ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.2000000000000000E+01, ... 0.3000000000000000E+01, ... 0.4000000000000000E+01, ... 0.5000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01, ... 0.2000000000000000E+01 ]; fx_vec = [ ... 0.5000000000000000E+00, ... 0.8160602794142788E+00, ... 0.9323323583816937E+00, ... 0.9751064658160680E+00, ... 0.6967346701436833E+00, ... 0.6417343447131054E+00, ... 0.6105996084642976E+00, ... 0.5906346234610091E+00, ... 0.5000000000000000E+00, ... 0.3032653298563167E+00, ... 0.1839397205857212E+00, ... 0.1115650800742149E+00 ]; mu_vec = [ ... 0.0000000000000000E+01, ... 0.0000000000000000E+01, ... 0.0000000000000000E+01, ... 0.0000000000000000E+01, ... 0.0000000000000000E+01, ... 0.0000000000000000E+01, ... 0.0000000000000000E+01, ... 0.0000000000000000E+01, ... 0.1000000000000000E+01, ... 0.2000000000000000E+01, ... 0.3000000000000000E+01, ... 0.4000000000000000E+01 ]; x_vec = [ ... 0.0000000000000000E+01, ... 0.1000000000000000E+01, ... 0.2000000000000000E+01, ... 0.3000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01, ... 0.1000000000000000E+01 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; mu = 0.0; beta = 0.0; x = 0.0; fx = 0.0; else mu = mu_vec(n_data); beta = beta_vec(n_data); x = x_vec(n_data); fx = fx_vec(n_data); end return end