function [ n_data, x, p, cdf ] = geometric_cdf_values ( n_data ) %*****************************************************************************80 % %% GEOMETRIC_CDF_VALUES returns values of the geometric CDF. % % Discussion: % % The geometric or Pascal probability density function gives the % probability that the first success will happen on the X-th Bernoulli % trial, given that the probability of a success on a single trial is P. % % The value of CDF ( X, P ) is the probability that the first success % will happen on or before the X-th trial. % % In Mathematica, the function can be evaluated by: % % Needs["Statistics`DiscreteDistributions`] % dist = GeometricDistribution [ p ] % CDF [ dist, x ] % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 16 September 2004 % % Author: % % John Burkardt % % Reference: % % Stephen Wolfram, % The Mathematica Book, % Fourth Edition, % Wolfram Media / Cambridge University Press, 1999. % % Daniel Zwillinger and Stephen Kokoska, % CRC Standard Probability and Statistics Tables and Formulae, % Chapman and Hall / CRC Press, 2000. % % Parameters: % % Input/output, integer N_DATA. The user sets N_DATA to 0 before the % first call. On each call, the routine increments N_DATA by 1, and % returns the corresponding data; when there is no more data, the % output value of N_DATA will be 0 again. % % Output, integer X, the number of trials. % % Output, real P, the probability of success % on one trial. % % Output, real CDF, the cumulative density function. % n_max = 14; cdf_vec = [ ... 0.1900000000000000E+00, ... 0.2710000000000000E+00, ... 0.3439000000000000E+00, ... 0.6861894039100000E+00, ... 0.3600000000000000E+00, ... 0.4880000000000000E+00, ... 0.5904000000000000E+00, ... 0.9141006540800000E+00, ... 0.7599000000000000E+00, ... 0.8704000000000000E+00, ... 0.9375000000000000E+00, ... 0.9843750000000000E+00, ... 0.9995117187500000E+00, ... 0.9999000000000000E+00 ]; p_vec = [ ... 0.1E+00, ... 0.1E+00, ... 0.1E+00, ... 0.1E+00, ... 0.2E+00, ... 0.2E+00, ... 0.2E+00, ... 0.2E+00, ... 0.3E+00, ... 0.4E+00, ... 0.5E+00, ... 0.5E+00, ... 0.5E+00, ... 0.9E+00 ]; x_vec = [ ... 1, 2, 3, 10, 1, ... 2, 3, 10, 3, 3, ... 3, 5, 10, 3 ]; if ( n_data < 0 ) n_data = 0; end n_data = n_data + 1; if ( n_max < n_data ) n_data = 0; x = 0; p = 0.0; cdf = 0.0; else x = x_vec(n_data); p = p_vec(n_data); cdf = cdf_vec(n_data); end return end