
Control of a Crystallization Process

http://people.sc.fsu.edu/∼jburkardt/presentations/crystal 1996.pdf
..........

John Burkardt
Mathematics Department

Virginia Tech, Blacksburg, VA

February 2, 2024

Abstract

This report summarizes my attempts to introduce a numerical control
algorithm into the crystallization simulation in theMASTRAPP2D code.

1 Initial Control Choices

The two big choices to make are the inputs and outputs of the control process,
that is, what physical quantities will be assumed to be controllable, and what
physical quantities will measure the success of the control.

At the kickoff project meeting, it was clear that the full specification of the
crystallization simulation would not be determined for some time, but that it
would be profitable to gain some initial experience with the currently available
simulation code, MASTRAPP2d. For this testing and developmental phase,
it was decided that the quantity to control would be a cost functional which
represented the total velocity magnitude in the melt region, represented as:

J1 ≡
∫ t1

t0

∫
Ω

(u(x, y, t)2 + v(x, y, t)2)
1
2 dΩ dt, (1)

and the physical quantity to be varied would be the shape of the bottom of the
crucible, with the goal of finding a crucible shape that produced a flow that
minimized J1.

An approximation to the cost functional was easily computable within the
program, because the velocity (u, v) is computed at every primary node, as well
as the area of the control volume surrounding that primary node, so that a
simple summation gives a suitable estimate.

The shape of the crucible bottom was represented in the program as a set
of coordinates for nodes, (xbi, ybi). These nodes defined a cubic spline which in
turn determined the location of the corner and primary nodes, and the control

1

volumes. It seemed logical to fix the values of the xbi coordinates, and allow
the local heights ybi to vary.

Thus, the control problem could be posed as a simple optimization; we would
regard the quantity J1 as an implicit function of the crucible bottom shape, and
seek the values ybi which minimize J1. Such a problem could easily be handled
by any package for unconstrained optimization of a scalar function of several
arguments.

2 Computational Results

The first attempts at implementing the algorithm proceeded for several opti-
mization steps, and then suddenly failed because of floating point overflows.
These errors occurred in the portion of the code that computes the physical
quantities, which include the velocity (u, v), but also temperature, pressure,
and so on. It was suspected that these problems depended, in turn, on some
peculiarity of the geometry, and this was verified by plotting the row of control
volumes that lay along the crucible boundary. For the failing values of ybi,
this row reached a point where the quadrilateral volume became a degenerate
triangle, because the mesh generator allowed an interior node to coincide with
the boundary. This happened again for the next interior node, so that the next
control volume had practically zero area.

One set of parameters that caused this behavior was:

yb = (0.18, 0.30, 0.29, 0.28, 0.27, 0.26, 0.255). (2)

In Figure ??, the overall region corresponding to this set of data is shown, with
the control volumes and crucible nodes displayed as well. The region of trouble
lies along the crucible boundary, a little to the left of center.

A closeup of the problem region is shown in Figure ??, and shows in detail
how badly the grid behaves near the problem area.

No explanation for this problem could be found, but it only seemed to occur
when some of the values of ybi rose above the height of the extreme right node,
which was 0.25. Therefore, a new optimization code was employed, which al-
lowed all the parameters ybi to be restricted to lie between 0.0 and 0.25. This
attempt seemed to succeed; that is, the optimization claimed to have converged.
However, a plot of the resulting solution showed a very surprising fact: as shown
in Figure ??, the crucible bottom and the mesh had parted. At one portion of
the crucible boundary, a particular node had sunk below its neighbors. The
mesh generating algorithm specifically searches for the two nearest boundary
nodes, and does not require that they be consecutive. Therefore, it constructed
a mesh that completely ignored a small portion of the flow region associated
with the depressed node. This made the optimization results meaningless.

From these experiences, it seemed that any variation of the original crucible
boundary would have to be done with nodes that were monotonically increasing
from left to right. This would automatically enforce the range limits used in
the previous calculation, but also rule out the possibility of any node sinking

2

Figure 1: The grid generator creates degenerate control volumes.

3

Figure 2: A closeup of the degenerate control volumes.

4

Figure 3: The grid generator misses the boundary..

The circles are the nodes generating the crucible boundary;
The grid generator redraws the boundary, missing one node.

5

Figure 4: The optimal shape with monotonic nodes.

below the line defined by its two neighbors. With these strong restrictions, the
optimization code was able to find a minimizing set of parameters, defining a
crucible shape that suggested a pair of flat steps, as shown in Figure ??.

3 Prospects for Shape Control

I have had discussions with Hui Zhang, the author of the code, who explained
that his mesh generator could not handle a universal set of crucible shapes, but
rather was tailored to a quite specific shape generated by the original values of
the boundary data (xbi, ybi). He also said that a code to handle general shapes
would take a long time to build. Wing Chui, who has been working with the
code in an effort to create a parallel version, also said that it makes very strong
assumptions about the boundary when generating the grid.

From my experiences and discussions, it seems that computational variation
of the crucible shape can only be carried out under severe restrictions. To
add this capability to the program would require changes to the automatic grid

6

generator. In particular, the grid generator should not rely on the (nonphysical)
location of the nodes that define the cubic spline, but only on the actual shape
of the boundary curve, as specified by the user; perhaps the user would be
allowed to identify points of high curvature, or places where the mesh generator
would be required to place a node. The crucible boundary curve should not
be restricted to monotonicity or bounded in variation. Such restrictions can be
handled by the optimization code, if desired, but the mesh generator should not
impose them. In any case, if input data violates any implicit assumptions of the
mesh generator, it should detect them, print a warning message, and stop.

4 Using Temperature as the Control

An effort was made to find some other physically reasonable quantities to vary
and control. It seemed reasonable to try using the quantity TW , which in the
MASTRAPP2d program represents the uniform temperature of the crucible.
This quantity is easily measured and controlled experimentally, and it is the
most obvious means by which the behavior of the system is affected.

Instead of trying to minimize the total velocity magnitude, it was decided
instead to try to achieve some desired velocity magnitude. This would allow us
to seek a solution which had enough flow to keep the melted region mixing, while
avoiding solutions with very high velocity spikes that might harm the steady
accretion of the crystal.

For any time t, we defined the total deviation from the desired average
velocity as:

f(t) ≡ (

∫
Ω

(Vave − (u(x, y, t)2 + v(x, y, t)2)
1
2)2d Ω)

1
2 (3)

which allowed us to define the cost functional as:

J2(TW) ≡
∫ t1

t0

f(t) dt. (4)

We then set the initial value of TW to 1712 degrees, and the desired average
velocity Vave to 1850, which I came up with as a figure not too far from the
average velocity of the original data in Zhang’s example problem. For the time
integration, I only took two time steps. The cost function began at J2(1712) =
1132.75, and after 13 optimization steps, we reached a solution with TW =
1683.90 and J2(1683.90) = 1097.23, a small but respectable drop.

For a problem with a single parameter and a reasonable starting guess, this
behavior can be taken as typical; the number of optimization steps should be
about the same even if the time steps were increased to the value of 200 that
Zhang recommends for a production run.

7

5 Open Questions

The initial efforts have shown that a variety of cost functionals and controls can
be chosen, and that, barring failures of the simulation algorithm, an optimizing
set of controls can be found. As mentioned earlier, however, these efforts have
been experimental, and have chosen the costs and controls somewhat arbitrarily.
Before further development efforts are made, it is important to decide what the
costs and controls really should be, and to make the simulation code more
flexible. In particular:

� First, it is necessary to decide on the physical quantities or costs to be
controlled. These could be integrals over the region, or the curvature or
length of some interface, or the amount of energy expended; moreover,
some weighted combination of such quantities could be handled. It is
only necessary to clearly detail what the quantities are, and how they are
related to data computed within the program.

� Secondly, the physical quantities that represent the controls must be cho-
sen. For meaningful computations, these should represent items that can
actually be varied experimentally. Moreover, the program must be able to
represent such quantities with a discrete set of data, and solve the state
equations that correspond to a wide range of values of that data.

� Thirdly, the simulation code must be made more robust, flexible and gen-
eral. The code has broken down repeatedly when handling variations of
the original crucible specification. While it may be decided not to vary
the crucible, there are many other parts of the code which are currently
“hard-wired”, particularly geometric quantities, including the location and
shape of the crystal, the location of the melt interface, the total number
of grid lines, and the number of grid lines drawn in the crystal and melt
subregions. Even to do a problem with a finer grid requires a fair amount
of tinkering with obscure lines of code. During the optimization of a par-
ticular problem, a variety of physical states must be computed, and it is
necessary that the code be able to handle a wide range of problem data
smoothly. Since the boundary conditions, physical parameters, and geo-
metric specifications are also likely to be of interest, the code should be
modified to make them easy to specify and vary.

8

