program main !*****************************************************************************80 ! !! MAIN is the main program for TRIANGULATION_QUALITY. ! ! Discussion: ! ! TRIANGULATION_QUALITY determines quality measures for a triangulation. ! ! The code has been modified to 'allow' 6-node triangulations. ! However, no effort is made to actually process the midside nodes. ! Only information from the vertices is used. ! ! The three quality measures are: ! ! ALPHA_MEASURE ! AREA_MEASURE ! Q_MEASURE ! ! In each case, the ideal value of the quality measure is 1, and ! the worst possible value is 0. ! ! The program also prints out the geometric bandwidth, which is the ! bandwidth of the adjacency matrix of the nodes. ! ! Usage: ! ! triangulation_quality prefix ! ! where ! ! * prefix_nodes.txt contains nodal coordinates; ! * prefix_elements.txt contains the element definitions. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 August 2009 ! ! Author: ! ! John Burkardt ! ! Local: ! ! Local, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), ! lists the nodes that make up each element. ! ! Local, integer ELEMENT_NUM, the number of elements. ! ! Local, integer ELEMENT_ORDER, the order of the elements, ! either 3 or 6. ! ! Local, integer NODE_DIM, the spatial dimension. ! ! Local, integer NODE_NUM, the number of nodes. ! ! Local, real ( kind = rk ) NODE_XY(DIM_NUM,NODE_NUM), the point set. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alpha_area real ( kind = rk ) alpha_ave real ( kind = rk ) alpha_min real ( kind = rk ) area_ave real ( kind = rk ) area_max real ( kind = rk ) area_min integer area_negative real ( kind = rk ) area_ratio real ( kind = rk ) area_std integer area_zero integer arg_num character ( len = 255 ) element_filename integer, allocatable, dimension ( :, : ) :: element_node integer element_num integer element_order integer iarg integer iargc integer m integer ml integer mu integer node_dim character ( len = 255 ) node_filename integer node_num real ( kind = rk ), allocatable, dimension ( :, : ) :: node_xy character ( len = 255 ) prefix real ( kind = rk ) q_area real ( kind = rk ) q_ave real ( kind = rk ) q_max real ( kind = rk ) q_min write ( *, '(a)' ) ' ' call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGULATION_QUALITY:' write ( *, '(a)' ) ' FORTRAN90 version:' write ( *, '(a)' ) ' Compute triangulation quality measures.' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! Argument 1 is the common filename prefix. ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, prefix ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGULATION_QUALITY:' write ( *, '(a)' ) ' Please enter the filename prefix.' read ( *, '(a)' ) prefix end if ! ! Create the filenames. ! node_filename = trim ( prefix ) // '_nodes.txt' element_filename = trim ( prefix ) // '_elements.txt' ! ! Read the node data. ! call r8mat_header_read ( node_filename, node_dim, node_num ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' & // trim ( node_filename ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Spatial dimension NODE_DIM = ', node_dim write ( *, '(a,i8)' ) ' Number of points NODE_NUM = ', node_num if ( node_dim /= 2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGULATION_QUALITY - Fatal error!' write ( *, '(a)' ) ' Dataset must have spatial dimension 2.' stop end if allocate ( node_xy(1:node_dim,1:node_num) ) call r8mat_data_read ( node_filename, node_dim, node_num, node_xy ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' & // trim ( node_filename ) //'".' call r8mat_transpose_print_some ( node_dim, node_num, node_xy, 1, 1, & node_dim, 5, ' First 5 nodes:' ) ! ! Read the element data. ! call i4mat_header_read ( element_filename, element_order, & element_num ) if ( element_order /= 3 .and. element_order /= 6 ) then write ( *, * ) ' ' write ( *, '(a)' ) 'TRIANGULATION_QUALITY - Fatal error!' write ( *, '(a)' ) ' Data is not for a 3-node or 6-node triangulation.' stop end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' & // trim ( element_filename ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Triangle order = ', element_order write ( *, '(a,i8)' ) ' Number of triangles ELEMENT_NUM = ', element_num allocate ( element_node(1:element_order,1:element_num) ) call i4mat_data_read ( element_filename, element_order, & element_num, element_node ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' & // trim ( element_filename ) //'".' call i4mat_transpose_print_some ( element_order, element_num, & element_node, 1, 1, element_order, 10, ' First 10 triangles:' ) ! ! Detect and correct 0-based indexing. ! call mesh_base_one ( node_num, element_order, element_num, element_node ) ! ! Compute the measures. ! call alpha_measure ( node_num, node_xy, element_order, element_num, & element_node, alpha_min, alpha_ave, alpha_area ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' ALPHA compares the smallest angle against 60 degrees.' write ( *, '(a)' ) & ' Values of ALPHA range from 0 (extremely poor) to 1 (excellent).' write ( *, '(a)' ) ' (The second figure is the same number in degrees.)' write ( *, '(a)' ) ' ' write ( *, '(a,g14.6,2x,g14.6)' ) & ' ALPHA_MIN : minimum over all triangles = ', & alpha_min, alpha_min * 60.0D+00 write ( *, '(a,g14.6,2x,g14.6)' ) & ' ALPHA_AVE : average over all triangles = ', & alpha_ave, alpha_ave * 60.0D+00 write ( *, '(a,g14.6,2x,g14.6)' ) & ' ALPHA_AREA : average weighted by area = ', & alpha_area, alpha_area * 60.0D+00 call area_measure ( node_num, node_xy, element_order, element_num, & element_node, area_min, area_max, area_ratio, area_ave, area_std, & area_negative, area_zero ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' AREA compares the areas of the triangles.' write ( *, '(a)' ) & ' Values of AREA_RATIO range from 0 (extremely poor) to 1 (excellent).' write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' AREA_MIN : minimum area = ', area_min write ( *, '(a,g14.6)' ) ' AREA_MAX : maximum area = ', area_max write ( *, '(a,g14.6)' ) ' AREA_RATIO : minimum/maximum area = ', area_ratio write ( *, '(a,g14.6)' ) ' AREA_AVE : average area = ', area_ave write ( *, '(a,g14.6)' ) ' AREA_STD : standard deviation = ', area_std write ( *, '(a,i8)' ) & ' AREA_NEG : area < 0 = ', area_negative write ( *, '(a,i8)' ) ' AREA_ZERO : area = 0 = ', area_zero call q_measure ( node_num, node_xy, element_order, element_num, & element_node, q_min, q_max, q_ave, q_area ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Q is the ratio of 2 * inradius to outradius.' write ( *, '(a)' ) & ' Values of Q range from 0 (extremely poor) to 1 (excellent).' write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Q_MIN : minimum Q = ', q_min write ( *, '(a,g14.6)' ) ' Q_MAX : maximum Q = ', q_max write ( *, '(a,g14.6)' ) ' Q_AVE : average Q = ', q_ave write ( *, '(a,g14.6)' ) ' Q_AREA : average Q weighted by area = ', q_area call bandwidth_mesh ( element_order, element_num, element_node, ml, mu, m ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The geometric bandwidth M = ', m ! ! Free memory. ! deallocate ( node_xy ) deallocate ( element_node ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGULATION_QUALITY:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine alpha_measure ( n, z, element_order, element_num, element_node, & alpha_min, alpha_ave, alpha_area ) !*****************************************************************************80 ! !! ALPHA_MEASURE determines the triangulation quality measure ALPHA. ! ! Discusion: ! ! The ALPHA measure evaluates the uniformity of the shapes of the triangles ! defined by a triangulated pointset. ! ! We compute the minimum angle among all the triangles in the triangulated ! dataset and divide by the maximum possible value (which, in degrees, ! is 60). The best possible value is 1, and the worst 0. A good ! triangulation should have an ALPHA score close to 1. ! ! The code has been modified to 'allow' 6-node triangulations. ! However, no effort is made to actually process the midside nodes. ! Only information from the vertices is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 June 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of points. ! ! Input, real ( kind = rk ) Z(2,N), the points. ! ! Input, integer TRIANGLE_ORDER, the order of the triangles. ! ! Input, integer TRIANGLE_NUM, the number of triangles. ! ! Input, integer TRIANGLE_NODE(TRIANGLE_ORDER,TRIANGLE_NUM), ! the triangulation. ! ! Output, real ( kind = rk ) ALPHA_MIN, the minimum value of ALPHA over all ! triangles. ! ! Output, real ( kind = rk ) ALPHA_AVE, the value of ALPHA averaged over ! all triangles. ! ! Output, real ( kind = rk ) ALPHA_AREA, the value of ALPHA averaged over ! all triangles and weighted by area. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer element_num integer element_order real ( kind = rk ) a_angle integer a_index real ( kind = rk ) a_x real ( kind = rk ) a_y real ( kind = rk ) ab_len real ( kind = rk ) alpha real ( kind = rk ) alpha_area real ( kind = rk ) alpha_ave real ( kind = rk ) alpha_min real ( kind = rk ) arc_cosine real ( kind = rk ) area real ( kind = rk ) area_total real ( kind = rk ) b_angle integer b_index real ( kind = rk ) b_x real ( kind = rk ) b_y real ( kind = rk ) bc_len real ( kind = rk ) c_angle integer c_index real ( kind = rk ) c_x real ( kind = rk ) c_y real ( kind = rk ) ca_len real ( kind = rk ), parameter :: pi = 3.141592653589793D+00 integer triangle integer element_node(element_order,element_num) real ( kind = rk ) z(2,n) alpha_min = huge ( alpha ) alpha_ave = 0.0D+00 alpha_area = 0.0D+00 area_total = 0.0D+00 do triangle = 1, element_num a_index = element_node(1,triangle) b_index = element_node(2,triangle) c_index = element_node(3,triangle) a_x = z(1,a_index) a_y = z(2,a_index) b_x = z(1,b_index) b_y = z(2,b_index) c_x = z(1,c_index) c_y = z(2,c_index) area = 0.5D+00 * abs ( a_x * ( b_y - c_y ) & + b_x * ( c_y - a_y ) & + c_x * ( a_y - b_y ) ) ab_len = sqrt ( ( a_x - b_x )**2 + ( a_y - b_y )**2 ) bc_len = sqrt ( ( b_x - c_x )**2 + ( b_y - c_y )**2 ) ca_len = sqrt ( ( c_x - a_x )**2 + ( c_y - a_y )**2 ) ! ! Take care of a ridiculous special case. ! if ( ab_len == 0.0D+00 .and. & bc_len == 0.0D+00 .and. & ca_len == 0.0D+00 ) then a_angle = 2.0D+00 * pi / 3.0D+00 b_angle = 2.0D+00 * pi / 3.0D+00 c_angle = 2.0D+00 * pi / 3.0D+00 else if ( ca_len == 0.0D+00 .or. ab_len == 0.0D+00 ) then a_angle = pi else a_angle = arc_cosine ( ( ca_len**2 + ab_len**2 - bc_len**2 ) & / ( 2.0D+00 * ca_len * ab_len ) ) end if if ( ab_len == 0.0D+00 .or. bc_len == 0.0D+00 ) then b_angle = pi else b_angle = arc_cosine ( ( ab_len**2 + bc_len**2 - ca_len**2 ) & / ( 2.0D+00 * ab_len * bc_len ) ) end if if ( bc_len == 0.0D+00 .or. ca_len == 0.0D+00 ) then c_angle = pi else c_angle = arc_cosine ( ( bc_len**2 + ca_len**2 - ab_len**2 ) & / ( 2.0D+00 * bc_len * ca_len ) ) end if end if alpha_min = min ( alpha_min, a_angle ) alpha_min = min ( alpha_min, b_angle ) alpha_min = min ( alpha_min, c_angle ) alpha_ave = alpha_ave + alpha_min alpha_area = alpha_area + area * alpha_min area_total = area_total + area end do alpha_ave = alpha_ave / real ( element_num, kind = rk ) alpha_area = alpha_area / area_total ! ! Normalize angles from [0,pi/3] radians into qualities in [0,1]. ! alpha_min = alpha_min * 3.0D+00 / pi alpha_ave = alpha_ave * 3.0D+00 / pi alpha_area = alpha_area * 3.0D+00 / pi return end function arc_cosine ( c ) !*****************************************************************************80 ! !! ARC_COSINE computes the arc cosine function, with argument truncation. ! ! Discussion: ! ! If you call your system ACOS routine with an input argument that is ! even slightly outside the range [-1.0, 1.0 ], you may get an unpleasant ! surprise (I did). ! ! This routine simply truncates arguments outside the range. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 December 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) C, the argument. ! ! Output, real ( kind = rk ) ARC_COSINE, an angle whose cosine is C. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) arc_cosine real ( kind = rk ) c real ( kind = rk ) c2 c2 = c c2 = max ( c2, -1.0D+00 ) c2 = min ( c2, +1.0D+00 ) arc_cosine = acos ( c2 ) return end subroutine area_measure ( n, z, element_order, element_num, element_node, & area_min, area_max, area_ratio, area_ave, area_std, area_negative, area_zero ) !*****************************************************************************80 ! !! AREA_MEASURE determines the area ratio quality measure. ! ! Discusion: ! ! This measure computes the area of every triangle, and returns ! the ratio of the minimum to the maximum triangle. A value of ! 1 is "perfect", indicating that all triangles have the same area. ! A value of 0 is the worst possible result. ! ! For these measurements, the absolute value of the area is considered, ! ignoring the triangle orientation. ! ! However, the routine also returns a count of the number of triangles ! whose area is negative, or zero. ! ! The code has been modified to 'allow' 6-node triangulations. ! However, no effort is made to actually process the midside nodes. ! Only information from the vertices is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 November 2011 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of points. ! ! Input, real ( kind = rk ) Z(2,N), the points. ! ! Input, integer TRIANGLE_ORDER, the order of the triangles. ! ! Input, integer TRIANGLE_NUM, the number of triangles. ! ! Input, integer TRIANGLE_NODE(TRIANGLE_ORDER,TRIANGLE_NUM), ! the triangulation. ! ! Output, real ( kind = rk ) AREA_MIN, AREA_MAX, the minimum and maximum ! areas. ! ! Output, real ( kind = rk ) AREA_RATIO, the ratio of the minimum to the ! maximum area. ! ! Output, real ( kind = rk ) AREA_AVE, the average area. ! ! Output, real ( kind = rk ) AREA_STD, the standard deviation of the areas. ! ! Output, integer AREA_NEGATIVE, the number of triangles with ! negative area. This suggests an orientation error. ! ! Output, integer AREA_ZERO, the number of triangles with zero ! area. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer element_num integer element_order real ( kind = rk ) area real ( kind = rk ) area_ave real ( kind = rk ) area_max real ( kind = rk ) area_min integer area_negative real ( kind = rk ) area_ratio real ( kind = rk ) area_std integer area_zero integer triangle integer element_node(element_order,element_num) real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 real ( kind = rk ) y1 real ( kind = rk ) y2 real ( kind = rk ) y3 real ( kind = rk ) z(2,n) area_max = 0.0D+00 area_min = huge ( area_min ) area_ave = 0.0 area_negative = 0 area_zero = 0 do triangle = 1, element_num x1 = z(1,element_node(1,triangle)) y1 = z(2,element_node(1,triangle)) x2 = z(1,element_node(2,triangle)) y2 = z(2,element_node(2,triangle)) x3 = z(1,element_node(3,triangle)) y3 = z(2,element_node(3,triangle)) area = 0.5D+00 * ( x1 * ( y2 - y3 ) & + x2 * ( y3 - y1 ) & + x3 * ( y1 - y2 ) ) if ( area == 0.0D+00 ) then area_zero = area_zero + 1 end if if ( area < 0.0D+00 ) then area_negative = area_negative + 1 end if area_min = min ( area_min, abs ( area ) ) area_max = max ( area_max, abs ( area ) ) area_ave = area_ave + abs ( area ) end do area_ave = area_ave / real ( element_num, kind = rk ) area_std = 0.0D+00 do triangle = 1, element_num x1 = z(1,element_node(1,triangle)) y1 = z(2,element_node(1,triangle)) x2 = z(1,element_node(2,triangle)) y2 = z(2,element_node(2,triangle)) x3 = z(1,element_node(3,triangle)) y3 = z(2,element_node(3,triangle)) area = 0.5D+00 * abs ( x1 * ( y2 - y3 ) & + x2 * ( y3 - y1 ) & + x3 * ( y1 - y2 ) ) area_std = area_std + ( area - area_ave )**2 end do area_std = sqrt ( area_std / real ( element_num, kind = rk ) ) if ( 0.0D+00 < area_max ) then area_ratio = area_min / area_max else area_ratio = 0.0D+00 end if return end subroutine bandwidth_mesh ( element_order, element_num, element_node, & ml, mu, m ) !*****************************************************************************80 ! !! BANDWIDTH_MESH: bandwidth of finite element mesh. ! ! Discussion: ! ! The quantity computed here is the "geometric" bandwidth determined ! by the finite element mesh alone. ! ! If a single finite element variable is associated with each node ! of the mesh, and if the nodes and variables are numbered in the ! same way, then the geometric bandwidth is the same as the bandwidth ! of a typical finite element matrix. ! ! The bandwidth M is defined in terms of the lower and upper bandwidths: ! ! M = ML + 1 + MU ! ! where ! ! ML = maximum distance from any diagonal entry to a nonzero ! entry in the same row, but earlier column, ! ! MU = maximum distance from any diagonal entry to a nonzero ! entry in the same row, but later column. ! ! Because the finite element node adjacency relationship is symmetric, ! we are guaranteed that ML = MU. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ELEMENT_ORDER, the order of the elements. ! ! Input, integer ELEMENT_NUM, the number of elements. ! ! Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM); ! ELEMENT_NODE(I,J) is the global index of local node I in element J. ! ! Output, integer ML, MU, the lower and upper bandwidths ! of the matrix. ! ! Output, integer M, the bandwidth of the matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer element_num integer element_order integer element integer element_node(element_order,element_num) integer global_i integer global_j integer local_i integer local_j integer m integer ml integer mu ml = 0 mu = 0 do element = 1, element_num do local_i = 1, element_order global_i = element_node(local_i,element) do local_j = 1, element_order global_j = element_node(local_j,element) mu = max ( mu, global_j - global_i ) ml = max ( ml, global_i - global_j ) end do end do end do m = ml + 1 + mu return end subroutine ch_cap ( c ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character C, the character to capitalize. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c integer itemp itemp = ichar ( c ) if ( 97 <= itemp .and. itemp <= 122 ) then c = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is .TRUE. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) logical ch_eqi character c1 character c1_cap character c2 character c2_cap c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the value of a base 10 digit. ! ! Example: ! ! C DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer DIGIT, the corresponding value. If C was ! 'illegal', then DIGIT is -1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c integer digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c == ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_filename, column_num ) !*****************************************************************************80 ! !! FILE_COLUMN_COUNT counts the number of columns in the first line of a file. ! ! Discussion: ! ! The file is assumed to be a simple text file. ! ! Most lines of the file is presumed to consist of COLUMN_NUM words, ! separated by spaces. There may also be some blank lines, and some ! comment lines, ! which have a "#" in column 1. ! ! The routine tries to find the first non-comment non-blank line and ! counts the number of words in that line. ! ! If all lines are blanks or comments, it goes back and tries to analyze ! a comment line. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the file. ! ! Output, integer COLUMN_NUM, the number of columns in the file. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer column_num logical got_one character ( len = * ) input_filename integer input_unit integer ios character ( len = 255 ) line ! ! Open the file. ! call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & form = 'formatted', access = 'sequential', iostat = ios ) if ( ios /= 0 ) then column_num = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Fatal error!' write ( *, '(a)' ) ' Could not open the file:' write ( *, '(a)' ) ' ' // trim ( input_filename ) return end if ! ! Read one line, but skip blank lines and comment lines. ! got_one = .false. do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if if ( line(1:1) == '#' ) then cycle end if got_one = .true. exit end do if ( .not. got_one ) then rewind ( input_unit ) do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if got_one = .true. exit end do end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning!' write ( *, '(a)' ) ' The file does not seem to contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_filename, row_num ) !*****************************************************************************80 ! !! FILE_ROW_COUNT counts the number of row records in a file. ! ! Discussion: ! ! It does not count lines that are blank, or that begin with a ! comment symbol '#'. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer ROW_NUM, the number of rows found. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer bad_num integer comment_num integer ierror character ( len = * ) input_filename integer input_unit integer ios character ( len = 255 ) line integer record_num integer row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = ios ) if ( ios /= 0 ) then row_num = -1; ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_ROW_COUNT - Fatal error!' write ( *, '(a)' ) ' Could not open the input file: ' // & trim ( input_filename ) stop end if comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then ierror = record_num exit end if record_num = record_num + 1 if ( line(1:1) == '#' ) then comment_num = comment_num + 1 cycle end if if ( len_trim ( line ) == 0 ) then comment_num = comment_num + 1 cycle end if row_num = row_num + 1 end do close ( unit = input_unit ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer IUNIT, the free unit number. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer ios integer iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine i4mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! I4MAT_DATA_READ reads data from an I4MAT file. ! ! Discussion: ! ! The file may contain more than N points, but this routine ! will return after reading N points. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 January 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Output, integer TABLE(M,N), the table data. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer ierror character ( len = * ) input_filename integer input_status integer input_unit integer j character ( len = 255 ) line integer table(m,n) integer x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then ierror = 2 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_i4vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine i4mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! I4MAT_HEADER_READ reads the header from an I4MAT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer M, spatial dimension. ! ! Output, integer N, the number of points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine i4mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m,n) character ( len = * ) title call i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of an I4MAT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 February 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 10 integer m integer n integer a(m,n) character ( len = 7 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i7)') i end do write ( *, '('' Row '',10a7)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(i7)' ) a(i,j) end do write ( *, '(i5,1x,10a7)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine mesh_base_one ( node_num, element_order, element_num, element_node ) !*****************************************************************************80 ! !! MESH_BASE_ONE ensures that the element definition is one-based. ! ! Discussion: ! ! The ELEMENT_NODE array contains nodes indices that form elements. ! The convention for node indexing might start at 0 or at 1. ! Since a FORTRAN90 program will naturally assume a 1-based indexing, it is ! necessary to check a given element definition and, if it is actually ! 0-based, to convert it. ! ! This function attempts to detect 9-based node indexing and correct it. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 October 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, int NODE_NUM, the number of nodes. ! ! Input, int ELEMENT_ORDER, the order of the elements. ! ! Input, int ELEMENT_NUM, the number of elements. ! ! Input/output, int ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the element ! definitions. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer element_num integer element_order integer element_node(element_order,element_num) integer node_max integer node_min integer node_num node_min = node_num + 1 node_max = -1 node_min = minval ( element_node(1:element_order,1:element_num) ) node_max = maxval ( element_node(1:element_order,1:element_num) ) if ( node_min == 0 .and. node_max == node_num - 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ONE:' write ( *, '(a)' )' The element indexing appears to be 0-based!' write ( *, '(a)' )' This will be converted to 1-based.' element_node(1:element_order,1:element_num) = & element_node(1:element_order,1:element_num) + 1 else if ( node_min == 1 .and. node_max == node_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ONE:' write ( *, '(a)' )' The element indexing appears to be 1-based!' write ( *, '(a)' )' No conversion is necessary.' else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MESH_BASE_ONE - Warning!' write ( *, '(a)' ) ' The element indexing is not of a recognized type.' write ( *, '(a,i8)' ) ' NODE_MIN = ', node_min write ( *, '(a,i8)' ) ' NODE_MAX = ', node_max write ( *, '(a,i8)' ) ' NODE_NUM = ', node_num end if return end subroutine q_measure ( n, z, element_order, element_num, element_node, & q_min, q_max, q_ave, q_area ) !*****************************************************************************80 ! !! Q_MEASURE determines the triangulated pointset quality measure Q. ! ! Discussion: ! ! The Q measure evaluates the uniformity of the shapes of the triangles ! defined by a triangulated pointset. ! ! For a single triangle T, the value of Q(T) is defined as follows: ! ! TAU_IN = radius of the inscribed circle, ! TAU_OUT = radius of the circumscribed circle, ! ! Q(T) = 2 * TAU_IN / TAU_OUT ! = ( B + C - A ) * ( C + A - B ) * ( A + B - C ) / ( A * B * C ) ! ! where A, B and C are the lengths of the sides of the triangle T. ! ! The Q measure computes the value of Q(T) for every triangle T in the ! triangulation, and then computes the minimum of this ! set of values: ! ! Q_MEASURE = min ( all T in triangulation ) Q(T) ! ! In an ideally regular mesh, all triangles would have the same ! equilateral shape, for which Q = 1. A good mesh would have ! 0.5 < Q. ! ! Given the 2D coordinates of a set of N nodes, stored as Z(1:2,1:N), ! a triangulation is a list of TRIANGLE_NUM triples of node indices that form ! triangles. Generally, a maximal triangulation is expected, namely, ! a triangulation whose image is a planar graph, but for which the ! addition of any new triangle would mean the graph was no longer planar. ! A Delaunay triangulation is a maximal triangulation which maximizes ! the minimum angle that occurs in any triangle. ! ! The code has been modified to 'allow' 6-node triangulations. ! However, no effort is made to actually process the midside nodes. ! Only information from the vertices is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 June 2009 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Max Gunzburger and John Burkardt, ! Uniformity Measures for Point Samples in Hypercubes. ! ! Per-Olof Persson and Gilbert Strang, ! A Simple Mesh Generator in MATLAB, ! SIAM Review, ! Volume 46, Number 2, pages 329-345, June 2004. ! ! Parameters: ! ! Input, integer N, the number of points. ! ! Input, real ( kind = rk ) Z(2,N), the points. ! ! Input, integer TRIANGLE_ORDER, the order of the triangles. ! ! Input, integer TRIANGLE_NUM, the number of triangles. ! ! Input, integer TRIANGLE_NODE(TRIANGLE_ORDER,TRIANGLE_NUM), ! the triangulation. ! ! Output, real ( kind = rk ) Q_MIN, Q_MAX, the minimum and maximum values ! of Q over all triangles. ! ! Output, real ( kind = rk ) Q_AVE, the average value of Q. ! ! Output, real ( kind = rk ) Q_AREA, the average value of Q, weighted by ! the area of each triangle. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer element_num integer element_order integer a_index real ( kind = rk ) ab_length real ( kind = rk ) area real ( kind = rk ) area_total integer b_index real ( kind = rk ) bc_length integer c_index real ( kind = rk ) ca_length real ( kind = rk ) q real ( kind = rk ) q_area real ( kind = rk ) q_ave real ( kind = rk ) q_max real ( kind = rk ) q_min integer triangle integer element_node(element_order,element_num) real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 real ( kind = rk ) y1 real ( kind = rk ) y2 real ( kind = rk ) y3 real ( kind = rk ) z(2,n) q_min = huge ( q_min ) q_max = - huge ( q_max ) q_ave = 0.0D+00 q_area = 0.0D+00 area_total = 0.0D+00 do triangle = 1, element_num a_index = element_node(1,triangle) b_index = element_node(2,triangle) c_index = element_node(3,triangle) ab_length = sqrt ( & ( z(1,a_index) - z(1,b_index) )**2 & + ( z(2,a_index) - z(2,b_index) )**2 ) bc_length = sqrt ( & ( z(1,b_index) - z(1,c_index) )**2 & + ( z(2,b_index) - z(2,c_index) )**2 ) ca_length = sqrt ( & ( z(1,c_index) - z(1,a_index) )**2 & + ( z(2,c_index) - z(2,a_index) )**2 ) q = ( bc_length + ca_length - ab_length ) & * ( ca_length + ab_length - bc_length ) & * ( ab_length + bc_length - ca_length ) & / ( ab_length * bc_length * ca_length ) x1 = z(1,element_node(1,triangle)) y1 = z(2,element_node(1,triangle)) x2 = z(1,element_node(2,triangle)) y2 = z(2,element_node(2,triangle)) x3 = z(1,element_node(3,triangle)) y3 = z(2,element_node(3,triangle)) area = 0.5D+00 * abs ( x1 * ( y2 - y3 ) & + x2 * ( y3 - y1 ) & + x3 * ( y1 - y2 ) ) q_min = min ( q_min, q ) q_max = max ( q_max, q ) q_ave = q_ave + q q_area = q_area + q * area area_total = area_total + area end do q_ave = q_ave / real ( element_num, kind = rk ) if ( 0.0D+00 < area_total ) then q_area = q_area / area_total else q_area = 0.0D+00 end if return end subroutine r8mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_DATA_READ reads data from an R8MAT file. ! ! Discussion: ! ! The file may contain more than N points, but this routine will ! return after reading N of them. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Output, real ( kind = rk ) TABLE(M,N), the table data. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer ierror character ( len = * ) input_filename integer input_status integer input_unit integer j character ( len = 255 ) line real ( kind = rk ) table(m,n) real ( kind = rk ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! R8MAT_HEADER_READ reads the header from an R8MAT file. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer M, spatial dimension. ! ! Output, integer N, the number of points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine r8mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i7,7x)') i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine s_to_i4 ( s, ival, ierror, length ) !*****************************************************************************80 ! !! S_TO_I4 reads an I4 from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, a string to be examined. ! ! Output, integer IVAL, the value read from the string. ! If the string is blank, then IVAL will be returned 0. ! ! Output, integer IERROR, an error flag. ! 0, no error. ! 1, an error occurred. ! ! Output, integer LENGTH, the number of characters of S ! used to make IVAL. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c integer i integer ierror integer isgn integer istate integer ival integer length character ( len = * ) s ierror = 0 istate = 0 isgn = 1 ival = 0 do i = 1, len_trim ( s ) c = s(i:i) ! ! Haven't read anything. ! if ( istate == 0 ) then if ( c == ' ' ) then else if ( c == '-' ) then istate = 1 isgn = -1 else if ( c == '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read the sign, expecting digits. ! else if ( istate == 1 ) then if ( c == ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read at least one digit, expecting more. ! else if ( istate == 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do ! ! If we read all the characters in the string, see if we're OK. ! if ( istate == 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_i4vec ( s, n, ivec, ierror ) !*****************************************************************************80 ! !! S_TO_I4VEC reads an I4VEC from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 October 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer N, the number of values expected. ! ! Output, integer IVEC(N), the values read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i integer ierror integer ilo integer ivec(n) integer length character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_i4 ( s(ilo:), ivec(i), ierror, length ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + length end do return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8 from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = rk ) DVAL, the value read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) logical ch_eqi character c real ( kind = rk ) dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig real ( kind = rk ) rbot real ( kind = rk ) rexp real ( kind = rk ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = rk ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = rk ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length+1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = rk ) & / real ( jbot, kind = rk ) ) end if end if dval = real ( isgn, kind = rk ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) !*****************************************************************************80 ! !! S_TO_R8VEC reads an R8VEC from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer N, the number of values expected. ! ! Output, real ( kind = rk ) RVEC(N), the values read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i integer ierror integer ilo integer lchar real ( kind = rk ) rvec(n) character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + lchar end do return end subroutine s_word_count ( s, nword ) !*****************************************************************************80 ! !! S_WORD_COUNT counts the number of "words" in a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be examined. ! ! Output, integer NWORD, the number of "words" in the string. ! Words are presumed to be separated by one or more blanks. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) logical blank integer i integer lens integer nword character ( len = * ) s nword = 0 lens = len ( s ) if ( lens <= 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) == ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end