program main !*****************************************************************************80 ! !! tet_mesh_boundary() determines the triangles bounding a tetrahedral mesh. ! ! Discussion: ! ! TET_MESH_BOUNDARY reads files defining a tetrahedral mesh, and ! creates new files that define the 3D triangular mesh formed ! by the boundary of the tetrahedral mesh. ! ! Usage: ! ! tet_mesh_boundary prefix ! ! where ! ! * prefix_nodes.txt contains the node coordinates; ! * prefix_elements.txt contains the element definitions; ! * prefix_boundary_node_mask.txt is 0 for interior nodes, ! 1 for boundary nodes; ! * prefix_boundary_nodes.txt contains the boundary nodes. ! * prefix_boundary_elements.txt contains the boundary elements (faces). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 December 2010 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer arg_num character ( len = 255 ) boundary_element_filename integer boundary_element_num integer, allocatable :: boundary_element_node(:,:) integer boundary_element_order character ( len = 255 ) boundary_node_filename integer, allocatable :: boundary_node_index(:) integer, allocatable :: boundary_node_mask(:) character ( len = 255 ) boundary_node_mask_filename integer boundary_node_num real ( kind = rk ), allocatable :: boundary_node_xyz(:,:) integer dim_num character ( len = 255 ) element_filename integer, allocatable :: element_node(:,:) integer element_num integer element_order integer i integer iarg integer iargc integer j integer j2 integer node_num character ( len = 255 ) node_filename real ( kind = rk ), allocatable :: node_xyz(:,:) character ( len = 255 ) prefix call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'tet_mesh_boundary():' write ( *, '(a)' ) ' FORTRAN90 version:' write ( *, '(a)' ) ' Read files defining a tet mesh dataset.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Determine the faces that form the boundary;' write ( *, '(a)' ) ' write a boundary node mask file,' write ( *, '(a)' ) ' write a boundary node file, ' write ( *, '(a)' ) ' and a boundary element file,' write ( *, '(a)' ) ' defining the boundary as a TRI_SURFACE.' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! Argument 1 is the common file prefix. ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, prefix ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'tet_mesh_boundary():' write ( *, '(a)' ) ' Please enter the filename prefix:' read ( *, '(a)' ) prefix end if ! ! Create the filenames. ! node_filename = trim ( prefix ) // '_nodes.txt' element_filename = trim ( prefix ) // '_elements.txt' boundary_node_mask_filename = trim ( prefix ) // '_boundary_node_mask.txt' boundary_node_filename = trim ( prefix ) // '_boundary_nodes.txt' boundary_element_filename = trim ( prefix ) // '_boundary_elements.txt' ! ! Read the nodes. ! call r8mat_header_read ( node_filename, dim_num, node_num ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' // trim ( node_filename ) //'".' if ( dim_num /= 3 ) then write ( *, * ) ' ' write ( *, '(a)' ) 'TET_MESH_BOUNDARY - Fatal error!' write ( *, '(a)' ) ' This program can only handle 3D nodes.' stop end if write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Spatial dimension DIM_NUM = ', dim_num write ( *, '(a,i8)' ) ' Number of nodes NODE_NUM = ', node_num allocate ( node_xyz(1:dim_num,1:node_num) ) call r8mat_data_read ( node_filename, dim_num, node_num, node_xyz ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' // trim ( node_filename ) //'".' call r8mat_transpose_print_some ( dim_num, node_num, node_xyz, 1, 1, & dim_num, 5, ' The first 5 nodes:' ) ! ! Read the elements. ! call i4mat_header_read ( element_filename, element_order, element_num ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' & // trim ( element_filename ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Element order = ', element_order write ( *, '(a,i8)' ) ' Number of elements = ', element_num if ( element_order /= 4 .and. element_order /= 10 ) then write ( *, * ) ' ' write ( *, '(a)' ) 'TET_MESH_BOUNDARY - Fatal error!' write ( *, '(a)' ) ' Unexpected element order.' stop end if allocate ( element_node(1:element_order,1:element_num) ) call i4mat_data_read ( element_filename, element_order, & element_num, element_node ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the data in "' & // trim ( element_filename ) //'".' call i4mat_transpose_print_some ( element_order, element_num, & element_node, 1, 1, element_order, 5, ' First 5 elements:' ) ! ! Detect and correct 0-based indexing. ! call mesh_base_one ( node_num, element_order, element_num, element_node ) ! ! Count the boundary faces and nodes. ! allocate ( boundary_node_mask(1:node_num) ) call tet_mesh_boundary_count ( element_order, element_num, element_node, & node_num, boundary_node_num, boundary_element_num, boundary_node_mask ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Number of faces is ', 4 * element_num write ( *, '(a,i8)' ) ' Number of boundary faces is ', boundary_element_num write ( *, '(a,i8)' ) ' Number of boundary nodes is ', boundary_node_num ! ! Set the boundary nodes and write them out. ! allocate ( boundary_node_xyz(1:dim_num,1:boundary_node_num) ) j2 = 0 do j = 1, node_num if ( boundary_node_mask(j) == 1 ) then j2 = j2 + 1 boundary_node_xyz(1:3,j2) = node_xyz(1:3,j) end if end do call r8mat_write ( boundary_node_filename, dim_num, boundary_node_num, & boundary_node_xyz ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Wrote the boundary node coordinates to "' & // trim ( boundary_node_filename ) //'".' ! ! Write the boundary node mask data. ! call i4mat_write ( boundary_node_mask_filename, 1, node_num, & boundary_node_mask ) write ( *, '(a)' ) ' Wrote the boundary node mask to "' & // trim ( boundary_node_mask_filename ) //'".' ! ! Compute the reduced indices for the boundary nodes. ! allocate ( boundary_node_index(node_num) ) call i4vec_cum ( node_num, boundary_node_mask, boundary_node_index ) ! ! Set the boundary faces, applying the reduced index labels, and write them. ! if ( element_order == 4 ) then boundary_element_order = 3 else if ( element_order == 10 ) then boundary_element_order = 6 end if allocate ( & boundary_element_node(1:boundary_element_order,boundary_element_num) ) call tet_mesh_boundary_set ( element_order, element_num, element_node, & boundary_element_order, boundary_element_num, boundary_element_node ) do j = 1, boundary_element_num do i = 1, boundary_element_order boundary_element_node(i,j) = boundary_node_index ( & boundary_element_node(i,j) ) end do end do call i4mat_write ( boundary_element_filename, boundary_element_order, & boundary_element_num, boundary_element_node ) write ( *, '(a)' ) ' Wrote the boundary face coordinates to "' & // trim ( boundary_element_filename ) //'".' ! ! Free memory. ! deallocate ( boundary_element_node ) deallocate ( boundary_node_index ) deallocate ( boundary_node_mask ) deallocate ( boundary_node_xyz ) deallocate ( element_node ) deallocate ( node_xyz ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'tet_mesh_boundary():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ch_cap ( c ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character C, the character to capitalize. ! implicit none character c integer itemp itemp = ichar ( c ) if ( 97 <= itemp .and. itemp <= 122 ) then c = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is .TRUE. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none logical ch_eqi character c1 character c1_cap character c2 character c2_cap c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the value of a base 10 digit. ! ! Example: ! ! C DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer DIGIT, the corresponding value. If C was ! 'illegal', then DIGIT is -1. ! implicit none character c integer digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c == ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_filename, column_num ) !*****************************************************************************80 ! !! FILE_COLUMN_COUNT counts the number of columns in the first line of a file. ! ! Discussion: ! ! The file is assumed to be a simple text file. ! ! Most lines of the file is presumed to consist of COLUMN_NUM words, ! separated by spaces. There may also be some blank lines, and some ! comment lines, ! which have a "#" in column 1. ! ! The routine tries to find the first non-comment non-blank line and ! counts the number of words in that line. ! ! If all lines are blanks or comments, it goes back and tries to analyze ! a comment line. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the file. ! ! Output, integer COLUMN_NUM, the number of columns in the file. ! implicit none integer column_num logical got_one character ( len = * ) input_filename integer input_unit integer ios character ( len = 255 ) line ! ! Open the file. ! call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & form = 'formatted', access = 'sequential', iostat = ios ) if ( ios /= 0 ) then column_num = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Fatal error!' write ( *, '(a)' ) ' Could not open the file:' write ( *, '(a)' ) ' ' // trim ( input_filename ) return end if ! ! Read one line, but skip blank lines and comment lines. ! got_one = .false. do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if if ( line(1:1) == '#' ) then cycle end if got_one = .true. exit end do if ( .not. got_one ) then rewind ( input_unit ) do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if got_one = .true. exit end do end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning!' write ( *, '(a)' ) ' The file does not seem to contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_filename, row_num ) !*****************************************************************************80 ! !! FILE_ROW_COUNT counts the number of row records in a file. ! ! Discussion: ! ! It does not count lines that are blank, or that begin with a ! comment symbol '#'. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer ROW_NUM, the number of rows found. ! implicit none integer bad_num integer comment_num integer ierror character ( len = * ) input_filename integer input_unit integer ios character ( len = 255 ) line integer record_num integer row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = ios ) if ( ios /= 0 ) then row_num = -1; ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_ROW_COUNT - Fatal error!' write ( *, '(a)' ) ' Could not open the input file: ' // & trim ( input_filename ) stop end if comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 do read ( input_unit, '(a)', iostat = ios ) line if ( ios /= 0 ) then ierror = record_num exit end if record_num = record_num + 1 if ( line(1:1) == '#' ) then comment_num = comment_num + 1 cycle end if if ( len_trim ( line ) == 0 ) then comment_num = comment_num + 1 cycle end if row_num = row_num + 1 end do close ( unit = input_unit ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer IUNIT, the free unit number. ! implicit none integer i integer ios integer iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine i4col_compare ( m, n, a, i, j, isgn ) !*****************************************************************************80 ! !! I4COL_COMPARE compares columns I and J of an I4COL. ! ! Example: ! ! Input: ! ! M = 3, N = 4, I = 2, J = 4 ! ! A = ( ! 1 2 3 4 ! 5 6 7 8 ! 9 10 11 12 ) ! ! Output: ! ! ISGN = -1 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 June 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an array of N columns of vectors ! of length M. ! ! Input, integer I, J, the columns to be compared. ! I and J must be between 1 and N. ! ! Output, integer ISGN, the results of the comparison: ! -1, column I < column J, ! 0, column I = column J, ! +1, column J < column I. ! implicit none integer m integer n integer a(m,n) integer i integer isgn integer j integer k ! ! Check. ! if ( i < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a,i8,a)' ) ' Column index I = ', i, ' is less than 1.' stop end if if ( n < i ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a,i8,a)' ) ' N = ', n, ' is less than column index I = ', i stop end if if ( j < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a,i8,a)' ) ' Column index J = ', j, ' is less than 1.' stop end if if ( n < j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_COMPARE - Fatal error!' write ( *, '(a,i8,a)' ) ' N = ', n, ' is less than column index J = ', j stop end if isgn = 0 if ( i == j ) then return end if k = 1 do while ( k <= m ) if ( a(k,i) < a(k,j) ) then isgn = -1 return else if ( a(k,j) < a(k,i) ) then isgn = +1 return end if k = k + 1 end do return end subroutine i4col_sort_a ( m, n, a ) !*****************************************************************************80 ! !! I4COL_SORT_A ascending sorts an I4COL of columns. ! ! Discussion: ! ! In lexicographic order, the statement "X < Y", applied to two real ! vectors X and Y of length M, means that there is some index I, with ! 1 <= I <= M, with the property that ! ! X(J) = Y(J) for J < I, ! and ! X(I) < Y(I). ! ! In other words, the first time they differ, X is smaller. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 September 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of A, and the length of ! a vector of data. ! ! Input, integer N, the number of columns of A. ! ! Input/output, integer A(M,N). ! On input, the array of N columns of M-vectors. ! On output, the columns of A have been sorted in ascending ! lexicographic order. ! implicit none integer m integer n integer a(m,n) integer i integer indx integer isgn integer j if ( m <= 0 ) then return end if if ( n <= 1 ) then return end if ! ! Initialize. ! i = 0 indx = 0 isgn = 0 j = 0 ! ! Call the external heap sorter. ! do call sort_heap_external ( n, indx, i, j, isgn ) ! ! Interchange the I and J objects. ! if ( 0 < indx ) then call i4col_swap ( m, n, a, i, j ) ! ! Compare the I and J objects. ! else if ( indx < 0 ) then call i4col_compare ( m, n, a, i, j, isgn ) else if ( indx == 0 ) then exit end if end do return end subroutine i4col_swap ( m, n, a, j1, j2 ) !*****************************************************************************80 ! !! I4COL_SWAP swaps columns J1 and J2 of a integer array of column data. ! ! Example: ! ! Input: ! ! M = 3, N = 4, J1 = 2, J2 = 4 ! ! A = ( ! 1 2 3 4 ! 5 6 7 8 ! 9 10 11 12 ) ! ! Output: ! ! A = ( ! 1 4 3 2 ! 5 8 7 6 ! 9 12 11 10 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns ! in the array. ! ! Input/output, integer A(M,N), an array of N columns of ! length M. ! ! Input, integer J1, J2, the columns to be swapped. ! implicit none integer m integer n integer a(m,n) integer col(m) integer j1 integer j2 if ( j1 < 1 .or. n < j1 .or. j2 < 1 .or. n < j2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4COL_SWAP - Fatal error!' write ( *, '(a)' ) ' J1 or J2 is out of bounds.' write ( *, '(a,i8)' ) ' J1 = ', j1 write ( *, '(a,i8)' ) ' J2 = ', j2 write ( *, '(a,i8)' ) ' N = ', n stop end if if ( j1 == j2 ) then return end if col(1:m) = a(1:m,j1) a(1:m,j1) = a(1:m,j2) a(1:m,j2) = col(1:m) return end subroutine i4i4i4_sort_a ( i1, i2, i3, j1, j2, j3 ) !*****************************************************************************80 ! !! I4I4I4_SORT_A ascending sorts a triple of I4's. ! ! Discussion: ! ! The program allows the reasonable call: ! ! call i4i4i4_sort_a ( i1, i2, i3, i1, i2, i3 ) ! ! and this will return the reasonable result. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 October 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I1, I2, I3, the values to sort. ! ! Output, integer J1, J2, J3, the sorted values. ! implicit none integer i1 integer i2 integer i3 integer j1 integer j2 integer j3 integer k1 integer k2 integer k3 ! ! Copy arguments, so that the user can make "reasonable" calls like: ! ! call i4i4i4_sort_a ( i1, i2, i3, i1, i2, i3 ) ! k1 = i1 k2 = i2 k3 = i3 j1 = min ( min ( k1, k2 ), min ( k2, k3 ) ) j2 = min ( max ( k1, k2 ), & min ( max ( k2, k3 ), max ( k3, k1 ) ) ) j3 = max ( max ( k1, k2 ), max ( k2, k3 ) ) return end subroutine i4mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! I4MAT_DATA_READ reads data from an I4MAT file. ! ! Discussion: ! ! The file may contain more than N points, but this routine ! will return after reading N points. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 January 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Output, integer TABLE(M,N), the table data. ! implicit none integer m integer n integer ierror character ( len = * ) input_filename integer input_status integer input_unit integer j character ( len = 255 ) line integer table(m,n) integer x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then ierror = 2 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_i4vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine i4mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! I4MAT_HEADER_READ reads the header from an I4MAT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer M, spatial dimension. ! ! Output, integer N, the number of points. ! implicit none character ( len = * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of an I4MAT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 February 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer, parameter :: incx = 10 integer m integer n integer a(m,n) character ( len = 7 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i7)') i end do write ( *, '('' Row '',10a7)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(i7)' ) a(i,j) end do write ( *, '(i5,1x,10a7)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine i4mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! I4MAT_WRITE writes an I4MAT file. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Input, integer TABLE(M,N), the table data. ! implicit none integer m integer n integer j character ( len = * ) output_filename integer output_status integer output_unit character ( len = 30 ) string integer table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! write ( string, '(a1,i8,a4)' ) '(', m, 'i10)' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do ! ! Close the file. ! close ( unit = output_unit ) return end subroutine i4vec_cum ( n, a, a_cum ) !*****************************************************************************80 ! !! I4VEC_CUM computes the cumulutive sum of the entries of an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Example: ! ! Input: ! ! A = (/ 1, 2, 3, 4 /) ! ! Output: ! ! A_CUM = (/ 1, 3, 6, 10 /) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 September 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, integer A(N), the vector to be summed. ! ! Output, integer A_CUM(N), the cumulative sum of the ! entries of A. ! implicit none integer n integer a(n) integer a_cum(1:n) integer i a_cum(1) = a(1) do i = 2, n a_cum(i) = a_cum(i-1) + a(i) end do return end subroutine mesh_base_one ( node_num, element_order, element_num, element_node ) !*****************************************************************************80 ! !! MESH_BASE_ONE ensures that the element definition is one-based. ! ! Discussion: ! ! The ELEMENT_NODE array contains nodes indices that form elements. ! The convention for node indexing might start at 0 or at 1. ! Since a FORTRAN90 program will naturally assume a 1-based indexing, it is ! necessary to check a given element definition and, if it is actually ! 0-based, to convert it. ! ! This function attempts to detect 9-based node indexing and correct it. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 September 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, int NODE_NUM, the number of nodes. ! ! Input, int ELEMENT_ORDER, the order of the elements. ! ! Input, int ELEMENT_NUM, the number of elements. ! ! Input/output, int ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the element ! definitions. ! implicit none integer element_num integer element_order integer element_node(element_order,element_num) integer node_max integer node_min integer node_num node_min = node_num + 1 node_max = -1 node_min = minval ( element_node(1:element_order,1:element_num) ) node_max = maxval ( element_node(1:element_order,1:element_num) ) if ( node_min == 0 .and. node_max == node_num - 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'mesh_base_one():' write ( *, '(a)' )' The element indexing appears to be 0-based!' write ( *, '(a)' )' This will be converted to 1-based.' element_node(1:element_order,1:element_num) = & element_node(1:element_order,1:element_num) + 1 else if ( node_min == 1 .and. node_max == node_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ONE:' write ( *, '(a)' )' The element indexing appears to be 1-based!' write ( *, '(a)' )' No conversion is necessary.' else write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ONE - Warning!' write ( *, '(a)' )' The element indexing is not of a recognized type.' end if return end subroutine r8mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_DATA_READ reads data from an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Discussion: ! ! The file may contain more than N points, but this routine will ! return after reading N of them. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Output, real ( kind = rk ) TABLE(M,N), the data. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer ierror character ( len = * ) input_filename integer input_status integer input_unit integer j character ( len = 255 ) line real ( kind = rk ) table(m,n) real ( kind = rk ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! R8MAT_HEADER_READ reads the header from an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer M, spatial dimension. ! ! Output, integer N, the number of points. ! implicit none character ( len = * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT transposed. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)') i end do write ( *, '('' Row'',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(2x,i8,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine r8mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_WRITE writes an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Input, real ( kind = rk ) TABLE(M,N), the data. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer j character ( len = * ) output_filename integer output_status integer output_unit character ( len = 30 ) string real ( kind = rk ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! ! For less precision in the output file, try: ! ! '(', m, 'g', 14, '.', 6, ')' ! if ( 0 < m .and. 0 < n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) '(', m, 'g', 24, '.', 16, ')' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if ! ! Close the file. ! close ( unit = output_unit ) return end subroutine s_to_i4 ( s, ival, ierror, length ) !*****************************************************************************80 ! !! S_TO_I4 reads an I4 from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, a string to be examined. ! ! Output, integer IVAL, the value read from the string. ! If the string is blank, then IVAL will be returned 0. ! ! Output, integer IERROR, an error flag. ! 0, no error. ! 1, an error occurred. ! ! Output, integer LENGTH, the number of characters of S ! used to make IVAL. ! implicit none character c integer i integer ierror integer isgn integer istate integer ival integer length character ( len = * ) s ierror = 0 istate = 0 isgn = 1 ival = 0 do i = 1, len_trim ( s ) c = s(i:i) ! ! Haven't read anything. ! if ( istate == 0 ) then if ( c == ' ' ) then else if ( c == '-' ) then istate = 1 isgn = -1 else if ( c == '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read the sign, expecting digits. ! else if ( istate == 1 ) then if ( c == ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read at least one digit, expecting more. ! else if ( istate == 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do ! ! If we read all the characters in the string, see if we're OK. ! if ( istate == 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_i4vec ( s, n, ivec, ierror ) !*****************************************************************************80 ! !! S_TO_I4VEC reads an I4VEC from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 October 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer N, the number of values expected. ! ! Output, integer IVEC(N), the values read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer n integer i integer ierror integer ilo integer ivec(n) integer length character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_i4 ( s(ilo:), ivec(i), ierror, length ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + length end do return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8 from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = rk ) DVAL, the value read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c logical ch_eqi real ( kind = rk ) dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig real ( kind = rk ) rbot real ( kind = rk ) rexp real ( kind = rk ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = rk ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = rk ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length + 1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = rk ) & / real ( jbot, kind = rk ) ) end if end if dval = real ( isgn, kind = rk ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) !*****************************************************************************80 ! !! S_TO_R8VEC reads an R8VEC from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer N, the number of values expected. ! ! Output, real ( kind = rk ) RVEC(N), the values read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i integer ierror integer ilo integer lchar real ( kind = rk ) rvec(n) character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + lchar end do return end subroutine s_word_count ( s, nword ) !*****************************************************************************80 ! !! S_WORD_COUNT counts the number of "words" in a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be examined. ! ! Output, integer NWORD, the number of "words" in the string. ! Words are presumed to be separated by one or more blanks. ! implicit none logical blank integer i integer lens integer nword character ( len = * ) s nword = 0 lens = len ( s ) if ( lens <= 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) == ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine sort_heap_external ( n, indx, i, j, isgn ) !*****************************************************************************80 ! !! SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. ! ! Discussion: ! ! The actual list of data is not passed to the routine. Hence this ! routine may be used to sort integers, reals, numbers, names, ! dates, shoe sizes, and so on. After each call, the routine asks ! the user to compare or interchange two items, until a special ! return value signals that the sorting is completed. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 February 2004 ! ! Author: ! ! Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! A Nijenhuis and H Wilf, ! Combinatorial Algorithms, ! Academic Press, 1978, second edition, ! ISBN 0-12-519260-6. ! ! Parameters: ! ! Input, integer N, the number of items to be sorted. ! ! Input/output, integer INDX, the main communication signal. ! ! The user must set INDX to 0 before the first call. ! Thereafter, the user should not change the value of INDX until ! the sorting is done. ! ! On return, if INDX is ! ! greater than 0, ! * interchange items I and J; ! * call again. ! ! less than 0, ! * compare items I and J; ! * set ISGN = -1 if I < J, ISGN = +1 if J < I; ! * call again. ! ! equal to 0, the sorting is done. ! ! Output, integer I, J, the indices of two items. ! On return with INDX positive, elements I and J should be interchanged. ! On return with INDX negative, elements I and J should be compared, and ! the result reported in ISGN on the next call. ! ! Input, integer ISGN, results of comparison of elements I ! and J. ! (Used only when the previous call returned INDX less than 0). ! ISGN <= 0 means I is less than or equal to J; ! 0 <= ISGN means I is greater than or equal to J. ! implicit none integer i integer, save :: i_save = 0 integer indx integer isgn integer j integer, save :: j_save = 0 integer, save :: k = 0 integer, save :: k1 = 0 integer n integer, save :: n1 = 0 ! ! INDX = 0: This is the first call. ! if ( indx == 0 ) then i_save = 0 j_save = 0 k = n / 2 k1 = k n1 = n ! ! INDX < 0: The user is returning the results of a comparison. ! else if ( indx < 0 ) then if ( indx == -2 ) then if ( isgn < 0 ) then i_save = i_save + 1 end if j_save = k1 k1 = i_save indx = -1 i = i_save j = j_save return end if if ( 0 < isgn ) then indx = 2 i = i_save j = j_save return end if if ( k <= 1 ) then if ( n1 == 1 ) then i_save = 0 j_save = 0 indx = 0 else i_save = n1 n1 = n1 - 1 j_save = 1 indx = 1 end if i = i_save j = j_save return end if k = k - 1 k1 = k ! ! 0 < INDX, the user was asked to make an interchange. ! else if ( indx == 1 ) then k1 = k end if do i_save = 2 * k1 if ( i_save == n1 ) then j_save = k1 k1 = i_save indx = -1 i = i_save j = j_save return else if ( i_save <= n1 ) then j_save = i_save + 1 indx = -2 i = i_save j = j_save return end if if ( k <= 1 ) then exit end if k = k - 1 k1 = k end do if ( n1 == 1 ) then i_save = 0 j_save = 0 indx = 0 i = i_save j = j_save else i_save = n1 n1 = n1 - 1 j_save = 1 indx = 1 i = i_save j = j_save end if return end subroutine tet_mesh_boundary_count ( element_order, element_num, element_node, & node_num, boundary_node_num, boundary_element_num, boundary_node_mask ) !*****************************************************************************80 ! !! TET_MESH_BOUNDARY_COUNT counts boundary faces and nodes in a tet mesh. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 December 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ELEMENT_ORDER, the order of the elements. ! ! Input, integer ELEMENT_NUM, the number of elements. ! ! Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the ! nodes that make up each element. ! ! Input, integer NODE_NUM, the number of nodes. ! ! Output, integer BOUNDARY_NODE_NUM, the number of ! boundary nodes. ! ! Output, integer BOUNDARY_ELEMENT_NUM, the number of ! boundary faces. ! ! Output, integer BOUNDARY_NODE_MASK(NODE_NUM), is 0 for ! interior nodes, 1 for boundary nodes. ! implicit none integer element_num integer element_order integer node_num integer a integer b integer boundary_element_num integer boundary_node_mask(node_num) integer boundary_node_num integer c integer element integer element_node(element_order,element_num) integer f integer face integer, allocatable, dimension ( :, : ) :: faces integer i integer j integer k integer l if ( element_order /= 4 .and. element_order /= 10 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'tet_mesh_boundary_count(): Fatal error!' write ( *, '(a)' ) ' Unexpected element order.' stop end if allocate ( faces(1:5,1:4*element_num) ) ! ! Step 1. ! From the list of nodes forming tetrahedron T, of the form: ! ! (I,J,K,L) ! ! or ! ! (I,J,K,L,I+J,I+K,I+L,J+K,J+L,K+L), ! (1,2,3,4, 5, 6, 7, 8, 9, 10 ), ! ! construct the four face relations: ! ! F = 1: (J,K,L,F,T) ! F = 2: (I,K,L,F,T) ! F = 3: (I,J,L,F,T) ! F = 4: (I,J,K,F,T) ! ! If T is actually order 10, we can retrieve the indices of the midside ! nodes from the values of F and T. In that case, the 4 faces are: ! ! F = 1: 2, 3, 4, 8, 10, 9 ! F = 2: 1, 3, 4, 6, 10, 7 ! F = 3: 1, 2, 4, 5, 9, 7 ! F = 4: 1, 2, 3, 5, 8, 6 ! ! In order to make matching easier, we reorder each triple of nodes ! into ascending order. ! do element = 1, element_num i = element_node(1,element) j = element_node(2,element) k = element_node(3,element) l = element_node(4,element) call i4i4i4_sort_a ( j, k, l, a, b, c ) faces(1:5,4*(element-1)+1) = (/ a, b, c, 1, element /) call i4i4i4_sort_a ( i, k, l, a, b, c ) faces(1:5,4*(element-1)+2) = (/ a, b, c, 2, element /) call i4i4i4_sort_a ( i, j, l, a, b, c ) faces(1:5,4*(element-1)+3) = (/ a, b, c, 3, element /) call i4i4i4_sort_a ( i, j, k, a, b, c ) faces(1:5,4*(element-1)+4) = (/ a, b, c, 4, element /) end do ! ! Step 2. Perform an ascending dictionary sort on the neighbor relations. ! We only intend to sort on rows 1:3; the routine we call here ! sorts on rows 1 through 5 but that won't hurt us. ! ! What we need is to find cases where two tetrahedrons share a face. ! By sorting the columns of the FACES array, we will put shared faces ! next to each other. ! call i4col_sort_a ( 5, 4*element_num, faces ) ! ! Step 3. Neighboring faces show up as consecutive columns with ! identical first three entries. Count columns which don't have ! a following column that matches the first three entries. ! boundary_element_num = 0 face = 1 boundary_node_mask(1:node_num) = 0 do while ( face <= 4 * element_num ) if ( face < 4 * element_num ) then if ( all ( faces(1:3,face) == faces(1:3,face+1) ) ) then face = face + 2 cycle end if end if boundary_element_num = boundary_element_num + 1 ! ! The vertices of the triangle are boundary nodes. ! boundary_node_mask(faces(1:3,face)) = 1 ! ! For quadratic tetrahedrons, we need to add three more side nodes. ! We retrieve the face index by F = FACES(4,*). ! We can determine the local indices from the value of F. ! We can determine the global indices from ELEMENT_NODE. ! if ( element_order == 10 ) then f = faces(4,face) element = faces(5,face) if ( f == 1 ) then boundary_node_mask(element_node(8,element)) = 1 boundary_node_mask(element_node(10,element)) = 1 boundary_node_mask(element_node(9,element)) = 1 else if ( f == 2 ) then boundary_node_mask(element_node(6,element)) = 1 boundary_node_mask(element_node(10,element)) = 1 boundary_node_mask(element_node(7,element)) = 1 else if ( f == 3 ) then boundary_node_mask(element_node(5,element)) = 1 boundary_node_mask(element_node(9,element)) = 1 boundary_node_mask(element_node(7,element)) = 1 else if ( f == 4 ) then boundary_node_mask(element_node(5,element)) = 1 boundary_node_mask(element_node(8,element)) = 1 boundary_node_mask(element_node(6,element)) = 1 end if end if face = face + 1 end do boundary_node_num = sum ( boundary_node_mask(1:node_num) ) deallocate ( faces ) return end subroutine tet_mesh_boundary_set ( element_order, element_num, element_node, & boundary_element_order, boundary_element_num, boundary_element_node ) !*****************************************************************************80 ! !! TET_MESH_BOUNDARY_SET sets the boundary faces in a tet mesh. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 December 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ELEMENT_ORDER, the order of the elements. ! ! Input, integer ELEMENT_NUM, the number of elements. ! ! Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the ! nodes that make up each element. ! ! Input, integer BOUNDARY_ELEMENT_ORDER, the order of the ! boundary faces. ! ! Input, integer BOUNDARY_ELEMENT_NUM, the number of ! boundary faces. ! ! Output, integer ! BOUNDARY_ELEMENT_NODE(BOUNDARY_ELEMENT_ORDER,BOUNDARY_ELEMENT_NUM), ! the nodes that make up each boundary face. ! implicit none integer boundary_element_num integer boundary_element_order integer element_num integer element_order integer a integer b integer boundary_element integer boundary_element_node(boundary_element_order,& boundary_element_num) integer c integer element integer element_node(element_order,element_num) integer f integer face integer, allocatable, dimension ( :, : ) :: faces integer i integer j integer k integer l if ( element_order /= 4 .and. element_order /= 10 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'tet_mesh_boundary_set(): Fatal error!' write ( *, '(a)' ) ' Unexpected element order.' stop end if allocate ( faces(1:5,1:4*element_num) ) ! ! Step 1. ! From the list of nodes forming tetrahedron T, of the form: ! ! (I,J,K,L) ! ! or ! ! (I,J,K,L,I+J,I+K,I+L,J+K,J+L,K+L), ! (1,2,3,4, 5, 6, 7, 8, 9, 10 ), ! ! construct the four face relations: ! ! F = 1: (J,K,L,F,T) ! F = 2: (I,K,L,F,T) ! F = 3: (I,J,L,F,T) ! F = 4: (I,J,K,F,T) ! ! If T is actually order 10, we can retrieve the indices of the midside ! nodes from the values of F and T. In that case, the 4 faces are: ! ! F = 1: 2, 3, 4, 8, 10, 9 ! F = 2: 1, 3, 4, 6, 10, 7 ! F = 3: 1, 2, 4, 5, 9, 7 ! F = 4: 1, 2, 3, 5, 8, 6 ! ! In order to make matching easier, we reorder each triple of nodes ! into ascending order. ! do element = 1, element_num i = element_node(1,element) j = element_node(2,element) k = element_node(3,element) l = element_node(4,element) call i4i4i4_sort_a ( j, k, l, a, b, c ) faces(1:5,4*(element-1)+1) = (/ a, b, c, 1, element /) call i4i4i4_sort_a ( i, k, l, a, b, c ) faces(1:5,4*(element-1)+2) = (/ a, b, c, 2, element /) call i4i4i4_sort_a ( i, j, l, a, b, c ) faces(1:5,4*(element-1)+3) = (/ a, b, c, 3, element /) call i4i4i4_sort_a ( i, j, k, a, b, c ) faces(1:5,4*(element-1)+4) = (/ a, b, c, 4, element /) end do ! ! Step 2. Perform an ascending dictionary sort on the neighbor relations. ! We only intend to sort on rows 1:3; the routine we call here ! sorts on rows 1 through 5 but that won't hurt us. ! ! What we need is to find cases where two tetrahedrons share a face. ! By sorting the columns of the FACES array, we will put shared faces ! next to each other. ! call i4col_sort_a ( 5, 4*element_num, faces ) ! ! Step 3. Neighboring faces show up as consecutive columns with ! identical first three entries. Count columns which don't have ! a following column that matches the first three entries. ! boundary_element = 0 face = 1 do while ( face <= 4 * element_num ) if ( face < 4 * element_num ) then if ( all ( faces(1:3,face) == faces(1:3,face+1) ) ) then face = face + 2 cycle end if end if boundary_element = boundary_element + 1 f = faces(4,face) element = faces(5,face) if ( f == 1 ) then boundary_element_node(1,boundary_element) = element_node(2,element) boundary_element_node(2,boundary_element) = element_node(3,element) boundary_element_node(3,boundary_element) = element_node(4,element) else if ( f == 2 ) then boundary_element_node(1,boundary_element) = element_node(1,element) boundary_element_node(2,boundary_element) = element_node(3,element) boundary_element_node(3,boundary_element) = element_node(4,element) else if ( f == 3 ) then boundary_element_node(1,boundary_element) = element_node(1,element) boundary_element_node(2,boundary_element) = element_node(2,element) boundary_element_node(3,boundary_element) = element_node(4,element) else if ( f == 4 ) then boundary_element_node(1,boundary_element) = element_node(1,element) boundary_element_node(2,boundary_element) = element_node(2,element) boundary_element_node(3,boundary_element) = element_node(3,element) end if ! ! For quadratic tetrahedrons, we need to add three more side nodes. ! if ( element_order == 10 ) then if ( f == 1 ) then boundary_element_node(4,boundary_element) = element_node(8,element) boundary_element_node(5,boundary_element) = element_node(10,element) boundary_element_node(6,boundary_element) = element_node(9,element) else if ( f == 2 ) then boundary_element_node(4,boundary_element) = element_node(6,element) boundary_element_node(5,boundary_element) = element_node(10,element) boundary_element_node(6,boundary_element) = element_node(7,element) else if ( f == 3 ) then boundary_element_node(4,boundary_element) = element_node(5,element) boundary_element_node(5,boundary_element) = element_node(9,element) boundary_element_node(6,boundary_element) = element_node(7,element) else if ( f == 4 ) then boundary_element_node(4,boundary_element) = element_node(5,element) boundary_element_node(5,boundary_element) = element_node(8,element) boundary_element_node(6,boundary_element) = element_node(6,element) end if end if face = face + 1 end do deallocate ( faces ) return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 August 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end