SQUARE_MONTE_CARLO is a FORTRAN90 library which estimates the integral of a function over the interior of the unit square in 2D.
The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.
SQUARE_MONTE_CARLO is available in a C version and a C++ version and a FORTRAN77 version and a FORTRAN90 version and a MATLAB version and a Python version.
BALL_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate integrals of a function over the interior of the unit ball in 3D;
CIRCLE_MONTE_CARLO, a FORTRAN90 library which uses the Monte Carlo method to estimate integrals over the circumference of the unit circle in 2D.
CUBE_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function over the interior of the unit cube in 3D;
DISK_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function over the interior of the unit disk in 2D;
ELLIPSE_MONTE_CARLO a FORTRAN90 library which uses the Monte Carlo method to estimate the value of integrals over the interior of an ellipse in 2D.
ELLIPSOID_MONTE_CARLO a FORTRAN90 library which uses the Monte Carlo method to estimate the value of integrals over the interior of an ellipsoid in M dimensions.
HYPERBALL_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function over the interior of the unit hyperball in M dimensions;
HYPERBALL_VOLUME_MONTE_CARLO, a FORTRAN90 program which applies a Monte Carlo method to estimate the volume of the unit hyperball in M dimensions;
HYPERCUBE_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function over the interior of the unit hypercube in M dimensions;
HYPERSPHERE_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function on the surface of the unit hypersphere in M dimensions;
LINE_MONTE_CARLO, a FORTRAN90 library which uses the Monte Carlo method to estimate integrals over the length of the unit line in 1D.
POLYGON_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function over the interior of a polygon in 2D.
PYRAMID_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate integrals of a function over the interior of the unit pyramid in 3D;
SIMPLEX_MONTE_CARLO, a FORTRAN90 library which uses the Monte Carlo method to estimate integrals over the interior of the unit simplex in M dimensions.
SPHERE_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function on the surface of the unit sphere in 3D;
SPHERE_TRIANGLE_MONTE_CARLO, a FORTRAN90 library which applies a Monte Carlo method to estimate the integral of a function over a spherical triangle on the surface of the unit sphere in 3D;
SQUARE_ARBQ_RULE, a FORTRAN90 library which returns quadrature rules, with exactness up to total degree 20, over the interior of the symmetric square in 2D, by Hong Xiao and Zydrunas Gimbutas.
SQUARE_FELIPPA_RULE, a FORTRAN90 library which returns the points and weights of a Felippa quadrature rule over the interior of a square in 2D.
SQUARE_HEX_GRID, a FORTRAN90 library which computes a hexagonal grid of points over the interior of a square in 2D.
SQUARE_INTEGRALS, a FORTRAN90 library which returns the exact value of the integral of any monomial over the interior of the unit square in 2D.
SQUARE_SYMQ_RULE, a FORTRAN90 library which returns symmetric quadrature rules, with exactness up to total degree 20, over the interior of the symmetric square in 2D, by Hong Xiao and Zydrunas Gimbutas.
TETRAHEDRON_MONTE_CARLO, a FORTRAN90 library which uses the Monte Carlo method to estimate integrals over the interior of the unit tetrahedron in 3D.
TRIANGLE_MONTE_CARLO, a FORTRAN90 library which uses the Monte Carlo method to estimate integrals over the interior of the unit triangle in 2D.
WEDGE_MONTE_CARLO, a FORTRAN90 library which uses the Monte Carlo method to estimate integrals over the interior of the unit wedge in 3D.
You can go up one level to the FORTRAN90 source codes.