subroutine abscissa_level_closed_nd ( level_max, dim_num, test_num, test_val, & test_level ) !*****************************************************************************80 ! !! abscissa_level_closed_nd(): first level at which given abscissa is generated. ! ! Discussion: ! ! We assume an underlying product grid. In each dimension, this product ! grid has order 2^LEVEL_MAX + 1. ! ! We will say a sparse grid has total level LEVEL if each point in the ! grid has a total level of LEVEL or less. ! ! The "level" of a point is determined as the sum of the levels of the ! point in each spatial dimension. ! ! The level of a point in a single spatial dimension I is determined as ! the level, between 0 and LEVEL_MAX, at which the point's I'th index ! would have been generated. ! ! ! This description is terse and perhaps unenlightening. Keep in mind ! that the product grid is the product of 1D grids, ! that the 1D grids are built up by levels, having ! orders (total number of points ) 1, 3, 5, 9, 17, 33 and so on, ! and that these 1D grids are nested, so that each point in a 1D grid ! has a first level at which it appears. ! ! Our procedure for generating the points of a sparse grid, then, is ! to choose a value LEVEL_MAX, to generate the full product grid, ! but then only to keep those points on the full product grid whose ! LEVEL is less than or equal to LEVEL_MAX. ! ! ! Note that this routine is really just testing out the idea of ! determining the level. Our true desire is to be able to start ! with a value LEVEL, and determine, in a straightforward manner, ! all the points that are generated exactly at that level, or ! all the points that are generated up to and including that level. ! ! This allows us to generate the new points to be added to one sparse ! grid to get the next, or to generate a particular sparse grid at once. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer LEVEL_MAX, controls the size of the ! final sparse grid. ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer TEST_NUM, the number of points to be tested. ! ! Input, integer TEST_VAL(DIM_NUM,TEST_NUM), the indices of ! the points to be tested. Normally, each index would be between 0 and ! 2^LEVEL_MAX. ! ! Output, integer TEST_LEVEL(TEST_NUM), the value of LEVEL ! at which the point would first be generated, assuming that a standard ! sequence of nested grids is used. ! implicit none integer dim_num integer test_num integer index_to_level_closed integer j integer level_max integer order integer t integer test_level(test_num) integer test_val(dim_num,test_num) ! ! Special case: LEVEL_MAX = 0. ! if ( level_max <= 0 ) then test_level(1:test_num) = 0 else order = 2**level_max + 1 do j = 1, test_num test_level(j) = index_to_level_closed ( dim_num, test_val(1:dim_num,j), & order, level_max ) end do end if return end function cc_abscissa ( order, i ) !*****************************************************************************80 ! !! CC_ABSCISSA returns the I-th abscissa for the Clenshaw Curtis rule. ! ! Discussion: ! ! Our convention is that the abscissas are numbered from left to ! right. ! ! This rule is defined on [-1,1]. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 March 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ORDER, the order of the Clenshaw Curtis rule. ! 1 <= ORDER. ! ! Input, integer I, the index of the desired abscissa. ! 1 <= I <= ORDER. ! ! Output, real ( kind = rk ) CC_ABSCISSA, the value of the I-th ! abscissa in the Clenshaw Curtis rule of order ORDER. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cc_abscissa integer i integer order real ( kind = rk ), parameter :: pi = 3.141592653589793D+00 real ( kind = rk ) r8_huge real ( kind = rk ) value if ( order < 1 ) then value = - r8_huge ( ) else if ( i < 1 .or. order < i ) then value = - r8_huge ( ) else if ( order == 1 ) then value = 0.0D+00 else if ( 2 * i - 1 == order ) then value = 0.0D+00 else value = cos ( real ( order - i, kind = rk ) * pi & / real ( order - 1, kind = rk ) ) end if cc_abscissa = value return end subroutine cc_weights ( n, w ) !*****************************************************************************80 ! !! CC_WEIGHTS computes Clenshaw Curtis weights. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Charles Clenshaw, Alan Curtis, ! A Method for Numerical Integration on an Automatic Computer, ! Numerische Mathematik, ! Volume 2, Number 1, December 1960, pages 197-205. ! ! Parameters: ! ! Input, integer N, the order of the rule. ! ! Output, real ( kind = rk ) W(N), the weights of the rule. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) b integer i integer j real ( kind = rk ) :: pi = 3.141592653589793D+00 real ( kind = rk ) theta(n) real ( kind = rk ) w(n) if ( n == 1 ) then w(1) = 2.0D+00 return end if do i = 1, n theta(i) = real ( i - 1, kind = rk ) * pi & / real ( n - 1, kind = rk ) end do do i = 1, n w(i) = 1.0D+00 do j = 1, ( n - 1 ) / 2 if ( 2 * j == ( n - 1 ) ) then b = 1.0D+00 else b = 2.0D+00 end if w(i) = w(i) - b * cos ( 2.0D+00 * real ( j, kind = rk ) * theta(i) ) & / real ( 4 * j * j - 1, kind = rk ) end do end do w(1) = w(1) / real ( n - 1, kind = rk ) w(2:n-1) = 2.0D+00 * w(2:n-1) / real ( n - 1, kind = rk ) w(n) = w(n) / real ( n - 1, kind = rk ) return end subroutine comp_next ( n, k, a, more, h, t ) !*****************************************************************************80 ! !! COMP_NEXT computes the compositions of the integer N into K parts. ! ! Discussion: ! ! A composition of the integer N into K parts is an ordered sequence ! of K nonnegative integers which sum to N. The compositions (1,2,1) ! and (1,1,2) are considered to be distinct. ! ! The routine computes one composition on each call until there are no more. ! For instance, one composition of 6 into 3 parts is ! 3+2+1, another would be 6+0+0. ! ! On the first call to this routine, set MORE = FALSE. The routine ! will compute the first element in the sequence of compositions, and ! return it, as well as setting MORE = TRUE. If more compositions ! are desired, call again, and again. Each time, the routine will ! return with a new composition. ! ! However, when the LAST composition in the sequence is computed ! and returned, the routine will reset MORE to FALSE, signaling that ! the end of the sequence has been reached. ! ! This routine originally used a SAVE statement to maintain the ! variables H and T. I have decided (based on an wasting an ! entire morning trying to track down a problem) that it is safer ! to pass these variables as arguments, even though the user should ! never alter them. This allows this routine to safely shuffle ! between several ongoing calculations. ! ! ! There are 28 compositions of 6 into three parts. This routine will ! produce those compositions in the following order: ! ! I A ! - --------- ! 1 6 0 0 ! 2 5 1 0 ! 3 4 2 0 ! 4 3 3 0 ! 5 2 4 0 ! 6 1 5 0 ! 7 0 6 0 ! 8 5 0 1 ! 9 4 1 1 ! 10 3 2 1 ! 11 2 3 1 ! 12 1 4 1 ! 13 0 5 1 ! 14 4 0 2 ! 15 3 1 2 ! 16 2 2 2 ! 17 1 3 2 ! 18 0 4 2 ! 19 3 0 3 ! 20 2 1 3 ! 21 1 2 3 ! 22 0 3 3 ! 23 2 0 4 ! 24 1 1 4 ! 25 0 2 4 ! 26 1 0 5 ! 27 0 1 5 ! 28 0 0 6 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 July 2008 ! ! Author: ! ! Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Albert Nijenhuis, Herbert Wilf, ! Combinatorial Algorithms for Computers and Calculators, ! Second Edition, ! Academic Press, 1978, ! ISBN: 0-12-519260-6, ! LC: QA164.N54. ! ! Parameters: ! ! Input, integer N, the integer whose compositions are desired. ! ! Input, integer K, the number of parts in the composition. ! ! Input/output, integer A(K), the parts of the composition. ! ! Input/output, logical MORE, set by the user to start the computation, ! and by the routine to terminate it. ! ! Input/output, integer H, T, two internal parameters needed ! for the computation. The user should allocate space for these in the ! calling program, include them in the calling sequence, but never ! alter them! ! implicit none integer k integer a(k) integer h logical more integer n integer t ! ! The first computation. ! if ( .not. more ) then t = n h = 0 a(1) = n a(2:k) = 0 ! ! The next computation. ! else if ( 1 < t ) then h = 0 end if h = h + 1 t = a(h) a(h) = 0 a(1) = t - 1 a(h+1) = a(h+1) + 1 end if ! ! This is the last element of the sequence if all the ! items are in the last slot. ! more = ( a(k) /= n ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer IUNIT, the free unit number. ! implicit none integer i integer ios integer iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end function i4_choose ( n, k ) !*****************************************************************************80 ! !! I4_CHOOSE computes the binomial coefficient C(N,K). ! ! Discussion: ! ! The value is calculated in such a way as to avoid overflow and ! roundoff. The calculation is done in integer arithmetic. ! ! The formula used is: ! ! C(N,K) = N! / ( K! * (N-K)! ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! ML Wolfson, HV Wright, ! Algorithm 160: ! Combinatorial of M Things Taken N at a Time, ! Communications of the ACM, ! Volume 6, Number 4, April 1963, page 161. ! ! Parameters: ! ! Input, integer N, K, are the values of N and K. ! ! Output, integer I4_CHOOSE, the number of combinations of N ! things taken K at a time. ! implicit none integer i integer i4_choose integer k integer mn integer mx integer n integer value mn = min ( k, n - k ) if ( mn < 0 ) then value = 0 else if ( mn == 0 ) then value = 1 else mx = max ( k, n - k ) value = mx + 1 do i = 2, mn value = ( value * ( mx + i ) ) / i end do end if i4_choose = value return end function i4_modp ( i, j ) !*****************************************************************************80 ! !! I4_MODP returns the nonnegative remainder of I4 division. ! ! Discussion: ! ! If ! NREM = I4_MODP ( I, J ) ! NMULT = ( I - NREM ) / J ! then ! I = J * NMULT + NREM ! where NREM is always nonnegative. ! ! The MOD function computes a result with the same sign as the ! quantity being divided. Thus, suppose you had an angle A, ! and you wanted to ensure that it was between 0 and 360. ! Then mod(A,360) would do, if A was positive, but if A ! was negative, your result would be between -360 and 0. ! ! On the other hand, I4_MODP(A,360) is between 0 and 360, always. ! ! Examples: ! ! I J MOD I4_MODP Factorization ! ! 107 50 7 7 107 = 2 * 50 + 7 ! 107 -50 7 7 107 = -2 * -50 + 7 ! -107 50 -7 43 -107 = -3 * 50 + 43 ! -107 -50 -7 43 -107 = 3 * -50 + 43 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the number to be divided. ! ! Input, integer J, the number that divides I. ! ! Output, integer I4_MODP, the nonnegative remainder when I is ! divided by J. ! implicit none integer i integer i4_modp integer j integer value if ( j == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4_MODP - Fatal error!' write ( *, '(a,i8)' ) ' Illegal divisor J = ', j stop 1 end if value = mod ( i, j ) if ( value < 0 ) then value = value + abs ( j ) end if i4_modp = value return end function i4_mop ( i ) !*****************************************************************************80 ! !! I4_MOP returns the I-th power of -1 as an I4. ! ! Discussion: ! ! An I4 is an integer value. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the power of -1. ! ! Output, integer I4_MOP, the I-th power of -1. ! implicit none integer i integer i4_mop if ( mod ( i, 2 ) == 0 ) then i4_mop = 1 else i4_mop = -1 end if return end function index_to_level_closed ( dim_num, t, order, level_max ) !*****************************************************************************80 ! !! INDEX_TO_LEVEL_CLOSED determines the level of a point given its index. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer T(DIM_NUM), the grid indices of a point ! in a 1D closed rule. 0 <= T(I) <= ORDER. ! ! Input, integer ORDER, the order of the rule. ! ! Input, integer LEVEL_MAX, the level with respect to which the ! index applies. ! ! Output, integer INDEX_TO_LEVEL_CLOSED, the first level on ! which the point associated with the given index will appear. ! implicit none integer dim_num integer dim integer i4_modp integer index_to_level_closed integer level integer level_max integer order integer s integer t(dim_num) index_to_level_closed = 0 do dim = 1, dim_num s = i4_modp ( t(dim), order ) if ( s == 0 ) then level = 0 else level = level_max do while ( mod ( s, 2 ) == 0 ) s = s / 2 level = level - 1 end do end if if ( level == 0 ) then level = 1 else if ( level == 1 ) then level = 0 end if index_to_level_closed = index_to_level_closed + level end do return end subroutine level_to_order_ccs ( dim_num, level, order ) !*****************************************************************************80 ! !! LEVEL_TO_ORDER_CCS: level to order for CCS rule. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 December 2009 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Knut Petras, ! Smolyak Cubature of Given Polynomial Degree with Few Nodes ! for Increasing Dimension, ! Numerische Mathematik, ! Volume 93, Number 4, February 2003, pages 729-753. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL(DIM_NUM), the 1D levels. ! ! Output, integer ORDER(DIM_NUM), the 1D orders ! (number of points). ! implicit none integer dim_num integer dim integer level(dim_num) integer o integer order(dim_num) if ( any ( level(1:dim_num) < 0 ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LEVEL_TO_ORDER_CCS - Fatal error!' write ( *, '(a)' ) ' Some entry of LEVEL is negative.' stop 1 end if do dim = 1, dim_num if ( level(dim) == 0 ) then o = 1 else o = 2 do while ( o < 2 * level(dim) + 1 ) o = 2 * ( o - 1 ) + 1 end do end if order(dim) = o end do return end subroutine level_to_order_closed ( dim_num, level, order ) !*****************************************************************************80 ! !! LEVEL_TO_ORDER_CLOSED converts a level to an order for closed rules. ! ! Discussion: ! ! Sparse grids can naturally be nested. A natural scheme is to use ! a series of one-dimensional rules arranged in a series of "levels" ! whose order roughly doubles with each step. ! ! The arrangement described here works naturally for the Clenshaw Curtis ! and Newton Cotes closed rules. ! ! The idea is that we start with LEVEL = 0, ORDER = 1 indicating the single ! point at the center, and for all values afterwards, we use the ! relationship ! ! ORDER = 2^LEVEL + 1 ! ! The following table shows how the growth will occur: ! ! Level Order ! ! 0 1 ! 1 3 = 2 + 1 ! 2 5 = 4 + 1 ! 3 9 = 8 + 1 ! 4 17 = 16 + 1 ! 5 33 = 32 + 1 ! ! For the Clenshaw Curtis and Newton Cotes Closed rules, the point growth ! is nested. If we have ORDER points on a particular LEVEL, the next ! level includes all these old points, plus ORDER-1 new points, formed ! in the gaps between successive pairs of old points. ! ! Level Order = New + Old ! ! 0 1 = 1 + 0 ! 1 3 = 2 + 1 ! 2 5 = 2 + 3 ! 3 9 = 4 + 5 ! 4 17 = 8 + 9 ! 5 33 = 16 + 17 ! ! In this routine, we assume that a vector of levels is given, ! and the corresponding orders are desired. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL(DIM_NUM), the nesting levels of the ! 1D rules. ! ! Output, integer ORDER(DIM_NUM), the order (number of points) ! of the 1D rules. ! implicit none integer dim_num integer dim integer level(dim_num) integer order(dim_num) do dim = 1, dim_num if ( level(dim) < 0 ) then order(dim) = -1 else if ( level(dim) == 0 ) then order(dim) = 1 else order(dim) = ( 2 ** level(dim) ) + 1 end if end do return end subroutine levels_closed_index ( dim_num, level_max, point_num, grid_index ) !*****************************************************************************80 ! !! LEVELS_CLOSED_INDEX computes closed grids with 0 <= LEVEL <= LEVEL_MAX. ! ! Discussion: ! ! The necessary dimensions of GRID_INDEX can be determined by ! calling LEVELS_CLOSED_INDEX_SIZE first. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL_MAX, the maximum value of LEVEL. ! ! Input, integer POINT_NUM, the total number of points ! in the grids. ! ! Output, integer GRID_INDEX(DIM_NUM,POINT_NUM), a list of ! point indices, representing a subset of the product grid of level ! LEVEL_MAX, representing (exactly once) each point that will show up in a ! sparse grid of level LEVEL_MAX. ! implicit none integer dim_num integer point_num integer grid_index(dim_num,point_num) integer, allocatable, dimension ( :, : ) :: grid_index2 integer, allocatable, dimension ( : ) :: grid_level integer h integer level integer, dimension ( dim_num ) :: level_1d integer level_max logical more integer, dimension ( dim_num ) :: order_1d integer order_nd integer point integer point_num2 integer t ! ! The outer loop generates LEVELs from 0 to LEVEL_MAX. ! point_num2 = 0 do level = 0, level_max ! ! The middle loop generates the next partition LEVEL_1D(1:DIM_NUM) ! that adds up to LEVEL. ! more = .false. h = 0 t = 0 do call comp_next ( level, dim_num, level_1d, more, h, t ) ! ! Transform each 1D level to a corresponding 1D order. ! call level_to_order_closed ( dim_num, level_1d, order_1d ) ! ! The product of the 1D orders gives us the number of points in this grid. ! order_nd = product ( order_1d(1:dim_num) ) allocate ( grid_index2(1:dim_num,1:order_nd) ) allocate ( grid_level(1:order_nd) ) ! ! The inner (hidden) loop generates all points corresponding to given grid. ! call multigrid_index0 ( dim_num, order_1d, order_nd, grid_index2 ) ! ! Adjust these grid indices to reflect LEVEL_MAX. ! call multigrid_scale_closed ( dim_num, order_nd, level_max, level_1d, & grid_index2 ) ! ! Determine the first level of appearance of each of the points. ! call abscissa_level_closed_nd ( level_max, dim_num, order_nd, & grid_index2, grid_level ) ! ! Only keep those points which first appear on this level. ! do point = 1, order_nd if ( grid_level(point) == level ) then point_num2 = point_num2 + 1 grid_index(1:dim_num,point_num2) = grid_index2(1:dim_num,point) end if end do deallocate ( grid_index2 ) deallocate ( grid_level ) if ( .not. more ) then exit end if end do end do return end subroutine monomial_int01 ( dim_num, expon, value ) !*****************************************************************************80 ! !! MONOMIAL_INT01 returns the integral of a monomial over the [0,1] hypercube. ! ! Discussion: ! ! This routine evaluates a monomial of the form ! ! product ( 1 <= dim <= dim_num ) x(dim)^expon(dim) ! ! where the exponents are nonnegative integers. Note that ! if the combination 0^0 is encountered, it should be treated ! as 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer EXPON(DIM_NUM), the exponents. ! ! Output, real ( kind = rk ) VALUE, the value of the integral of the ! monomial. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer dim_num integer expon(dim_num) real ( kind = rk ) value value = 1.0D+00 / real ( product ( expon(1:dim_num) + 1 ), kind = rk ) return end subroutine monomial_quadrature ( dim_num, expon, point_num, weight, x, & quad_error ) !*****************************************************************************80 ! !! MONOMIAL_QUADRATURE applies a quadrature rule to a monomial. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer EXPON(DIM_NUM), the exponents. ! ! Input, integer POINT_NUM, the number of points in the rule. ! ! Input, real ( kind = rk ) WEIGHT(POINT_NUM), the quadrature weights. ! ! Input, real ( kind = rk ) X(DIM_NUM,POINT_NUM), the quadrature points. ! ! Output, real ( kind = rk ) QUAD_ERROR, the quadrature error. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer dim_num real ( kind = rk ) exact integer expon(dim_num) integer point_num real ( kind = rk ) quad real ( kind = rk ) quad_error real ( kind = rk ) scale real ( kind = rk ) value(point_num) real ( kind = rk ) weight(point_num) real ( kind = rk ) x(dim_num,point_num) ! ! Get the exact value of the integral of the unscaled monomial. ! call monomial_int01 ( dim_num, expon, scale ) ! ! Evaluate the monomial at the quadrature points. ! call monomial_value ( dim_num, point_num, x, expon, value ) ! ! Compute the weighted sum and divide by the exact value. ! quad = dot_product ( weight, value ) / scale ! ! Error: ! exact = 1.0D+00 quad_error = abs ( quad - exact ) return end subroutine monomial_value ( dim_num, point_num, x, expon, value ) !*****************************************************************************80 ! !! MONOMIAL_VALUE evaluates a monomial. ! ! Discussion: ! ! This routine evaluates a monomial of the form ! ! product ( 1 <= dim <= dim_num ) x(dim)^expon(dim) ! ! where the exponents are nonnegative integers. Note that ! if the combination 0^0 is encountered, it should be treated ! as 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer POINT_NUM, the number of points at which the ! monomial is to be evaluated. ! ! Input, real ( kind = rk ) X(DIM_NUM,POINT_NUM), the point coordinates. ! ! Input, integer EXPON(DIM_NUM), the exponents. ! ! Output, real ( kind = rk ) VALUE(POINT_NUM), the value of the monomial. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer dim_num integer point_num integer dim integer expon(dim_num) real ( kind = rk ) value(point_num) real ( kind = rk ) x(dim_num,point_num) value(1:point_num) = 1.0D+00 do dim = 1, dim_num if ( 0 /= expon(dim) ) then value(1:point_num) = value(1:point_num) * x(dim,1:point_num)**expon(dim) end if end do return end subroutine multigrid_index0 ( dim_num, order_1d, order_nd, indx ) !*****************************************************************************80 ! !! MULTIGRID_INDEX0 returns an indexed multidimensional grid. ! ! Discussion: ! ! For dimension DIM, the second index of INDX may vary from ! 0 to ORDER_1D(DIM)-1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension of the points. ! ! Input, integer ORDER_1D(DIM_NUM), the order of the ! rule in each dimension. ! ! Input, integer ORDER_ND, the product of the entries ! of ORDER_1D. ! ! Output, integer INDX(DIM_NUM,ORDER_ND), the indices of the ! points in the grid. The second dimension of this array is equal to the ! product of the entries of ORDER_1D. ! implicit none integer dim_num integer order_nd integer a(dim_num) integer change logical more integer order_1d(dim_num) integer p integer indx(dim_num,order_nd) more = .false. p = 0 do call vec_colex_next2 ( dim_num, order_1d, a, more ) if ( .not. more ) then exit end if p = p + 1 indx(1:dim_num,p) = a(1:dim_num) end do return end subroutine multigrid_scale_closed ( dim_num, order_nd, level_max, level_1d, & grid_index ) !*****************************************************************************80 ! !! MULTIGRID_SCALE_CLOSED renumbers a grid as a subgrid on a higher level. ! ! Discussion: ! ! This routine takes a grid associated with a given value of ! LEVEL, and multiplies all the indices by a power of 2, so that ! the indices reflect the position of the same points, but in ! a grid of level LEVEL_MAX. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer ORDER_ND, the number of points in the grid. ! ! Input, integer LEVEL_MAX, the maximum value of LEVEL. ! ! Input, integer LEVEL_1D(DIM_NUM), the level in each dimension. ! ! Input/output, integer GRID_INDEX(DIM_NUM,POINT_NUM), the index ! values for each grid point. On input, these indices are based in ! the level for which the grid was generated; on output, the ! indices are appropriate for the grid as a subgrid of a grid ! of level LEVEL_MAX. ! implicit none integer dim_num integer order_nd integer dim integer factor integer grid_index(dim_num,order_nd) integer level_1d(dim_num) integer level_max integer order_max do dim = 1, dim_num if ( level_1d(dim) == 0 ) then if ( 0 == level_max ) then order_max = 1 else order_max = 2**level_max + 1 end if grid_index(dim,1:order_nd) = ( order_max - 1 ) / 2 else factor = 2**( level_max - level_1d(dim) ) grid_index(dim,1:order_nd) = grid_index(dim,1:order_nd) * factor end if end do return end subroutine product_weights_cc ( dim_num, order_1d, order_nd, w_nd ) !*****************************************************************************80 ! !! PRODUCT_WEIGHTS_CC: Clenshaw Curtis product rule weights. ! ! Discussion: ! ! This routine computes the weights for a quadrature rule which is ! a product of 1D closed rules of varying order. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer ORDER_1D(DIM_NUM), the order of the 1D rules. ! ! Input, integer ORDER_ND, the order of the product rule. ! ! Output, real ( kind = rk ) W_ND(DIM_NUM,ORDER_ND), the product rule weights. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer dim_num integer order_nd integer dim integer order_1d(dim_num) real ( kind = rk ), allocatable, dimension ( : ) :: w_1d real ( kind = rk ) w_nd(order_nd) w_nd(1:order_nd) = 1.0D+00 do dim = 1, dim_num allocate ( w_1d(1:order_1d(dim)) ) call cc_weights ( order_1d(dim), w_1d ) call r8vec_direct_product2 ( dim, order_1d(dim), w_1d, dim_num, & order_nd, w_nd ) deallocate ( w_1d ) end do return end function r8_huge ( ) !*****************************************************************************80 ! !! R8_HUGE returns a very large R8. ! ! Discussion: ! ! The value returned by this function is NOT required to be the ! maximum representable R8. This value varies from machine to machine, ! from compiler to compiler, and may cause problems when being printed. ! We simply want a "very large" but non-infinite number. ! ! FORTRAN90 provides a built-in routine HUGE ( X ) that ! can return the maximum representable number of the same datatype ! as X, if that is what is really desired. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) R8_HUGE, a "huge" value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) r8_huge r8_huge = 1.0D+30 return end subroutine r8mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_WRITE writes an R8MAT file. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Input, real ( kind = rk ) TABLE(M,N), the table data. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer j character ( len = * ) output_filename integer output_status integer output_unit character ( len = 30 ) string real ( kind = rk ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop 1 end if ! ! Create a format string. ! ! For less precision in the output file, try: ! ! '(', m, 'g', 14, '.', 6, ')' ! if ( 0 < m .and. 0 < n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) '(', m, 'g', 24, '.', 16, ')' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if ! ! Close the file. ! close ( unit = output_unit ) return end subroutine r8vec_direct_product2 ( factor_index, factor_order, factor_value, & factor_num, point_num, w ) !*****************************************************************************80 ! !! R8VEC_DIRECT_PRODUCT2 creates a direct product of R8VEC's. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! To explain what is going on here, suppose we had to construct ! a multidimensional quadrature rule as the product of K rules ! for 1D quadrature. ! ! The product rule will be represented as a list of points and weights. ! ! The J-th item in the product rule will be associated with ! item J1 of 1D rule 1, ! item J2 of 1D rule 2, ! ..., ! item JK of 1D rule K. ! ! In particular, ! X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) ! and ! W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) ! ! So we can construct the quadrature rule if we can properly ! distribute the information in the 1D quadrature rules. ! ! This routine carries out the task involving the weights W. ! ! Another way to do this would be to compute, one by one, the ! set of all possible indices (J1,J2,...,JK), and then index ! the appropriate information. An advantage of the method shown ! here is that you can process the K-th set of information and ! then discard it. ! ! Example: ! ! Rule 1: ! Order = 4 ! W(1:4) = ( 2, 3, 5, 7 ) ! ! Rule 2: ! Order = 3 ! W(1:3) = ( 11, 13, 17 ) ! ! Rule 3: ! Order = 2 ! W(1:2) = ( 19, 23 ) ! ! Product Rule: ! Order = 24 ! W(1:24) = ! ( 2 * 11 * 19 ) ! ( 3 * 11 * 19 ) ! ( 4 * 11 * 19 ) ! ( 7 * 11 * 19 ) ! ( 2 * 13 * 19 ) ! ( 3 * 13 * 19 ) ! ( 5 * 13 * 19 ) ! ( 7 * 13 * 19 ) ! ( 2 * 17 * 19 ) ! ( 3 * 17 * 19 ) ! ( 5 * 17 * 19 ) ! ( 7 * 17 * 19 ) ! ( 2 * 11 * 23 ) ! ( 3 * 11 * 23 ) ! ( 5 * 11 * 23 ) ! ( 7 * 11 * 23 ) ! ( 2 * 13 * 23 ) ! ( 3 * 13 * 23 ) ! ( 5 * 13 * 23 ) ! ( 7 * 13 * 23 ) ! ( 2 * 17 * 23 ) ! ( 3 * 17 * 23 ) ! ( 5 * 17 * 23 ) ! ( 7 * 17 * 23 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 April 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer FACTOR_INDEX, the index of the factor being ! processed. The first factor processed must be factor 1! ! ! Input, integer FACTOR_ORDER, the order of the factor. ! ! Input, real ( kind = rk ) FACTOR_VALUE(FACTOR_ORDER), the factor values ! for factor FACTOR_INDEX. ! ! Input, integer FACTOR_NUM, the number of factors. ! ! Input, integer POINT_NUM, the number of elements in the ! direct product. ! ! Input/output, real ( kind = rk ) W(POINT_NUM), the elements of the ! direct product, which are built up gradually. ! ! Local Parameters: ! ! Local, integer START, the first location of a block of values ! to set. ! ! Local, integer CONTIG, the number of consecutive values ! to set. ! ! Local, integer SKIP, the distance from the current value of START ! to the next location of a block of values to set. ! ! Local, integer REP, the number of blocks of values to set. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer factor_num integer factor_order integer point_num integer, save :: contig integer factor_index real ( kind = rk ) factor_value(factor_order) integer j integer k integer, save :: rep integer, save :: skip integer start real ( kind = rk ) w(point_num) if ( factor_index == 1 ) then contig = 1 skip = 1 rep = point_num w(1:point_num) = 1.0D+00 end if rep = rep / factor_order skip = skip * factor_order do j = 1, factor_order start = 1 + ( j - 1 ) * contig do k = 1, rep w(start:start+contig-1) = w(start:start+contig-1) * factor_value(j) start = start + skip end do end do contig = contig * factor_order return end subroutine s_blank_delete ( s ) !*****************************************************************************80 ! !! S_BLANK_DELETE removes blanks from a string, left justifying the remainder. ! ! Discussion: ! ! All TAB characters are also removed. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character ( len = * ) S, the string to be transformed. ! implicit none character ch integer get integer put character ( len = * ) s integer s_length character, parameter :: tab = achar ( 9 ) put = 0 s_length = len_trim ( s ) do get = 1, s_length ch = s(get:get) if ( ch /= ' ' .and. ch /= tab ) then put = put + 1 s(put:put) = ch end if end do s(put+1:s_length) = ' ' return end subroutine sparse_grid_cc ( dim_num, level_max, point_num, grid_weight, & grid_point ) !****************************************************************************80 ! !! SPARSE_GRID_CC computes a sparse grid of Clenshaw Curtis points. ! ! Discussion: ! ! This program computes a quadrature rule and writes it to a file. ! ! The quadrature rule is associated with a sparse grid derived from ! a Smolyak construction using a closed 1D quadrature rule. ! ! The user specifies: ! * the spatial dimension of the quadrature region, ! * the level that defines the Smolyak grid. ! * the closed 1D quadrature rule (Clenshaw-Curtis or Newton-Cotes Closed). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL_MAX, controls the size of the final ! sparse grid. ! ! Input, integer POINT_NUM, the number of points in the grid, ! as determined by SPARSE_GRID_CC_SIZE. ! ! Output, real ( kind = rk ) GRID_WEIGHT(POINT_NUM), the weights. ! ! Output, real ( kind = rk ) GRID_POINT(DIM_NUM,POINT_NUM), the points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer dim_num integer point_num real ( kind = rk ) cc_abscissa integer dim integer, allocatable, dimension ( :, : ) :: grid_index real ( kind = rk ) grid_point(dim_num,point_num) real ( kind = rk ) grid_weight(point_num) integer level_max integer order_max integer point ! ! Determine the index vector, relative to the full product grid, ! that identifies the points in the sparse grid. ! allocate ( grid_index(dim_num,point_num) ) call sparse_grid_cc_index ( dim_num, level_max, point_num, grid_index ) ! ! Compute the physical coordinates of the abscissas. ! if ( 0 == level_max ) then order_max = 1 else order_max = 2**level_max + 1 end if do point = 1, point_num do dim = 1, dim_num grid_point(dim,point) = & cc_abscissa ( order_max, grid_index(dim,point) + 1 ) end do end do ! ! Gather the weights. ! call sparse_grid_cc_weights ( dim_num, level_max, point_num, grid_index, & grid_weight ) deallocate ( grid_index ) return end subroutine sparse_grid_cc_index ( dim_num, level_max, point_num, grid_index ) !*****************************************************************************80 ! !! SPARSE_GRID_CC_INDEX indexes the points forming a sparse grid. ! ! Discussion: ! ! The points forming the sparse grid are guaranteed to be a subset ! of a certain product grid. The product grid is formed by DIM_NUM ! copies of a 1D rule of fixed order. The orders of the 1D rule, ! (called ORDER_1D) and the order of the product grid, (called ORDER) ! are determined from the value LEVEL_MAX. ! ! Thus, any point in the product grid can be identified by its grid index, ! a set of DIM_NUM indices, each between 1 and ORDER_1D. ! ! This routine creates the GRID_INDEX array, listing (uniquely) the ! points of the sparse grid. ! ! An assumption has been made that the 1D rule is closed (includes ! the interval endpoints) and nested (points that are part of a rule ! of a given level will be part of every rule of higher level). ! ! The necessary dimensions of GRID_INDEX can be determined by ! calling SPARSE_GRID_CC_SIZE first. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL_MAX, the maximum value of LEVEL. ! ! Input, integer POINT_NUM, the total number of points in ! the grids. ! ! Output, integer GRID_INDEX(DIM_NUM,POINT_NUM), a list of ! point indices, representing a subset of the product grid of level ! LEVEL_MAX, representing (exactly once) each point that will show up in a ! sparse grid of level LEVEL_MAX. ! implicit none integer dim_num integer point_num integer dim integer factor integer grid_index(dim_num,point_num) integer, allocatable, dimension ( :, : ) :: grid_index2 integer, allocatable, dimension ( : ) :: grid_level integer h integer j integer level integer, dimension ( dim_num ) :: level_1d integer level_max logical more integer, dimension ( dim_num ) :: order_1d integer order_nd integer point integer point_num2 integer t ! ! The outer loop generates LEVELs from 0 to LEVEL_MAX. ! point_num2 = 0 do level = 0, level_max ! ! The middle loop generates the next partition LEVEL_1D(1:DIM_NUM) ! that adds up to LEVEL. ! more = .false. do call comp_next ( level, dim_num, level_1d, more, h, t ) ! ! Transform each 1D level to a corresponding 1D order. ! call level_to_order_closed ( dim_num, level_1d, order_1d ) ! ! The product of the 1D orders gives us the number of points in this grid. ! order_nd = product ( order_1d(1:dim_num) ) allocate ( grid_index2(1:dim_num,1:order_nd) ) allocate ( grid_level(1:order_nd) ) ! ! The inner (hidden) loop generates all points corresponding to given grid. ! call multigrid_index0 ( dim_num, order_1d, order_nd, grid_index2 ) ! ! Adjust these grid indices to reflect LEVEL_MAX. ! call multigrid_scale_closed ( dim_num, order_nd, level_max, level_1d, & grid_index2 ) ! ! Determine the first level of appearance of each of the points. ! call abscissa_level_closed_nd ( level_max, dim_num, order_nd, & grid_index2, grid_level ) ! ! Only keep those points which first appear on this level. ! do point = 1, order_nd if ( grid_level(point) == level ) then point_num2 = point_num2 + 1 grid_index(1:dim_num,point_num2) = grid_index2(1:dim_num,point) end if end do deallocate ( grid_index2 ) deallocate ( grid_level ) if ( .not. more ) then exit end if end do end do return end subroutine sparse_grid_cc_weights ( dim_num, level_max, point_num, grid_index, & grid_weight ) !*****************************************************************************80 ! !! SPARSE_GRID_CC_WEIGHTS gathers the weights. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL_MAX, the maximum value of LEVEL. ! ! Input, integer POINT_NUM, the total number of points in ! the grids. ! ! Input, integer GRID_INDEX(DIM_NUM,POINT_NUM), a list of ! point indices, representing a subset of the product grid of level ! LEVEL_MAX, representing (exactly once) each point that will show up in a ! sparse grid of level LEVEL_MAX. ! ! Output, real ( kind = rk ) GRID_WEIGHT(POINT_NUM), the weights ! associated with the sparse grid points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer dim_num integer point_num integer coeff integer dim logical found integer grid_index(dim_num,point_num) integer, allocatable, dimension ( :, : ) :: grid_index2 real ( kind = rk ) grid_weight(point_num) real ( kind = rk ), allocatable, dimension ( : ) :: grid_weight2 integer h integer i4_choose integer i4_mop integer level integer level_1d(dim_num) integer level_max integer level_min logical more integer order_nd integer order_1d(dim_num) integer point integer point2 integer t if ( level_max == 0 ) then grid_weight(1:point_num) = 2.0D+00**dim_num return end if grid_weight(1:point_num) = 0.0D+00 level_min = max ( 0, level_max + 1 - dim_num ) do level = level_min, level_max ! ! The middle loop generates the next partition LEVEL_1D(1:DIM_NUM) ! that adds up to LEVEL. ! more = .false. do call comp_next ( level, dim_num, level_1d, more, h, t ) ! ! Transform each 1D level to a corresponding 1D order. ! call level_to_order_closed ( dim_num, level_1d, order_1d ) ! ! The product of the 1D orders gives us the number of points in this grid. ! order_nd = product ( order_1d(1:dim_num) ) allocate ( grid_index2(1:dim_num,1:order_nd) ) allocate ( grid_weight2(1:order_nd) ) ! ! Generate the indices of the points corresponding to the grid. ! call multigrid_index0 ( dim_num, order_1d, order_nd, grid_index2 ) ! ! Compute the weights for this grid. ! call product_weights_cc ( dim_num, order_1d, order_nd, grid_weight2 ) ! ! Adjust the grid indices to reflect LEVEL_MAX. ! call multigrid_scale_closed ( dim_num, order_nd, level_max, level_1d, & grid_index2 ) ! ! Now determine the coefficient. ! coeff = i4_mop ( level_max - level ) & * i4_choose ( dim_num - 1, level_max - level ) do point2 = 1, order_nd found = .false. do point = 1, point_num if ( all ( & grid_index2(1:dim_num,point2) == grid_index(1:dim_num,point) & ) ) then found = .true. grid_weight(point) = grid_weight(point) & + real ( coeff, kind = rk ) * grid_weight2(point2) exit end if end do if ( .not. found ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPARSE_GRID_CC_WEIGHTS - Fatal error!' write ( *, '(a)' ) ' No match found.' stop 1 end if end do deallocate ( grid_index2 ) deallocate ( grid_weight2 ) if ( .not. more ) then exit end if end do end do return end subroutine sparse_grid_ccs_size ( dim_num, level_max, point_num ) !*****************************************************************************80 ! !! SPARSE_GRID_CCS_SIZE sizes a sparse grid using Clenshaw Curtis Slow rules. ! ! Discussion: ! ! The grid is defined as the sum of the product rules whose LEVEL ! satisfies: ! ! 0 <= LEVEL <= LEVEL_MAX. ! ! This calculation is much faster than a previous method. It simply ! computes the number of new points that are added at each level in the ! 1D rule, and then counts the new points at a given DIM_NUM dimensional ! level vector as the product of the new points added in each dimension. ! ! This approach will work for nested families, and may be extensible ! to other families, and to mixed rules. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 December 2009 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL_MAX, the maximum value of LEVEL. ! ! Output, integer POINT_NUM, the total number of unique ! points in the grids. ! implicit none integer dim_num integer h integer l integer level integer, allocatable :: level_1d(:) integer level_max logical more integer, allocatable :: new_1d(:) integer o integer p integer point_num integer t ! ! Special case. ! if ( level_max < 0 ) then point_num = 0 return end if if ( level_max == 0 ) then point_num = 1 return end if ! ! Construct the vector that counts the new points in the 1D rule. ! allocate ( new_1d(0:level_max) ) new_1d(0) = 1 new_1d(1) = 2 p = 3 o = 3 do l = 2, level_max p = 2 * l + 1 if ( o < p ) then new_1d(l) = o - 1 o = 2 * o - 1 else new_1d(l) = 0 end if end do ! ! Count the number of points by counting the number of new points ! associated with each level vector. ! allocate ( level_1d(1:dim_num) ) point_num = 0 do level = 0, level_max more = .false. h = 0 t = 0 do call comp_next ( level, dim_num, level_1d, more, h, t ) point_num = point_num + product ( new_1d(level_1d(1:dim_num)) ) if ( .not. more ) then exit end if end do end do deallocate ( level_1d ) deallocate ( new_1d ) return end subroutine sparse_grid_cfn_size ( dim_num, level_max, point_num ) !*****************************************************************************80 ! !! SPARSE_GRID_CC_SIZE sizes a sparse grid using Closed Fully Nested rules. ! ! Discussion: ! ! The grid is defined as the sum of the product rules whose LEVEL ! satisfies: ! ! 0 <= LEVEL <= LEVEL_MAX. ! ! This calculation is much faster than a previous method. It simply ! computes the number of new points that are added at each level in the ! 1D rule, and then counts the new points at a given DIM_NUM dimensional ! level vector as the product of the new points added in each dimension. ! ! This approach will work for nested families, and may be extensible ! to other families, and to mixed rules. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 December 2009 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Fabio Nobile, Raul Tempone, Clayton Webster, ! A Sparse Grid Stochastic Collocation Method for Partial Differential ! Equations with Random Input Data, ! SIAM Journal on Numerical Analysis, ! Volume 46, Number 5, 2008, pages 2309-2345. ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer LEVEL_MAX, the maximum value of LEVEL. ! ! Output, integer POINT_NUM, the total number of unique ! points in the grids. ! implicit none integer dim_num integer h integer j integer l integer level integer, allocatable :: level_1d(:) integer level_max logical more integer, allocatable :: new_1d(:) integer point_num integer t ! ! Special case. ! if ( level_max < 0 ) then point_num = 0 return end if if ( level_max == 0 ) then point_num = 1 return end if ! ! Construct the vector that counts the new points in the 1D rule. ! allocate ( new_1d(0:level_max) ) new_1d(0) = 1 new_1d(1) = 2 j = 1 do l = 2, level_max j = j * 2 new_1d(l) = j end do ! ! Count the number of points by counting the number of new points ! associated with each level vector. ! allocate ( level_1d(1:dim_num) ) point_num = 0 do level = 0, level_max more = .false. h = 0 t = 0 do call comp_next ( level, dim_num, level_1d, more, h, t ) point_num = point_num + product ( new_1d(level_1d(1:dim_num)) ) if ( .not. more ) then exit end if end do end do deallocate ( level_1d ) deallocate ( new_1d ) return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end subroutine vec_colex_next2 ( dim_num, base, a, more ) !*****************************************************************************80 ! !! VEC_COLEX_NEXT2 generates vectors in colex order. ! ! Discussion: ! ! The vectors are produced in colexical order, starting with ! ! (0, 0, ...,0), ! (1, 0, ...,0), ! ... ! (BASE(1)-1,0, ...,0) ! ! (0, 1, ...,0) ! (1, 1, ...,0) ! ... ! (BASE(1)-1,1, ...,0) ! ! (0, 2, ...,0) ! (1, 2, ...,0) ! ... ! (BASE(1)-1,BASE(2)-1,...,BASE(DIM_NUM)-1). ! ! Examples: ! ! DIM_NUM = 2, ! BASE = ( 3, 3 ) ! ! 0 0 ! 1 0 ! 2 0 ! 0 1 ! 1 1 ! 2 1 ! 0 2 ! 1 2 ! 2 2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 November 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer BASE(DIM_NUM), the bases to be used in each ! dimension. In dimension I, entries will range from 0 to BASE(I)-1. ! ! Input/output, integer A(DIM_NUM). On each return, A ! will contain entries in the range 0 to N-1. ! ! Input/output, logical MORE. Set this variable FALSE before ! the first call. On return, MORE is TRUE if another vector has ! been computed. If MORE is returned FALSE, ignore the output ! vector and stop calling the routine. ! implicit none integer dim_num integer a(dim_num) integer base(dim_num) integer i logical more if ( .not. more ) then a(1:dim_num) = 0 more = .true. else do i = 1, dim_num a(i) = a(i) + 1 if ( a(i) < base(i) ) then return end if a(i) = 0 end do more = .false. end if return end