function i4_log_10 ( i ) !*****************************************************************************80 ! !! i4_log_10() returns the integer part of the logarithm base 10 of an I4. ! ! Example: ! ! I I4_LOG_10 ! ----- -------- ! 0 0 ! 1 0 ! 2 0 ! 9 0 ! 10 1 ! 11 1 ! 99 1 ! 100 2 ! 101 2 ! 999 2 ! 1000 3 ! 1001 3 ! 9999 3 ! 10000 4 ! ! Discussion: ! ! I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 June 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the number whose logarithm base 10 ! is desired. ! ! Output, integer I4_LOG_10, the integer part of the ! logarithm base 10 of the absolute value of X. ! implicit none integer i integer i_abs integer i4_log_10 integer ten_pow if ( i == 0 ) then i4_log_10 = 0 else i4_log_10 = 0 ten_pow = 10 i_abs = abs ( i ) do while ( ten_pow <= i_abs ) i4_log_10 = i4_log_10 + 1 ten_pow = ten_pow * 10 end do end if return end subroutine r8ge_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8GE_PRINT prints an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8ge_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8ge_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8GE_PRINT_SOME prints some of an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '('' Col: '',5a14)' ) ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8to_dif2 ( n, a ) !*****************************************************************************80 ! !! R8TO_DIF2 sets the second difference as an R8TO matrix. ! ! Discussion: ! ! The R8TO storage format is used for a real Toeplitz matrix, which ! is constant along diagonals. Thus, in an N by N Toeplitz matrix, ! there are at most 2*N-1 distinct entries. The format stores the ! N elements of the first row, followed by the N-1 elements of the ! first column (skipping the entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Output, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) a(1:2*n-1) = 0.0D+00 a(1) = 2.0D+00 a(2) = -1.0D+00 a(n+1) = -1.0D+00 return end subroutine r8to_indicator ( n, a ) !*****************************************************************************80 ! !! R8TO_INDICATOR sets up an R8TO indicator matrix. ! ! Discussion: ! ! The "indicator matrix" simply has a value like I*10+J at every ! entry of a dense matrix, or at every entry of a compressed storage ! matrix for which storage is allocated. ! ! The R8TO storage format is used for a real Toeplitz matrix, which ! is constant along diagonals. Thus, in an N by N Toeplitz matrix, ! there are at most 2*N-1 distinct entries. The format stores the ! N elements of the first row, followed by the N-1 elements of the ! first column (skipping the entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! N must be positive. ! ! Output, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) integer fac integer i integer i4_log_10 integer j integer k fac = 10 ** ( i4_log_10 ( n ) + 1 ) i = 1 k = 0 do j = 1, n k = k + 1 a(k) = real ( fac * i + j, kind = rk ) end do j = 1 do i = 2, n k = k + 1 a(k) = real ( fac * i + j, kind = rk ) end do return end subroutine r8to_mtv ( n, a, x, b ) !*****************************************************************************80 ! !! R8TO_MTV multiplies an R8VEC by an R8TO matrix. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 November 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product A' * X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) real ( kind = rk ) b(n) integer i real ( kind = rk ) x(n) do i = 1, n b(i) = sum ( a(i:1:-1) * x(1:i) ) + & sum ( a(n+1:2*n-i) * x(i+1:n) ) end do return end subroutine r8to_mv ( n, a, x, b ) !*****************************************************************************80 ! !! R8TO_MV multiplies an R8TO matrix by an R8VEC. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product A * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) real ( kind = rk ) b(n) integer i real ( kind = rk ) x(n) b(1) = sum ( a(1:n) * x(1:n) ) do i = 2, n b(i) = sum ( a(n+i-1:n+1:-1) * x(1:i-1) ) & + sum ( a(1:n+1-i) * x(i:n) ) end do return end subroutine r8to_print ( n, a, title ) !*****************************************************************************80 ! !! R8TO_PRINT prints an R8TO matrix. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) character ( len = * ) title call r8to_print_some ( n, a, 1, 1, n, n, title ) return end subroutine r8to_print_some ( n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8TO_PRINT_SOME prints some of an R8TO matrix. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer n real ( kind = rk ) a(2*n-1) real ( kind = rk ) aij character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '(a,5a14)' ) ' Col: ', ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, n ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 if ( i <= j ) then aij = a(j+1-i) else aij = a(n+i-j) end if write ( ctemp(j2), '(g14.6)' ) aij end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8to_random ( n, seed, a ) !*****************************************************************************80 ! !! R8TO_RANDOM randomizes an R8TO matrix. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 May 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! N must be positive. ! ! Input/output, integer SEED, a seed for the random number ! generator. ! ! Output, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) integer n2 integer seed n2 = 2 * n - 1 call r8vec_uniform_01 ( n2, seed, a ) return end subroutine r8to_sl ( n, a, b, x ) !*****************************************************************************80 ! !! R8TO_SL solves an R8TO system. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 September 2015 ! ! Author: ! ! FORTRAN90 version by John Burkardt. ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! ! Input, real ( kind = rk ) B(N) the right hand side vector. ! ! Output, real ( kind = rk ) X(N), the solution vector. X and B may share the ! same storage. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) real ( kind = rk ) b(n) real ( kind = rk ) c1(n-1) real ( kind = rk ) c2(n-1) integer i integer nsub real ( kind = rk ) r1 real ( kind = rk ) r2 real ( kind = rk ) r3 real ( kind = rk ) r5 real ( kind = rk ) r6 real ( kind = rk ) x(n) if ( n < 1 ) then return end if ! ! Solve the system with the principal minor of order 1. ! r1 = a(1) x(1) = b(1) / r1 if ( n == 1 ) then return end if ! ! Recurrent process for solving the system with the Toeplitz matrix. ! do nsub = 2, n ! ! Compute multiples of the first and last columns of the inverse of ! the principal minor of order NSUB. ! r5 = a(n+nsub-1) r6 = a(nsub) if ( 2 < nsub ) then c1(nsub-1) = r2 do i = 1, nsub - 2 r5 = r5 + a(n+i) * c1(nsub-i) r6 = r6 + a(i+1) * c2(i) end do end if r2 = -r5 / r1 r3 = -r6 / r1 r1 = r1 + r5 * r3 if ( 2 < nsub ) then r6 = c2(1) c2(nsub-1) = 0.0D+00 do i = 2, nsub - 1 r5 = c2(i) c2(i) = c1(i) * r3 + r6 c1(i) = c1(i) + r6 * r2 r6 = r5 end do end if c2(1) = r3 ! ! Compute the solution of the system with the principal minor of order NSUB. ! r5 = sum ( a(n+1:n+nsub-1) * x(nsub-1:1:-1) ) r6 = ( b(nsub) - r5 ) / r1 x(1:nsub-1) = x(1:nsub-1) + c2(1:nsub-1) * r6 x(nsub) = r6 end do return end subroutine r8to_slt ( n, a, b, x ) !*****************************************************************************80 ! !! R8TO_SLT solves the system A'*x=b, where A is an R8TO matrix. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 September 2015 ! ! Author: ! ! FORTRAN90 version by John Burkardt. ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! ! Input, real ( kind = rk ) B(N) the right hand side vector. ! ! Output, real ( kind = rk ) X(N), the solution vector. X and B may share the ! same storage. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) real ( kind = rk ) b(n) real ( kind = rk ) c1(n-1) real ( kind = rk ) c2(n-1) integer i integer nsub real ( kind = rk ) r1 real ( kind = rk ) r2 real ( kind = rk ) r3 real ( kind = rk ) r5 real ( kind = rk ) r6 real ( kind = rk ) x(n) if ( n < 1 ) then return end if ! ! Solve the system with the principal minor of order 1. ! r1 = a(1) x(1) = b(1) / r1 if ( n == 1 ) then return end if ! ! Recurrent process for solving the system with the Toeplitz matrix. ! do nsub = 2, n ! ! Compute multiples of the first and last columns of the inverse of ! the principal minor of order NSUB. ! r5 = a(nsub) r6 = a(n+nsub-1) if ( 2 < nsub ) then c1(nsub-1) = r2 do i = 1, nsub - 2 r5 = r5 + a(i+1) * c1(nsub-i) r6 = r6 + a(n+i) * c2(i) end do end if r2 = -r5 / r1 r3 = -r6 / r1 r1 = r1 + r5 * r3 if ( 2 < nsub ) then r6 = c2(1) c2(nsub-1) = 0.0D+00 do i = 2, nsub - 1 r5 = c2(i) c2(i) = c1(i) * r3 + r6 c1(i) = c1(i) + r6 * r2 r6 = r5 end do end if c2(1) = r3 ! ! Compute the solution of the system with the principal minor of order NSUB. ! r5 = sum ( a(2:nsub) * x(nsub-1:1:-1) ) r6 = ( b(nsub) - r5 ) / r1 x(1:nsub-1) = x(1:nsub-1) + c2(1:nsub-1) * r6 x(nsub) = r6 end do return end subroutine r8to_to_r8ge ( n, a, b ) !*****************************************************************************80 ! !! R8TO_TO_R8GE copies an R8TO matrix to an R8GE matrix. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! ! Output, real ( kind = rk ) B(N,N), the R8GE matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) real ( kind = rk ) b(n,n) integer i do i = 1, n b(i,1:i-1) = a(n+i-1:n+1:-1) b(i,i:n) = a(1:n-i+1) end do return end subroutine r8to_zeros ( n, a ) !*****************************************************************************80 ! !! R8TO_ZEROS zeroes an R8TO matrix. ! ! Discussion: ! ! The R8TO storage format is used for a Toeplitz matrix, which is constant ! along diagonals. Thus, in an N by N Toeplitz matrix, there are at most ! 2*N-1 distinct entries. The format stores the N elements of the first ! row, followed by the N-1 elements of the first column (skipping the ! entry in the first row). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 January 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! N must be positive. ! ! Output, real ( kind = rk ) A(2*N-1), the R8TO matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(2*n-1) a(1:2*n-1) = 0.0D+00 return end subroutine r8vec_indicator1 ( n, a ) !*****************************************************************************80 ! !! R8VEC_INDICATOR1 sets an R8VEC to the indicator1 vector. ! ! Discussion: ! ! A(1:N) = (/ 1 : N /) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of elements of A. ! ! Output, real ( kind = rk ) A(N), the array to be initialized. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i do i = 1, n a(i) = real ( i, kind = rk ) end do return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, real ( kind = rk ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(i8,g14.6)' ) i, a(i) end do return end subroutine r8vec_uniform_01 ( n, seed, r ) !*****************************************************************************80 ! !! R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of real ( kind = rk ) values. ! ! For now, the input quantity SEED is an integer variable. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer N, the number of entries ! in the vector. ! ! Input/output, integer SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R(N), the vector of pseudorandom values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i integer k integer seed real ( kind = rk ) r(n) if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8VEC_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if r(i) = real ( seed, kind = rk ) * 4.656612875D-10 end do return end