function i4_log_10 ( i ) !*****************************************************************************80 ! !! i4_log_10() returns the integer part of the logarithm base 10 of an I4. ! ! Example: ! ! I I4_LOG_10 ! ----- -------- ! 0 0 ! 1 0 ! 2 0 ! 9 0 ! 10 1 ! 11 1 ! 99 1 ! 100 2 ! 101 2 ! 999 2 ! 1000 3 ! 1001 3 ! 9999 3 ! 10000 4 ! ! Discussion: ! ! I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 June 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the number whose logarithm base 10 ! is desired. ! ! Output, integer I4_LOG_10, the integer part of the ! logarithm base 10 of the absolute value of X. ! implicit none integer i integer i_abs integer i4_log_10 integer ten_pow if ( i == 0 ) then i4_log_10 = 0 else i4_log_10 = 0 ten_pow = 10 i_abs = abs ( i ) do while ( ten_pow <= i_abs ) i4_log_10 = i4_log_10 + 1 ten_pow = ten_pow * 10 end do end if return end subroutine i4vec_print ( n, a, title ) !*****************************************************************************80 ! !! I4VEC_PRINT prints an I4VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 November 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, integer A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title first. ! TITLE may be blank. ! implicit none integer n integer a(n) integer big integer i character ( len = * ) title if ( title /= ' ' ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if big = maxval ( abs ( a(1:n) ) ) write ( *, '(a)' ) ' ' if ( big < 1000 ) then do i = 1, n write ( *, '(i8,1x,i4)' ) i, a(i) end do else if ( big < 1000000 ) then do i = 1, n write ( *, '(i8,1x,i7)' ) i, a(i) end do else do i = 1, n write ( *, '(i8,i11)' ) i, a(i) end do end if return end function r8_uniform_01 ( seed ) !*****************************************************************************80 ! !! R8_UNIFORM_01 returns a unit pseudorandom R8. ! ! Discussion: ! ! An R8 is a real ( kind = rk ) value. ! ! For now, the input quantity SEED is an integer variable. ! ! This routine implements the recursion ! ! seed = 16807 * seed mod ( 2^31 - 1 ) ! r8_uniform_01 = seed / ( 2^31 - 1 ) ! ! The integer arithmetic never requires more than 32 bits, ! including a sign bit. ! ! If the initial seed is 12345, then the first three computations are ! ! Input Output R8_UNIFORM_01 ! SEED SEED ! ! 12345 207482415 0.096616 ! 207482415 1790989824 0.833995 ! 1790989824 2035175616 0.947702 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley Interscience, page 95, 1998. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input/output, integer SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R8_UNIFORM_01, a new pseudorandom variate, ! strictly between 0 and 1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer k real ( kind = rk ) r8_uniform_01 integer seed if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if ! ! Although SEED can be represented exactly as a 32 bit integer, ! it generally cannot be represented exactly as a 32 bit real number! ! r8_uniform_01 = real ( seed, kind = rk ) * 4.656612875D-10 return end subroutine r8gd_dif2 ( n, ndiag, offset, a ) !*****************************************************************************80 ! !! R8GD_DIF2 sets up an R8GD second difference matrix. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 July 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 3. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. The values -1, 0 and +1 should be included. ! ! Output, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) integer i integer j integer jdiag integer offset(ndiag) if ( ndiag < 3 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'R8GD_DIF2 - Fatal error!' write ( *, '(a)' ) ' NDIAG must be at least 3.' stop 1 end if a(1:n,1:ndiag) = 0.0D+00 do i = 1, n do jdiag = 1, ndiag j = i + offset(jdiag) if ( 1 <= j .and. j <= n ) then if ( offset(jdiag) == 0 ) then a(i,jdiag) = 2.0D+00 else if ( offset(jdiag) == -1 .or. offset(jdiag) == +1 ) then a(i,jdiag) = -1.0D+00 end if end if end do end do return end subroutine r8gd_indicator ( n, ndiag, offset, a ) !*****************************************************************************80 ! !! R8GD_INDICATOR sets up an R8GD indicator matrix. ! ! Discussion: ! ! The "indicator matrix" simply has a value like I*10+J at every ! entry of a dense matrix, or at every entry of a compressed storage ! matrix for which storage is allocated. ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. ! ! Output, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) integer diag integer fac integer i integer i4_log_10 integer j integer offset(ndiag) a(1:n,1:ndiag) = 0.0D+00 fac = 10 ** ( i4_log_10 ( n ) + 1 ) do i = 1, n do diag = 1, ndiag j = i + offset(diag) if ( 1 <= j .and. j <= n ) then a(i,diag) = real ( fac * i + j, kind = rk ) end if end do end do return end subroutine r8gd_mtv ( n, ndiag, offset, a, x, b ) !*****************************************************************************80 ! !! R8GD_MTV multiplies an R8VEC by an R8GD matrix. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. ! ! Input, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product X*A. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) real ( kind = rk ) b(n) integer diag integer i integer j integer offset(ndiag) real ( kind = rk ) x(n) b(1:n) = 0.0D+00 do i = 1, n do diag = 1, ndiag j = i + offset(diag) if ( 1 <= j .and. j <= n ) then b(j) = b(j) + x(i) * a(i,diag) end if end do end do return end subroutine r8gd_mv ( n, ndiag, offset, a, x, b ) !*****************************************************************************80 ! !! R8GD_MV multiplies an R8GD matrix by an R8VEC. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Example: ! ! The "offset" value is printed near the first entry of each diagonal ! in the original matrix, and above the columns in the new matrix. ! ! Original matrix New Matrix ! ! 0 1 2 3 4 5 -3 -2 0 1 3 5 ! \ \ \ \ \ \ ! 11 12 0 14 0 16 -- -- 11 12 14 16 ! -1 = 0 22 23 0 25 0 -- -- 22 23 25 -- ! -2 = 31 0 33 34 0 36 -- 31 33 34 36 -- ! -3 = 41 42 0 44 45 0 41 42 44 45 -- -- ! -4 = 0 52 53 0 55 56 52 53 55 56 -- -- ! -5 = 0 0 63 64 65 66 63 64 66 -- -- -- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. ! ! Input, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product A * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) real ( kind = rk ) b(n) integer diag integer i integer j integer offset(ndiag) real ( kind = rk ) x(n) b(1:n) = 0.0D+00 do i = 1, n do diag = 1, ndiag j = i + offset(diag) if ( 1 <= j .and. j <= n ) then b(i) = b(i) + a(i,diag) * x(j) end if end do end do return end subroutine r8gd_print ( n, ndiag, offset, a, title ) !*****************************************************************************80 ! !! R8GD_PRINT prints an R8GD matrix. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of columns of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the ! diagonal storage. ! ! Input, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) integer offset(ndiag) character ( len = * ) title call r8gd_print_some ( n, ndiag, offset, a, 1, 1, n, n, title ) return end subroutine r8gd_print_some ( n, ndiag, offset, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8GD_PRINT_SOME prints some of an R8GD matrix. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of columns of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. ! ! Input, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer n integer ndiag real ( kind = rk ) a(n,ndiag) real ( kind = rk ) aij character ( len = 14 ) ctemp(incx) integer diag integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo integer off integer offset(ndiag) character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '(a,5a14)' ) ' Col: ', ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, n ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 aij = 0.0D+00 off = j - i do diag = 1, ndiag if ( off == offset(diag) ) then aij = a(i,diag) end if end do write ( ctemp(j2), '(g14.6)' ) aij end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8gd_random ( n, ndiag, offset, seed, a ) !*****************************************************************************80 ! !! R8GD_RANDOM randomizes an R8GD matrix. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. ! ! Input/output, integer SEED, a seed for the random number ! generator. ! ! Output, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) real ( kind = rk ) r8_uniform_01 integer diag integer i integer j integer offset(ndiag) integer seed a(1:n,1:ndiag) = 0.0D+00 do i = 1, n do diag = 1, ndiag j = i + offset(diag) if ( 1 <= j .and. j <= n ) then a(i,diag) = r8_uniform_01 ( seed ) end if end do end do return end subroutine r8gd_to_r8ge ( n, ndiag, offset, a, b ) !*****************************************************************************80 ! !! R8GD_TO_R8GE copies an R8GD matrix to an R8GE matrix. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. ! ! Input, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! ! Output, real ( kind = rk ) B(N,N), the R8GE matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) real ( kind = rk ) b(n,n) integer diag integer i integer j integer offset(ndiag) b(1:n,1:n) = 0.0D+00 do i = 1, n do diag = 1, ndiag j = i + offset(diag) if ( 1 <= j .and. j <= n ) then b(i,j) = a(i,diag) end if end do end do return end subroutine r8gd_zeros ( n, ndiag, offset, a ) !*****************************************************************************80 ! !! R8GD_ZEROS zeroes an R8GD matrix. ! ! Discussion: ! ! The R8GD storage format is suitable for matrices whose only nonzero entries ! occur along a few diagonals, but for which these diagonals are not all ! close enough to the main diagonal for band storage to be efficient. ! ! In that case, we assign the main diagonal the offset value 0. ! Each successive superdiagonal gets an offset value 1 higher, until ! the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. ! Similarly, the subdiagonals are assigned offsets of -1 through -(N-1). ! ! Now, assuming that only a few of these diagonals contain nonzeros, ! then for the I-th diagonal to be saved, we stored its offset in ! OFFSET(I), and its entries in column I of the matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 January 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer NDIAG, the number of diagonals of the matrix ! that are stored in the array. ! NDIAG must be at least 1, and no more than 2 * N - 1. ! ! Input, integer OFFSET(NDIAG), the offsets for the diagonal ! storage. ! ! Output, real ( kind = rk ) A(N,NDIAG), the R8GD matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer ndiag real ( kind = rk ) a(n,ndiag) integer offset(ndiag) a(1:n,1:ndiag) = 0.0D+00 return end subroutine r8ge_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8GE_PRINT prints an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8ge_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8ge_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8GE_PRINT_SOME prints some of an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '('' Col: '',5a14)' ) ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8vec_indicator1 ( n, a ) !*****************************************************************************80 ! !! R8VEC_INDICATOR1 sets an R8VEC to the indicator1 vector. ! ! Discussion: ! ! A(1:N) = (/ 1 : N /) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of elements of A. ! ! Output, real ( kind = rk ) A(N), the array to be initialized. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i do i = 1, n a(i) = real ( i, kind = rk ) end do return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, real ( kind = rk ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(i8,g14.6)' ) i, a(i) end do return end