function alngam ( xvalue, ifault ) !*****************************************************************************80 ! !! alngam() computes the logarithm of the gamma function. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 January 2008 ! ! Author: ! ! Original FORTRAN77 version by Allan Macleod. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Allan Macleod, ! Algorithm AS 245, ! A Robust and Reliable Algorithm for the Logarithm of the Gamma Function, ! Applied Statistics, ! Volume 38, Number 2, 1989, pages 397-402. ! ! Parameters: ! ! Input, real ( kind = rk ) XVALUE, the argument of the Gamma function. ! ! Output, integer IFAULT, error flag. ! 0, no error occurred. ! 1, XVALUE is less than or equal to 0. ! 2, XVALUE is too big. ! ! Output, real ( kind = rk ) ALNGAM, the logarithm of the gamma function of X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alngam real ( kind = rk ), parameter :: alr2pi = 0.918938533204673D+00 integer ifault real ( kind = rk ), dimension ( 9 ) :: r1 = (/ & -2.66685511495D+00, & -24.4387534237D+00, & -21.9698958928D+00, & 11.1667541262D+00, & 3.13060547623D+00, & 0.607771387771D+00, & 11.9400905721D+00, & 31.4690115749D+00, & 15.2346874070D+00 /) real ( kind = rk ), dimension ( 9 ) :: r2 = (/ & -78.3359299449D+00, & -142.046296688D+00, & 137.519416416D+00, & 78.6994924154D+00, & 4.16438922228D+00, & 47.0668766060D+00, & 313.399215894D+00, & 263.505074721D+00, & 43.3400022514D+00 /) real ( kind = rk ), dimension ( 9 ) :: r3 = (/ & -2.12159572323D+05, & 2.30661510616D+05, & 2.74647644705D+04, & -4.02621119975D+04, & -2.29660729780D+03, & -1.16328495004D+05, & -1.46025937511D+05, & -2.42357409629D+04, & -5.70691009324D+02 /) real ( kind = rk ), dimension ( 5 ) :: r4 = (/ & 0.279195317918525D+00, & 0.4917317610505968D+00, & 0.0692910599291889D+00, & 3.350343815022304D+00, & 6.012459259764103D+00 /) real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ), parameter :: xlge = 5.10D+05 real ( kind = rk ), parameter :: xlgst = 1.0D+30 real ( kind = rk ) xvalue real ( kind = rk ) y x = xvalue alngam = 0.0D+00 ! ! Check the input. ! if ( xlgst <= x ) then ifault = 2 return end if if ( x <= 0.0D+00 ) then ifault = 1 return end if ifault = 0 ! ! Calculation for 0 < X < 0.5 and 0.5 <= X < 1.5 combined. ! if ( x < 1.5D+00 ) then if ( x < 0.5D+00 ) then alngam = - log ( x ) y = x + 1.0D+00 ! ! Test whether X < machine epsilon. ! if ( y == 1.0D+00 ) then return end if else alngam = 0.0D+00 y = x x = ( x - 0.5D+00 ) - 0.5D+00 end if alngam = alngam + x * (((( & r1(5) * y & + r1(4) ) * y & + r1(3) ) * y & + r1(2) ) * y & + r1(1) ) / (((( & y & + r1(9) ) * y & + r1(8) ) * y & + r1(7) ) * y & + r1(6) ) return end if ! ! Calculation for 1.5 <= X < 4.0. ! if ( x < 4.0D+00 ) then y = ( x - 1.0D+00 ) - 1.0D+00 alngam = y * (((( & r2(5) * x & + r2(4) ) * x & + r2(3) ) * x & + r2(2) ) * x & + r2(1) ) / (((( & x & + r2(9) ) * x & + r2(8) ) * x & + r2(7) ) * x & + r2(6) ) ! ! Calculation for 4.0 <= X < 12.0. ! else if ( x < 12.0D+00 ) then alngam = (((( & r3(5) * x & + r3(4) ) * x & + r3(3) ) * x & + r3(2) ) * x & + r3(1) ) / (((( & x & + r3(9) ) * x & + r3(8) ) * x & + r3(7) ) * x & + r3(6) ) ! ! Calculation for 12.0 <= X. ! else y = log ( x ) alngam = x * ( y - 1.0D+00 ) - 0.5D+00 * y + alr2pi if ( x <= xlge ) then x1 = 1.0D+00 / x x2 = x1 * x1 alngam = alngam + x1 * ( ( & r4(3) * & x2 + r4(2) ) * & x2 + r4(1) ) / ( ( & x2 + r4(5) ) * & x2 + r4(4) ) end if end if return end function alnorm ( x, upper ) !*****************************************************************************80 ! !! alnorm() computes the cumulative density of the standard normal distribution. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 January 2008 ! ! Author: ! ! Original FORTRAN77 version by David Hill. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! David Hill, ! Algorithm AS 66: ! The Normal Integral, ! Applied Statistics, ! Volume 22, Number 3, 1973, pages 424-427. ! ! Parameters: ! ! Input, real ( kind = rk ) X, is one endpoint of the semi-infinite interval ! over which the integration takes place. ! ! Input, logical UPPER, determines whether the upper or lower ! interval is to be integrated: ! .TRUE. => integrate from X to + Infinity; ! .FALSE. => integrate from - Infinity to X. ! ! Output, real ( kind = rk ) ALNORM, the integral of the standard normal ! distribution over the desired interval. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: a1 = 5.75885480458D+00 real ( kind = rk ), parameter :: a2 = 2.62433121679D+00 real ( kind = rk ), parameter :: a3 = 5.92885724438D+00 real ( kind = rk ) alnorm real ( kind = rk ), parameter :: b1 = -29.8213557807D+00 real ( kind = rk ), parameter :: b2 = 48.6959930692D+00 real ( kind = rk ), parameter :: c1 = -0.000000038052D+00 real ( kind = rk ), parameter :: c2 = 0.000398064794D+00 real ( kind = rk ), parameter :: c3 = -0.151679116635D+00 real ( kind = rk ), parameter :: c4 = 4.8385912808D+00 real ( kind = rk ), parameter :: c5 = 0.742380924027D+00 real ( kind = rk ), parameter :: c6 = 3.99019417011D+00 real ( kind = rk ), parameter :: con = 1.28D+00 real ( kind = rk ), parameter :: d1 = 1.00000615302D+00 real ( kind = rk ), parameter :: d2 = 1.98615381364D+00 real ( kind = rk ), parameter :: d3 = 5.29330324926D+00 real ( kind = rk ), parameter :: d4 = -15.1508972451D+00 real ( kind = rk ), parameter :: d5 = 30.789933034D+00 real ( kind = rk ), parameter :: ltone = 7.0D+00 real ( kind = rk ), parameter :: p = 0.398942280444D+00 real ( kind = rk ), parameter :: q = 0.39990348504D+00 real ( kind = rk ), parameter :: r = 0.398942280385D+00 logical up logical upper real ( kind = rk ), parameter :: utzero = 18.66D+00 real ( kind = rk ) x real ( kind = rk ) y real ( kind = rk ) z up = upper z = x if ( z < 0.0D+00 ) then up = .not. up z = - z end if if ( ltone < z .and. ( ( .not. up ) .or. utzero < z ) ) then if ( up ) then alnorm = 0.0D+00 else alnorm = 1.0D+00 end if return end if y = 0.5D+00 * z * z if ( z <= con ) then alnorm = 0.5D+00 - z * ( p - q * y & / ( y + a1 + b1 & / ( y + a2 + b2 & / ( y + a3 )))) else alnorm = r * exp ( - y ) & / ( z + c1 + d1 & / ( z + c2 + d2 & / ( z + c3 + d3 & / ( z + c4 + d4 & / ( z + c5 + d5 & / ( z + c6 )))))) end if if ( .not. up ) then alnorm = 1.0D+00 - alnorm end if return end subroutine gamma_inc_values ( n_data, a, x, fx ) !*****************************************************************************80 ! !! gamma_inc_values() returns some values of the incomplete Gamma function. ! ! Discussion: ! ! The (normalized) incomplete Gamma function P(A,X) is defined as: ! ! PN(A,X) = 1/Gamma(A) * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. ! ! With this definition, for all A and X, ! ! 0 <= PN(A,X) <= 1 ! ! and ! ! PN(A,INFINITY) = 1.0 ! ! In Mathematica, the function can be evaluated by: ! ! 1 - GammaRegularized[A,X] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 November 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! ISBN: 0-486-61272-4, ! LC: QA47.A34. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Cambridge University Press, 1999, ! ISBN: 0-521-64314-7, ! LC: QA76.95.W65. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) A, the parameter of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 20 real ( kind = rk ) a real ( kind = rk ), save, dimension ( n_max ) :: a_vec = (/ & 0.10D+00, & 0.10D+00, & 0.10D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.10D+01, & 0.10D+01, & 0.10D+01, & 0.11D+01, & 0.11D+01, & 0.11D+01, & 0.20D+01, & 0.20D+01, & 0.20D+01, & 0.60D+01, & 0.60D+01, & 0.11D+02, & 0.26D+02, & 0.41D+02 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.7382350532339351D+00, & 0.9083579897300343D+00, & 0.9886559833621947D+00, & 0.3014646416966613D+00, & 0.7793286380801532D+00, & 0.9918490284064973D+00, & 0.9516258196404043D-01, & 0.6321205588285577D+00, & 0.9932620530009145D+00, & 0.7205974576054322D-01, & 0.5891809618706485D+00, & 0.9915368159845525D+00, & 0.1018582711118352D-01, & 0.4421745996289254D+00, & 0.9927049442755639D+00, & 0.4202103819530612D-01, & 0.9796589705830716D+00, & 0.9226039842296429D+00, & 0.4470785799755852D+00, & 0.7444549220718699D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.30D-01, & 0.30D+00, & 0.15D+01, & 0.75D-01, & 0.75D+00, & 0.35D+01, & 0.10D+00, & 0.10D+01, & 0.50D+01, & 0.10D+00, & 0.10D+01, & 0.50D+01, & 0.15D+00, & 0.15D+01, & 0.70D+01, & 0.25D+01, & 0.12D+02, & 0.16D+02, & 0.25D+02, & 0.45D+02 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else a = a_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function gammad ( x, p, ifault ) !*****************************************************************************80 ! !! gammad() computes the Incomplete Gamma Integral ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 January 2008 ! ! Author: ! ! Original FORTRAN77 version by B Shea. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! B Shea, ! Algorithm AS 239: ! Chi-squared and Incomplete Gamma Integral, ! Applied Statistics, ! Volume 37, Number 3, 1988, pages 466-473. ! ! Parameters: ! ! Input, real ( kind = rk ) X, P, the parameters of the incomplete ! gamma ratio. 0 <= X, and 0 < P. ! ! Output, integer IFAULT, error flag. ! 0, no error. ! 1, X < 0 or P <= 0. ! ! Output, real ( kind = rk ) GAMMAD, the value of the incomplete ! Gamma integral. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alnorm real ( kind = rk ) alngam real ( kind = rk ) an real ( kind = rk ) arg real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ), parameter :: elimit = - 88.0D+00 real ( kind = rk ) gammad integer ifault real ( kind = rk ), parameter :: oflo = 1.0D+37 real ( kind = rk ) p real ( kind = rk ), parameter :: plimit = 1000.0D+00 real ( kind = rk ) pn1 real ( kind = rk ) pn2 real ( kind = rk ) pn3 real ( kind = rk ) pn4 real ( kind = rk ) pn5 real ( kind = rk ) pn6 real ( kind = rk ) rn real ( kind = rk ), parameter :: tol = 1.0D-14 logical upper real ( kind = rk ) x real ( kind = rk ), parameter :: xbig = 1.0D+08 gammad = 0.0D+00 ! ! Check the input. ! if ( x < 0.0D+00 ) then ifault = 1 return end if if ( p <= 0.0D+00 ) then ifault = 1 return end if ifault = 0 if ( x == 0.0D+00 ) then gammad = 0.0D+00 return end if ! ! If P is large, use a normal approximation. ! if ( plimit < p ) then pn1 = 3.0D+00 * sqrt ( p ) * ( ( x / p )**( 1.0D+00 / 3.0D+00 ) & + 1.0D+00 / ( 9.0D+00 * p ) - 1.0D+00 ) upper = .false. gammad = alnorm ( pn1, upper ) return end if ! ! If X is large set GAMMAD = 1. ! if ( xbig < x ) then gammad = 1.0D+00 return end if ! ! Use Pearson's series expansion. ! (Note that P is not large enough to force overflow in ALOGAM). ! No need to test IFAULT on exit since P > 0. ! if ( x <= 1.0D+00 .or. x < p ) then arg = p * log ( x ) - x - alngam ( p + 1.0D+00, ifault ) c = 1.0D+00 gammad = 1.0D+00 a = p do a = a + 1.0D+00 c = c * x / a gammad = gammad + c if ( c <= tol ) then exit end if end do arg = arg + log ( gammad ) if ( elimit <= arg ) then gammad = exp ( arg ) else gammad = 0.0D+00 end if ! ! Use a continued fraction expansion. ! else arg = p * log ( x ) - x - alngam ( p, ifault ) a = 1.0D+00 - p b = a + x + 1.0D+00 c = 0.0D+00 pn1 = 1.0D+00 pn2 = x pn3 = x + 1.0D+00 pn4 = x * b gammad = pn3 / pn4 do a = a + 1.0D+00 b = b + 2.0D+00 c = c + 1.0D+00 an = a * c pn5 = b * pn3 - an * pn1 pn6 = b * pn4 - an * pn2 if ( pn6 /= 0.0D+00 ) then rn = pn5 / pn6 if ( abs ( gammad - rn ) <= min ( tol, tol * rn ) ) then exit end if gammad = rn end if pn1 = pn3 pn2 = pn4 pn3 = pn5 pn4 = pn6 ! ! Re-scale terms in continued fraction if terms are large. ! if ( oflo <= abs ( pn5 ) ) then pn1 = pn1 / oflo pn2 = pn2 / oflo pn3 = pn3 / oflo pn4 = pn4 / oflo end if end do arg = arg + log ( gammad ) if ( elimit <= arg ) then gammad = 1.0D+00 - exp ( arg ) else gammad = 1.0D+00 end if end if return end