function triangle_num ( n ) c*********************************************************************72 c cc TRIANGLE_NUM returns the N-th triangular number. c c Discussion: c c The N-th triangular number T(N) is formed by the sum of the first c N integers: c c T(N) = sum ( 1 <= I <= N ) I c c By convention, T(0) = 0. c c T(N) can be computed quickly by the formula: c c T(N) = ( N * ( N + 1 ) ) / 2 c c First Values: c c 0 c 1 c 3 c 6 c 10 c 15 c 21 c 28 c 36 c 45 c 55 c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 11 August 1998 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the index of the desired number, c which must be at least 0. c c Output, integer TRIANGLE_NUM, the N-th triangular number. c implicit none integer n integer triangle_num triangle_num = ( n * ( n + 1 ) ) / 2 return end subroutine vandermonde_interp_2d_matrix ( n, m, x, y, a ) c*********************************************************************72 c cc VANDERMONDE_INTERP_2D_MATRIX computes a Vandermonde 2D interpolation matrix. c c Discussion: c c We assume the approximating function has the form of a polynomial c in X and Y of total degree M. c c p(x,y) = c00 c + c10 * x + c01 * y c + c20 * x^2 + c11 * xy + c02 * y^2 c + ... c + cm0 * x^(m) + ... + c0m * y^m. c c If we let T(K) = the K-th triangular number c = sum ( 1 <= I <= K ) I c then the number of coefficients in the above polynomial is T(M+1). c c We have n data locations (x(i),y(i)) and values z(i) to approximate: c c p(x(i),y(i)) = z(i) c c and we assume that N = T(M+1). c c This can be cast as an NxN linear system for the polynomial c coefficients: c c [ 1 x1 y1 x1^2 ... y1^m ] [ c00 ] = [ z1 ] c [ 1 x2 y2 x2^2 ... y2^m ] [ c10 ] = [ z2 ] c [ 1 x3 y3 x3^2 ... y3^m ] [ c01 ] = [ z3 ] c [ ...................... ] [ ... ] = [ ... ] c [ 1 xn yn xn^2 ... yn^m ] [ c0n ] = [ zn ] c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 25 September 2012 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of data points. It is necessary c that N = T(M+1), where T(K) is the K-th triangular number. c c Input, integer M, the degree of the polynomial. c c Input, double precision X(N), Y(N), the data locations. c c Output, double precision A(N,N), the Vandermonde matrix for X. c implicit none integer n double precision a(n,n) integer ex integer ey integer i integer j integer m integer s integer tmp1 integer triangle_num double precision x(n) double precision y(n) tmp1 = triangle_num ( m + 1 ) if ( n .ne. tmp1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VANDERMONDE_INTERP_2D_MATRIX - Fatal error!' write ( *, '(a)' ) ' For interpolation, we need N = T(M+1).' write ( *, '(a,i6)' ) ' But we have N = ', n write ( *, '(a,i6)' ) ' M = ', m write ( *, '(a,i6)' ) ' and T(M+1) = ', tmp1 stop end if j = 0 do s = 0, m do ex = s, 0, -1 ey = s - ex j = j + 1 do i = 1, n a(i,j) = x(i) ** ex * y(i) ** ey end do end do end do return end