subroutine get_unit ( iunit ) c*********************************************************************72 c cc GET_UNIT returns a free Fortran unit number. c c Discussion: c c A "free" Fortran unit number is a value between 1 and 99 which c is not currently associated with an I/O device. A free Fortran unit c number is needed in order to open a file with the OPEN command. c c If IUNIT = 0, then no free Fortran unit could be found, although c all 99 units were checked (except for units 5, 6 and 9, which c are commonly reserved for console I/O). c c Otherwise, IUNIT is a value between 1 and 99, representing a c free Fortran unit. Note that GET_UNIT assumes that units 5 and 6 c are special, and will never return those values. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 September 2013 c c Author: c c John Burkardt c c Parameters: c c Output, integer IUNIT, the free unit number. c implicit none integer i integer iunit logical value iunit = 0 do i = 1, 99 if ( i .ne. 5 .and. i .ne. 6 .and. i .ne. 9 ) then inquire ( unit = i, opened = value, err = 10 ) if ( .not. value ) then iunit = i return end if end if 10 continue end do return end subroutine r8mat_transpose_print ( m, n, a, title ) c*********************************************************************72 c cc R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, double precision A(M,N), an M by N matrix to be printed. c c Input, character*(*) TITLE, a title. c implicit none integer m integer n double precision a(m,n) character*(*) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, & jhi, title ) c*********************************************************************72 c cc R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT transposed. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, double precision A(M,N), an M by N matrix to be printed. c c Input, integer ILO, JLO, the first row and column to print. c c Input, integer IHI, JHI, the last row and column to print. c c Input, character * ( * ) TITLE, a title. c implicit none integer incx parameter ( incx = 5 ) integer m integer n double precision a(m,n) character * ( 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character * ( * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) if ( m .le. 0 .or. n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)') i end do write ( *, '('' Row'',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(2x,i8,a,5a14)' ) j, ':', ( ctemp(i), i = 1, inc ) end do end do return end subroutine r8mat_write ( output_filename, m, n, table ) c*********************************************************************72 c cc R8MAT_WRITE writes a R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 22 October 2009 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) OUTPUT_FILENAME, the output file name. c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Input, double precision TABLE(M,N), the data. c implicit none integer m integer n integer j character * ( * ) output_filename integer output_unit character * ( 30 ) string double precision table(m,n) c c Open the file. c call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace' ) c c Create the format string. c if ( 0 .lt. m .and. 0 .lt. n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) & '(', m, 'g', 24, '.', 16, ')' c c Write the data. c do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if c c Close the file. c close ( unit = output_unit ) return end subroutine sphere_fibonacci_grid_display ( ng, xg, prefix ) c*********************************************************************72 c cc SPHERE_FIBONACCI_GRID_DISPLAY displays sphere points on a Fibonacci spiral. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 11 May 2015 c c Author: c c John Burkardt c c Parameters: c c Input, integer NG, the number of points. c c Input, double precision XG(3,NG), the Fibonacci spiral points. c c Input, character * ( * ) PREFIX, a prefix for the filenames. c implicit none integer ng character * ( 255 ) command_filename integer command_unit character * ( 255 ) data_filename integer data_unit integer j character * ( 255 ) plot_filename character * ( * ) prefix double precision xg(3,ng) c c Create graphics data files. c call get_unit ( data_unit ) data_filename = trim ( prefix ) // '_data.txt' open ( unit = data_unit, file = data_filename, & status = 'replace' ) do j = 1, ng write ( data_unit, '(2x,g14.6,2x,g14.6,2x,g14.6)' ) xg(1:3,j) end do close ( unit = data_unit ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) & ' Created data file "' // trim ( data_filename ) // '".' c c Create graphics command file. c call get_unit ( command_unit ) command_filename = trim ( prefix ) // '_commands.txt' open ( unit = command_unit, file = command_filename, & status = 'replace' ) write ( command_unit, '(a)' ) '# ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) '# Usage:' write ( command_unit, '(a)' ) & '# gnuplot < ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) 'set term png' plot_filename = trim ( prefix ) // '.png' write ( command_unit, '(a)' ) & 'set output "' // trim ( plot_filename ) // '"' write ( command_unit, '(a)' ) 'set xlabel "<--- X --->"' write ( command_unit, '(a)' ) 'set ylabel "<--- Y --->"' write ( command_unit, '(a)' ) 'set zlabel "<--- Z --->"' write ( command_unit, '(a)' ) & 'set title "' // trim ( prefix ) // '"' write ( command_unit, '(a)' ) 'set grid' write ( command_unit, '(a)' ) 'set key off' write ( command_unit, '(a)' ) 'set style data points' write ( command_unit, '(a)' ) 'set timestamp' write ( command_unit, '(a)' ) 'set view equal xyz' write ( command_unit, '(a)' ) & 'splot "' // trim ( data_filename ) // '"' write ( command_unit, '(a)' ) 'quit' close ( unit = command_unit ) write ( *, '(a)' ) & ' Created command file "' // trim ( command_filename ) // '".' return end subroutine sphere_fibonacci_grid_points ( ng, xyz ) c*********************************************************************72 c cc SPHERE_FIBONACCI_GRID_POINTS computes sphere points on a Fibonacci spiral. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 11 May 2015 c c Author: c c John Burkardt c c Reference: c c Richard Swinbank, James Purser, c Fibonacci grids: A novel approach to global modelling, c Quarterly Journal of the Royal Meteorological Society, c Volume 132, Number 619, July 2006 Part B, pages 1769-1793. c c Parameters: c c Input, integer NG, the number of points. c c Output, double precision XYZ(3,NG), the Fibonacci spiral points. c implicit none integer ng double precision cphi double precision i_r8 integer j double precision ng_r8 double precision r8_phi double precision r8_pi parameter ( r8_pi = 3.141592653589793D+00 ) double precision sphi double precision theta double precision xyz(3,ng) r8_phi = ( 1.0D+00 + sqrt ( 5.0D+00 ) ) / 2.0D+00 ng_r8 = dble ( ng ) do j = 1, ng i_r8 = dble ( - ng - 1 + 2 * j ) theta = 2.0D+00 * r8_pi * i_r8 / r8_phi sphi = i_r8 / ng_r8 cphi = sqrt ( ( ng_r8 + i_r8 ) * ( ng_r8 - i_r8 ) ) / ng_r8 xyz(1,j) = cphi * sin ( theta ) xyz(2,j) = cphi * cos ( theta ) xyz(3,j) = sphi end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end