program main c*********************************************************************72 c cc pyramid_exactness() determines the exactness of a pyramid quadrature rule. c c Discussion: c c The integration region is: c c - ( 1 - Z ) .le. X .le. 1 - Z c - ( 1 - Z ) .le. Y .le. 1 - Z c 0 .le. Z .le. 1. c c When Z is zero, the integration region is a square lying in the (X,Y) c plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the c radius of the square diminishes, and when Z reaches 1, the square has c contracted to the single point (0,0,1). c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 July 2009 c c Author: c c John Burkardt c implicit none integer dim_num parameter ( dim_num = 3 ) integer max_order parameter ( max_order = 500 ) integer arg_num integer degree integer degree_max integer dim_num2 double precision exact integer expon(dim_num) integer h integer iarg integer iargc integer ierror integer last logical more integer order integer order2 double precision pyra_unit_volume double precision quad double precision quad_error character * ( 255 ) quad_filename character * ( 255 ) quad_w_filename character * ( 255 ) quad_x_filename double precision r8vec_dot_product character * ( 255 ) string integer t double precision v(max_order) double precision w(max_order) double precision x(dim_num,max_order) call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'pyramid_exactness():' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) ' Investigate the polynomial exactness of' write ( *, '(a)' ) ' a quadrature rule for the pyramid.' c c Get the number of command line arguments. c arg_num = iargc ( ) c c Get the quadrature file root name: c if ( 1 .le. arg_num ) then iarg = 1 call getarg ( iarg, quad_filename ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) & ' Enter the "root" name of the quadrature files.' read ( *, '(a)' ) quad_filename end if c c Create the names of: c the quadrature W file; c the quadrature X file, c quad_w_filename = trim ( quad_filename ) // '_w.txt' quad_x_filename = trim ( quad_filename ) // '_x.txt' c c The second command line argument is the maximum degree. c if ( 2 .le. arg_num ) then iarg = 2 call getarg ( iarg, string ) call s_to_i4 ( string, degree_max, ierror, last ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Enter the maximum total degree to check.' read ( *, * ) degree_max end if c c Summarize the input. c write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' User input:' write ( *, '(a)' ) & ' W file = "' // trim ( quad_w_filename ) // '".' write ( *, '(a)' ) & ' X file = "' // trim ( quad_x_filename ) // '".' write ( *, '(a,i8)' ) & ' Maximum total degree to check = ', degree_max c c Read the X file. c call r8mat_header_read ( quad_x_filename, dim_num2, order ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Spatial dimension = ', dim_num2 write ( *, '(a,i8)' ) ' Number of points = ', order if ( dim_num2 .ne. dim_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PYRAMID_EXACTNESS - Fatal error!' write ( *, '(a)' ) ' Spatial dimension must be 3.' stop end if call r8mat_data_read ( quad_x_filename, dim_num, order, x ) c c Read the W file. c call r8mat_header_read ( quad_w_filename, dim_num2, order2 ) if ( dim_num2 .ne. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PYRAMID_EXACTNESS - Fatal error!' write ( *, '(a)' ) ' The weight file should have exactly' write ( *, '(a)' ) ' one value on each line.' stop end if if ( order2 .ne. order ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PYRAMID_EXACTNESS - Fatal error!' write ( *, '(a)' ) ' The weight file should have the same' write ( *, '(a)' ) ' number of lines as the abscissa file.' stop 1 end if call r8mat_data_read ( quad_w_filename, 1, order, w ) c c Explore the monomials. c write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Error Degree Exponents' write ( *, '(a)' ) ' ' do degree = 0, degree_max more = .false. h = 0 t = 0 10 continue call comp_next ( degree, dim_num, expon, more, h, t ) call monomial_value ( dim_num, order, expon, x, v ) quad = pyra_unit_volume ( ) & * r8vec_dot_product ( order, w, v ) call pyra_unit_monomial ( expon, exact ) quad_error = abs ( quad - exact ) write ( *, '(2x,f24.16,3x,i2,4x,10i3)' ) & quad_error, degree, expon(1:dim_num) if ( more ) then go to 10 end if write ( *, '(a)' ) ' ' end do c c Terminate. c write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'pyramid_exactness():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ch_cap ( ch ) c*********************************************************************72 c cc CH_CAP capitalizes a single character. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input/output, character CH, the character to capitalize. c implicit none character ch integer itemp itemp = ichar ( ch ) if ( 97 .le. itemp .and. itemp .le. 122 ) then ch = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) c*********************************************************************72 c cc CH_EQI is a case insensitive comparison of two characters for equality. c c Example: c c CH_EQI ( 'A', 'a' ) is TRUE. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, character C1, C2, the characters to compare. c c Output, logical CH_EQI, the result of the comparison. c implicit none character c1 character c1_cap character c2 character c2_cap logical ch_eqi c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap .eq. c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) c*********************************************************************72 c cc CH_TO_DIGIT returns the integer value of a base 10 digit. c c Example: c c C DIGIT c --- ----- c '0' 0 c '1' 1 c ... ... c '9' 9 c ' ' 0 c 'X' -1 c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 04 August 1999 c c Author: c c John Burkardt c c Parameters: c c Input, character C, the decimal digit, '0' through '9' or blank c are legal. c c Output, integer DIGIT, the corresponding integer value. If C was c 'illegal', then DIGIT is -1. c implicit none character c integer digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c .eq. ' ' ) then digit = 0 else digit = -1 end if return end subroutine comp_next ( n, k, a, more, h, t ) c*********************************************************************72 c cc COMP_NEXT computes the compositions of the integer N into K parts. c c Discussion: c c A composition of the integer N into K parts is an ordered sequence c of K nonnegative integers which sum to N. The compositions (1,2,1) c and (1,1,2) are considered to be distinct. c c The routine computes one composition on each call until there are no more. c For instance, one composition of 6 into 3 parts is c 3+2+1, another would be 6+0+0. c c On the first call to this routine, set MORE = FALSE. The routine c will compute the first element in the sequence of compositions, and c return it, as well as setting MORE = TRUE. If more compositions c are desired, call again, and again. Each time, the routine will c return with a new composition. c c However, when the LAST composition in the sequence is computed c and returned, the routine will reset MORE to FALSE, signaling that c the end of the sequence has been reached. c c This routine originally used a SAVE statement to maintain the c variables H and T. I have decided (based on an wasting an c entire morning trying to track down a problem) that it is safer c to pass these variables as arguments, even though the user should c never alter them. This allows this routine to safely shuffle c between several ongoing calculations. c c c There are 28 compositions of 6 into three parts. This routine will c produce those compositions in the following order: c c I A c - --------- c 1 6 0 0 c 2 5 1 0 c 3 4 2 0 c 4 3 3 0 c 5 2 4 0 c 6 1 5 0 c 7 0 6 0 c 8 5 0 1 c 9 4 1 1 c 10 3 2 1 c 11 2 3 1 c 12 1 4 1 c 13 0 5 1 c 14 4 0 2 c 15 3 1 2 c 16 2 2 2 c 17 1 3 2 c 18 0 4 2 c 19 3 0 3 c 20 2 1 3 c 21 1 2 3 c 22 0 3 3 c 23 2 0 4 c 24 1 1 4 c 25 0 2 4 c 26 1 0 5 c 27 0 1 5 c 28 0 0 6 c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 July 2008 c c Author: c c Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. c This version by John Burkardt. c c Reference: c c Albert Nijenhuis, Herbert Wilf, c Combinatorial Algorithms for Computers and Calculators, c Second Edition, c Academic Press, 1978, c ISBN: 0-12-519260-6, c LC: QA164.N54. c c Parameters: c c Input, integer N, the integer whose compositions are desired. c c Input, integer K, the number of parts in the composition. c c Input/output, integer A(K), the parts of the composition. c c Input/output, logical MORE, set by the user to start the computation, c and by the routine to terminate it. c c Input/output, integer H, T, two internal parameters needed for the c computation. The user should allocate space for these in the calling c program, include them in the calling sequence, but never alter them! c implicit none integer k integer a(k) integer h integer i logical more integer n integer t c c The first computation. c if ( .not. more ) then t = n h = 0 a(1) = n do i = 2, k a(i) = 0 end do c c The next computation. c else if ( 1 .lt. t ) then h = 0 end if h = h + 1 t = a(h) a(h) = 0 a(1) = t - 1 a(h+1) = a(h+1) + 1 end if c c This is the last element of the sequence if all the c items are in the last slot. c more = ( a(k) .ne. n ) return end subroutine file_column_count ( input_filename, column_num ) c*********************************************************************72 c cc FILE_COLUMN_COUNT counts the number of columns in the first line of a file. c c Discussion: c c The file is assumed to be a simple text file. c c Most lines of the file is presumed to consist of COLUMN_NUM words, c separated by spaces. There may also be some blank lines, and some c comment lines, c which have a "#" in column 1. c c The routine tries to find the first non-comment non-blank line and c counts the number of words in that line. c c If all lines are blanks or comments, it goes back and tries to analyze c a comment line. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the file. c c Output, integer COLUMN_NUM, the number of columns in the file. c implicit none integer column_num logical got_one character * ( * ) input_filename integer input_unit character * ( 255 ) line c c Open the file. c call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old', form = 'formatted', access = 'sequential' ) c c Read one line, but skip blank lines and comment lines. c got_one = .false. 10 continue read ( input_unit, '(a)', err = 20 ) line if ( len_trim ( line ) .eq. 0 ) then go to 10 end if if ( line(1:1) .eq. '#' ) then go to 10 end if got_one = .true. go to 20 go to 10 20 continue if ( .not. got_one ) then rewind ( input_unit ) 30 continue read ( input_unit, '(a)', err = 40 ) line if ( len_trim ( line ) .eq. 0 ) then go to 30 end if got_one = .true. go to 40 go to 30 40 continue end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning.' write ( *, '(a)' ) ' The file does not contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_filename, row_num ) c*********************************************************************72 c cc FILE_ROW_COUNT counts the number of row records in a file. c c Discussion: c c It does not count lines that are blank, or that begin with a c comment symbol '#'. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Output, integer ROW_NUM, the number of rows found. c implicit none integer bad_num integer comment_num character * ( * ) input_filename integer input_unit character * ( 255 ) line integer record_num integer row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old' ) comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 10 continue read ( input_unit, '(a)', err = 20, end = 20 ) line record_num = record_num + 1 if ( line(1:1) .eq. '#' ) then comment_num = comment_num + 1 go to 10 end if if ( len_trim ( line ) .eq. 0 ) then comment_num = comment_num + 1 go to 10 end if row_num = row_num + 1 go to 10 20 continue close ( unit = input_unit ) return end subroutine get_unit ( iunit ) c*********************************************************************72 c cc GET_UNIT returns a free FORTRAN unit number. c c Discussion: c c A "free" FORTRAN unit number is a value between 1 and 99 which c is not currently associated with an I/O device. A free FORTRAN unit c number is needed in order to open a file with the OPEN command. c c If IUNIT = 0, then no free FORTRAN unit could be found, although c all 99 units were checked (except for units 5, 6 and 9, which c are commonly reserved for console I/O). c c Otherwise, IUNIT is a value between 1 and 99, representing a c free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 c are special, and will never return those values. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 September 2013 c c Author: c c John Burkardt c c Parameters: c c Output, integer IUNIT, the free unit number. c implicit none integer i integer iunit logical value iunit = 0 do i = 1, 99 if ( i .ne. 5 .and. i .ne. 6 .and. i .ne. 9 ) then inquire ( unit = i, opened = value, err = 10 ) if ( .not. value ) then iunit = i return end if end if 10 continue end do return end subroutine monomial_value ( m, n, e, x, v ) c*********************************************************************72 c cc MONOMIAL_VALUE evaluates a monomial. c c Discussion: c c F(X) = product ( 1 .le. I .le. M ) X(I)^E(I) c c with the convention that 0^0 = 1. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 13 April 2009 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Input, integer E(M), the exponents. c c Input, double precision X(M,N), the evaluation points. c c Output, double precision V(N), the monomial values. c implicit none integer m integer n integer e(m) integer i integer j double precision v(n) double precision x(m,n) do j = 1, n v(j) = 1.0D+00 do i = 1, m if ( e(i) .ne. 0.0D+00 ) then v(j) = v(j) * x(i,j) ** e(i) end if end do end do return end subroutine pyra_unit_monomial ( expon, value ) c*********************************************************************72 c cc PYRA_UNIT_MONOMIAL: monomial integral in a unit pyramid. c c Discussion: c c This routine returns the integral of c c product ( 1 .le. I .le. 3 ) X(I)^EXPON(I) c c over the unit pyramid. c c The integration region is: c c - ( 1 - Z ) .le. X .le. 1 - Z c - ( 1 - Z ) .le. Y .le. 1 - Z c 0 .le. Z .le. 1. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 24 March 2008 c c Author: c c John Burkardt c c Reference: c c Arthur Stroud, c Approximate Calculation of Multiple Integrals, c Prentice Hall, 1971, c ISBN: 0130438936, c LC: QA311.S85. c c Parameters: c c Input, integer EXPON(3), the exponents. c c Output, double precision VALUE, the integral of the monomial. c implicit none integer expon(3) integer i integer i_hi double precision r8_choose double precision r8_mop double precision value value = 0.0D+00 if ( mod ( expon(1), 2 ) .eq. 0 .and. & mod ( expon(2), 2 ) .eq. 0 ) then i_hi = 2 + expon(1) + expon(2) do i = 0, i_hi value = value + r8_mop ( i ) * r8_choose ( i_hi, i ) & / dble ( i + expon(3) + 1 ) end do value = value & * 2.0D+00 / dble ( expon(1) + 1 ) & * 2.0D+00 / dble ( expon(2) + 1 ) end if return end function pyra_unit_volume ( ) c*********************************************************************72 c cc PYRA_UNIT_VOLUME: volume of a unit pyramid with square base. c c Discussion: c c The volume of this unit pyramid is 4/3. c c The integration region is: c c - ( 1 - Z ) .le. X .le. 1 - Z c - ( 1 - Z ) .le. Y .le. 1 - Z c 0 .le. Z .le. 1. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 22 March 2008 c c Author: c c John Burkardt c c Parameters: c c Output, double precision PYRA_UNIT_VOLUME, the volume. c implicit none double precision pyra_unit_volume pyra_unit_volume = 4.0D+00 / 3.0D+00 return end function r8_choose ( n, k ) c*********************************************************************72 c cc R8_CHOOSE computes the binomial coefficient C(N,K) as an R8. c c Discussion: c c The value is calculated in such a way as to avoid overflow and c roundoff. The calculation is done in R8 arithmetic. c c The formula used is: c c C(N,K) = N! / ( K! * (N-K)! ) c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 07 June 2008 c c Author: c c John Burkardt c c Reference: c c ML Wolfson, HV Wright, c Algorithm 160: c Combinatorial of M Things Taken N at a Time, c Communications of the ACM, c Volume 6, Number 4, April 1963, page 161. c c Parameters: c c Input, integer N, K, are the values of N and K. c c Output, double precision R8_CHOOSE, the number of combinations of N c things taken K at a time. c implicit none integer i integer k integer mn integer mx integer n double precision r8_choose double precision value mn = min ( k, n - k ) if ( mn .lt. 0 ) then value = 0.0D+00 else if ( mn .eq. 0 ) then value = 1.0D+00 else mx = max ( k, n - k ) value = dble ( mx + 1 ) do i = 2, mn value = ( value * dble ( mx + i ) ) / dble ( i ) end do end if r8_choose = value return end function r8_mop ( i ) c*********************************************************************72 c cc R8_MOP returns the I-th power of -1 as an R8. c c Discussion: c c An R8 is a double precision real value. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 26 July 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer I, the power of -1. c c Output, double precision R8_MOP, the I-th power of -1. c implicit none integer i double precision r8_mop double precision value if ( mod ( i, 2 ) .eq. 0 ) then value = + 1.0D+00 else value = - 1.0D+00 end if r8_mop = value return end subroutine r8mat_data_read ( input_filename, m, n, table ) c*********************************************************************72 c cc R8MAT_DATA_READ reads data from an R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c The file may contain more than N points, but this routine will c return after reading N of them. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Output, double precision TABLE(M,N), the data. c implicit none integer m integer n integer i integer ierror character * ( * ) input_filename integer input_unit integer j character * ( 255 ) line double precision table(m,n) double precision x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old' ) j = 0 10 continue if ( j .lt. n ) then read ( input_unit, '(a)' ) line if ( line(1:1) .eq. '#' .or. len_trim ( line ) .eq. 0 ) then go to 10 end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror .ne. 0 ) then go to 10 end if j = j + 1 do i = 1, m table(i,j) = x(i) end do go to 10 end if close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) c*********************************************************************72 c cc R8MAT_HEADER_READ reads the header from an R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Output, integer M, spatial dimension. c c Output, integer N, the number of points. c implicit none character * ( * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was an I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a,a,a)' ) & ' the file "', trim ( input_filename ), '".' stop 1 end if call file_row_count ( input_filename, n ) if ( n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was an I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a,a,a)' ) & ' the file "', trim ( input_filename ), '".' stop 1 end if return end function r8vec_dot_product ( n, v1, v2 ) c*********************************************************************72 c cc R8VEC_DOT_PRODUCT finds the dot product of a pair of R8VEC's. c c Discussion: c c An R8VEC is a vector of R8 values. c c In FORTRAN90, the system routine DOT_PRODUCT should be called c directly. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 27 May 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the dimension of the vectors. c c Input, double precision V1(N), V2(N), the vectors. c c Output, double precision R8VEC_DOT_PRODUCT, the dot product. c implicit none integer n integer i double precision r8vec_dot_product double precision v1(n) double precision v2(n) double precision value value = 0.0D+00 do i = 1, n value = value + v1(i) * v2(i) end do r8vec_dot_product = value return end subroutine s_to_i4 ( s, ival, ierror, length ) c*********************************************************************72 c cc S_TO_I4 reads an I4 from a string. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, a string to be examined. c c Output, integer IVAL, the integer value read from the string. c If the string is blank, then IVAL will be returned 0. c c Output, integer IERROR, an error flag. c 0, no error. c 1, an error occurred. c c Output, integer LENGTH, the number of characters of S c used to make IVAL. c implicit none character c integer i integer ierror integer isgn integer istate integer ival integer length character * ( * ) s integer s_len ierror = 0 istate = 0 isgn = 1 ival = 0 s_len = len_trim ( s ) do i = 1, s_len c = s(i:i) c c Haven't read anything. c if ( istate .eq. 0 ) then if ( c .eq. ' ' ) then else if ( c .eq. '-' ) then istate = 1 isgn = -1 else if ( c .eq. '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read the sign, expecting digits. c else if ( istate .eq. 1 ) then if ( c .eq. ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read at least one digit, expecting more. c else if ( istate .eq. 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do c c If we read all the characters in the string, see if we're OK. c if ( istate .eq. 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_r8 ( s, dval, ierror, length ) c*********************************************************************72 c cc S_TO_R8 reads an R8 from a string. c c Discussion: c c The routine will read as many characters as possible until it reaches c the end of the string, or encounters a character which cannot be c part of the number. c c Legal input is: c c 1 blanks, c 2 '+' or '-' sign, c 2.5 blanks c 3 integer part, c 4 decimal point, c 5 fraction part, c 6 'E' or 'e' or 'D' or 'd', exponent marker, c 7 exponent sign, c 8 exponent integer part, c 9 exponent decimal point, c 10 exponent fraction part, c 11 blanks, c 12 final comma or semicolon, c c with most quantities optional. c c Example: c c S DVAL c c '1' 1.0 c ' 1 ' 1.0 c '1A' 1.0 c '12,34,56' 12.0 c ' 34 7' 34.0 c '-1E2ABCD' -100.0 c '-1X2ABCD' -1.0 c ' 2E-1' 0.2 c '23.45' 23.45 c '-4.2E+2' -420.0 c '17d2' 1700.0 c '-14e-2' -0.14 c 'e2' 100.0 c '-12.73e-9.23' -12.73 * 10.0^(-9.23) c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string containing the c data to be read. Reading will begin at position 1 and c terminate at the end of the string, or when no more c characters can be read to form a legal real. Blanks, c commas, or other nonnumeric data will, in particular, c cause the conversion to halt. c c Output, double precision DVAL, the value read from the string. c c Output, integer IERROR, error flag. c 0, no errors occurred. c 1, 2, 6 or 7, the input number was garbled. The c value of IERROR is the last type of input successfully c read. For instance, 1 means initial blanks, 2 means c a plus or minus sign, and so on. c c Output, integer LENGTH, the number of characters read c to form the number, including any terminating c characters such as a trailing comma or blanks. c implicit none logical ch_eqi character c double precision dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig double precision rbot double precision rexp double precision rtop character * ( * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 10 continue length = length + 1 if ( nchar .lt. length + 1 ) then go to 20 end if c = s(length+1:length+1) c c Blank character. c if ( c .eq. ' ' ) then if ( ihave .eq. 2 ) then else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then iterm = 1 else if ( 1 .lt. ihave ) then ihave = 11 end if c c Comma. c else if ( c .eq. ',' .or. c .eq. ';' ) then if ( ihave .ne. 1 ) then iterm = 1 ihave = 12 length = length + 1 end if c c Minus sign. c else if ( c .eq. '-' ) then if ( ihave .eq. 1 ) then ihave = 2 isgn = -1 else if ( ihave .eq. 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if c c Plus sign. c else if ( c .eq. '+' ) then if ( ihave .eq. 1 ) then ihave = 2 else if ( ihave .eq. 6 ) then ihave = 7 else iterm = 1 end if c c Decimal point. c else if ( c .eq. '.' ) then if ( ihave .lt. 4 ) then ihave = 4 else if ( 6 .le. ihave .and. ihave .le. 8 ) then ihave = 9 else iterm = 1 end if c c Scientific notation exponent marker. c else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave .lt. 6 ) then ihave = 6 else iterm = 1 end if c c Digit. c else if ( ihave .lt. 11 .and. lle ( '0', c ) & .and. lle ( c, '9' ) ) then if ( ihave .le. 2 ) then ihave = 3 else if ( ihave .eq. 4 ) then ihave = 5 else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then ihave = 8 else if ( ihave .eq. 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave .eq. 3 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) else if ( ihave .eq. 5 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) rbot = 10.0D+00 * rbot else if ( ihave .eq. 8 ) then jtop = 10 * jtop + ndig else if ( ihave .eq. 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if c c Anything else is regarded as a terminator. c else iterm = 1 end if c c If we haven't seen a terminator, and we haven't examined the c entire string, go get the next character. c if ( iterm .eq. 1 ) then go to 20 end if go to 10 20 continue c c If we haven't seen a terminator, and we have examined the c entire string, then we're done, and LENGTH is equal to NCHAR. c if ( iterm .ne. 1 .and. length+1 .eq. nchar ) then length = nchar end if c c Number seems to have terminated. Have we got a legal number? c Not if we terminated in states 1, 2, 6 or 7. c if ( ihave .eq. 1 .or. ihave .eq. 2 .or. & ihave .eq. 6 .or. ihave .eq. 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a,a)' ) ' ', s return end if c c Number seems OK. Form it. c if ( jtop .eq. 0 ) then rexp = 1.0D+00 else if ( jbot .eq. 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( dble ( jsgn * jtop ) / dble ( jbot ) ) end if end if dval = dble ( isgn ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) c*********************************************************************72 c cc S_TO_R8VEC reads an R8VEC from a string. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string to be read. c c Input, integer N, the number of values expected. c c Output, double precision RVEC(N), the values read from the string. c c Output, integer IERROR, error flag. c 0, no errors occurred. c -K, could not read data for entries -K through N. c implicit none integer n integer i integer ierror integer ilo integer lchar double precision rvec(n) character * ( * ) s i = 0 ierror = 0 ilo = 1 10 continue if ( i .lt. n ) then i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror .ne. 0 ) then ierror = -i go to 20 end if ilo = ilo + lchar go to 10 end if 20 continue return end subroutine s_word_count ( s, nword ) c*********************************************************************72 c cc S_WORD_COUNT counts the number of "words" in a string. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string to be examined. c c Output, integer NWORD, the number of "words" in the string. c Words are presumed to be separated by one or more blanks. c implicit none logical blank integer i integer lens integer nword character * ( * ) s nword = 0 lens = len ( s ) if ( lens .le. 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) .eq. ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end