program main c*********************************************************************72 c cc power_rule() constructs a multidimensional quadrature rule as a power. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 February 2014 c c Author: c c John Burkardt c implicit none integer arg_num integer dim_num integer dim_num_1d integer iarg integer iargc integer ierror integer last integer point_num integer point_num_1d character * ( 255 ) quad_1d_filename character * ( 255 ) quad_filename character * ( 255 ) quad_r_filename character * ( 255 ) quad_r_1d_filename character * ( 255 ) quad_w_filename character * ( 255 ) quad_w_1d_filename character * ( 255 ) quad_x_filename character * ( 255 ) quad_x_1d_filename character * ( 255 ) string call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'power_rule()' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) ' Create a multidimensional power rule' write ( *, '(a)' ) & ' as a product of identical 1D integration rules.' c c Get the number of command line arguments. c arg_num = iargc ( ) c c Get the 1D quadrature file root name: c if ( 1 .le. arg_num ) then iarg = 1 call getarg ( iarg, quad_1d_filename ) c c A commandline argument can't be blank. To let a user c specify the shortcut names, let "D" indicate them. c if ( quad_1d_filename .eq. 'D' ) then quad_1d_filename = '' end if else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE:' write ( *, '(a)' ) & ' Enter the "root" name of the 1D quadrature files.' read ( *, '(a)' ) quad_1d_filename end if c c Create the names of: c the 1D quadrature X file; c the 1D quadrature W file; c the 1D quadrature R file; c if ( 0 .lt. len_trim ( quad_1d_filename ) ) then quad_x_1d_filename = trim ( quad_1d_filename ) // '_x.txt' quad_w_1d_filename = trim ( quad_1d_filename ) // '_w.txt' quad_r_1d_filename = trim ( quad_1d_filename ) // '_r.txt' else quad_x_1d_filename = 'x.txt' quad_w_1d_filename = 'w.txt' quad_r_1d_filename = 'r.txt' end if c c The second command line argument is the spatial dimension. c if ( 2 .le. arg_num ) then iarg = 2 call getarg ( iarg, string ) call s_to_i4 ( string, dim_num, ierror, last ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE:' write ( *, '(a)' ) & ' Please enter the desired spatial dimension of the rule.' read ( *, * ) dim_num end if c c Summarize the input. c write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE: User input:' write ( *, '(a)' ) ' Quadrature rule X file = "' & // trim ( quad_x_1d_filename) // '".' write ( *, '(a)' ) ' Quadrature rule W file = "' & // trim ( quad_w_1d_filename) // '".' write ( *, '(a)' ) ' Quadrature rule R file = "' & // trim ( quad_r_1d_filename) // '".' write ( *, '(a,i8)' ) ' Spatial dimension = ', dim_num c c Read the X file. c call r8mat_header_read ( quad_x_1d_filename, dim_num_1d, & point_num_1d ) if ( dim_num_1d .ne. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE - Fatal error!' write ( *, '(a)' ) & ' The 1D quadrature abscissa file should have' write ( *, '(a)' ) ' exactly one value on each line.' stop 1 end if write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) & ' Number of points in 1D rule = ', point_num_1d c c Determine size of rule. c call power_rule_size ( point_num_1d, dim_num, point_num ) write ( *, '(a,i8)' ) & ' Number of points in power rule = ', point_num c c Call a subroutine, so that we can allocate memory. c Otherwise, FORTRAN77 may be unable to allocate memory for us. c call main_sub ( dim_num, point_num, point_num_1d, & quad_filename, quad_r_filename, & quad_r_1d_filename, quad_w_filename, quad_w_1d_filename, & quad_x_filename, quad_x_1d_filename ) c c Terminate. c write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'power_rule():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine main_sub ( dim_num, point_num, point_num_1d, & quad_filename, quad_r_filename, & quad_r_1d_filename, quad_w_filename, quad_w_1d_filename, & quad_x_filename, quad_x_1d_filename ) c*********************************************************************72 c cc MAIN_SUB is a part of the main program using allocated memory. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 February 2014 c c Author: c c John Burkardt c implicit none integer dim_num integer point_num integer point_num_1d integer dim_num_1d integer point_num_1d2 character * ( 255 ) quad_filename character * ( 255 ) quad_r_filename character * ( 255 ) quad_r_1d_filename character * ( 255 ) quad_w_filename character * ( 255 ) quad_w_1d_filename character * ( 255 ) quad_x_filename character * ( 255 ) quad_x_1d_filename double precision r(dim_num,2) double precision r_1d(2) double precision w(point_num) double precision w_1d(point_num_1d) double precision x(dim_num,point_num) double precision x_1d(point_num_1d) call r8mat_data_read ( quad_x_1d_filename, dim_num_1d, & point_num_1d, x_1d ) c c Read the W file. c call r8mat_header_read ( quad_w_1d_filename, dim_num_1d, & point_num_1d2 ) if ( dim_num_1d .ne. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature weight file should have' write ( *, '(a)' ) ' exactly one value on each line.' stop 1 end if if ( point_num_1d2 .ne. point_num_1d ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature weight file should have' write ( *, '(a)' ) & ' the same number of lines as the abscissa file.' write ( *, '(a,i4)' ) ' point_num_1d2 = ', point_num_1d2 write ( *, '(a,i4)' ) ' point_num_1d = ', point_num_1d stop 1 end if call r8mat_data_read ( quad_w_1d_filename, dim_num_1d, & point_num_1d, w_1d ) c c Read the R file. c call r8mat_header_read ( quad_r_1d_filename, dim_num_1d, & point_num_1d2 ) if ( dim_num_1d .ne. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature region file should have' write ( *, '(a)' ) ' exactly one value on each line.' stop 1 end if if ( point_num_1d2 .ne. 2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature region file should have' write ( *, '(a)' ) ' exactly two lines.' stop 1 end if call r8mat_data_read ( quad_r_1d_filename, 1, 2, r_1d ) c c Compute the rule. c call power_rule_set ( point_num_1d, x_1d, w_1d, r_1d, & dim_num, point_num, x, w, r ) c c Write rule to files. c quad_filename = 'power' quad_x_filename = trim ( quad_filename ) // '_x.txt' quad_w_filename = trim ( quad_filename ) // '_w.txt' quad_r_filename = trim ( quad_filename ) // '_r.txt' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Creating quadrature rule X file = "' & // trim ( quad_x_filename ) // '".' call r8mat_write ( quad_x_filename, dim_num, point_num, x ) write ( *, '(a)' ) ' Creating quadrature rule W file = "' & // trim ( quad_w_filename ) // '".' call r8mat_write ( quad_w_filename, 1, point_num, w ) write ( *, '(a)' ) ' Creating quadrature rule R file = "' & // trim ( quad_r_filename ) // '".' call r8mat_write ( quad_r_filename, dim_num, 2, r ) return end subroutine ch_cap ( ch ) c*********************************************************************72 c cc CH_CAP capitalizes a single character. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input/output, character CH, the character to capitalize. c implicit none character ch integer itemp itemp = ichar ( ch ) if ( 97 .le. itemp .and. itemp .le. 122 ) then ch = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) c*********************************************************************72 c cc CH_EQI is a case insensitive comparison of two characters for equality. c c Example: c c CH_EQI ( 'A', 'a' ) is TRUE. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, character C1, C2, the characters to compare. c c Output, logical CH_EQI, the result of the comparison. c implicit none character c1 character c1_cap character c2 character c2_cap logical ch_eqi c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap .eq. c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) c*********************************************************************72 c cc CH_TO_DIGIT returns the integer value of a base 10 digit. c c Example: c c C DIGIT c --- ----- c '0' 0 c '1' 1 c ... ... c '9' 9 c ' ' 0 c 'X' -1 c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 04 August 1999 c c Author: c c John Burkardt c c Parameters: c c Input, character C, the decimal digit, '0' through '9' or blank c are legal. c c Output, integer DIGIT, the corresponding integer value. If C was c 'illegal', then DIGIT is -1. c implicit none character c integer digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c .eq. ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_filename, column_num ) c*********************************************************************72 c cc FILE_COLUMN_COUNT counts the number of columns in the first line of a file. c c Discussion: c c The file is assumed to be a simple text file. c c Most lines of the file is presumed to consist of COLUMN_NUM words, c separated by spaces. There may also be some blank lines, and some c comment lines, c which have a "#" in column 1. c c The routine tries to find the first non-comment non-blank line and c counts the number of words in that line. c c If all lines are blanks or comments, it goes back and tries to analyze c a comment line. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the file. c c Output, integer COLUMN_NUM, the number of columns in the file. c implicit none integer column_num logical got_one character * ( * ) input_filename integer input_unit character * ( 255 ) line c c Open the file. c call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old', form = 'formatted', access = 'sequential' ) c c Read one line, but skip blank lines and comment lines. c got_one = .false. 10 continue read ( input_unit, '(a)', err = 20 ) line if ( len_trim ( line ) .eq. 0 ) then go to 10 end if if ( line(1:1) .eq. '#' ) then go to 10 end if got_one = .true. go to 20 go to 10 20 continue if ( .not. got_one ) then rewind ( input_unit ) 30 continue read ( input_unit, '(a)', err = 40 ) line if ( len_trim ( line ) .eq. 0 ) then go to 30 end if got_one = .true. go to 40 go to 30 40 continue end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning.' write ( *, '(a)' ) ' The file does not contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_filename, row_num ) c*********************************************************************72 c cc FILE_ROW_COUNT counts the number of row records in a file. c c Discussion: c c It does not count lines that are blank, or that begin with a c comment symbol '#'. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Output, integer ROW_NUM, the number of rows found. c implicit none integer bad_num integer comment_num character * ( * ) input_filename integer input_unit character * ( 255 ) line integer record_num integer row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old' ) comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 10 continue read ( input_unit, '(a)', err = 20, end = 20 ) line record_num = record_num + 1 if ( line(1:1) .eq. '#' ) then comment_num = comment_num + 1 go to 10 end if if ( len_trim ( line ) .eq. 0 ) then comment_num = comment_num + 1 go to 10 end if row_num = row_num + 1 go to 10 20 continue close ( unit = input_unit ) return end subroutine get_unit ( iunit ) c*********************************************************************72 c cc GET_UNIT returns a free FORTRAN unit number. c c Discussion: c c A "free" FORTRAN unit number is a value between 1 and 99 which c is not currently associated with an I/O device. A free FORTRAN unit c number is needed in order to open a file with the OPEN command. c c If IUNIT = 0, then no free FORTRAN unit could be found, although c all 99 units were checked (except for units 5, 6 and 9, which c are commonly reserved for console I/O). c c Otherwise, IUNIT is a value between 1 and 99, representing a c free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 c are special, and will never return those values. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 September 2013 c c Author: c c John Burkardt c c Parameters: c c Output, integer IUNIT, the free unit number. c implicit none integer i integer iunit logical value iunit = 0 do i = 1, 99 if ( i .ne. 5 .and. i .ne. 6 .and. i .ne. 9 ) then inquire ( unit = i, opened = value, err = 10 ) if ( .not. value ) then iunit = i return end if end if 10 continue end do return end subroutine power_rule_set ( point_num_1d, x_1d, w_1d, r_1d, & dim_num, point_num, x, w, r ) c*********************************************************************72 c cc POWER_RULE_SET sets up a power rule. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 February 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer POINT_NUM_1D, the order of the 1D rule. c c Input, double precision X_1D(POINT_NUM_1D), the points of the 1D rule. c c Input, double precision W_1D(POINT_NUM_1D), the weights of the c 1D rule. c c Input, double precision R_1D(2), the extreme points that define c the range of the 1D region. c c Input, integer DIM_NUM, the spatial dimension. c c Input, integer POINT_NUM, the number of points in the rule. c c Output, double precision X(DIM_NUM,POINT_NUM), the points of the rule. c c Output, double precision W(POINT_NUM), the weights of the rule. c c Output, double precision R(DIM_NUM,2), the extreme points c that define the range of the product rule region. c implicit none integer dim_num integer point_num integer point_num_1d integer i integer indx(dim_num) integer k double precision r(dim_num,2) double precision r_1d(2) double precision w(point_num) double precision w_1d(point_num_1d) double precision x(dim_num,point_num) double precision x_1d(point_num_1d) k = 0 10 continue call tuple_next ( 1, point_num_1d, dim_num, k, indx ) if ( k .eq. 0 ) then go to 20 end if w(k) = 1.0D+00 do i = 1, dim_num w(k) = w(k) * w_1d(indx(i)) end do do i = 1, dim_num x(i,k) = x_1d(indx(i)) end do go to 10 20 continue do i = 1, dim_num r(i,1) = r_1d(1) r(i,2) = r_1d(2) end do return end subroutine power_rule_size ( point_num_1d, dim_num, point_num ) c*********************************************************************72 c cc POWER_RULE_SIZE returns the size of a power rule. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 February 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer POINT_NUM_1D, the number of points in the c 1D rule. c c Input, integer DIM_NUM, the spatial dimension. c c Output, integer POINT_NUM, the number of points in the rule. c implicit none integer dim_num integer point_num integer point_num_1d point_num = point_num_1d ** dim_num return end subroutine r8mat_data_read ( input_filename, m, n, table ) c*********************************************************************72 c cc R8MAT_DATA_READ reads data from an R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c The file may contain more than N points, but this routine will c return after reading N of them. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Output, double precision TABLE(M,N), the data. c implicit none integer m integer n integer i integer ierror character * ( * ) input_filename integer input_unit integer j character * ( 255 ) line double precision table(m,n) double precision x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old' ) j = 0 10 continue if ( j .lt. n ) then read ( input_unit, '(a)' ) line if ( line(1:1) .eq. '#' .or. len_trim ( line ) .eq. 0 ) then go to 10 end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror .ne. 0 ) then go to 10 end if j = j + 1 do i = 1, m table(i,j) = x(i) end do go to 10 end if close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) c*********************************************************************72 c cc R8MAT_HEADER_READ reads the header from an R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Output, integer M, spatial dimension. c c Output, integer N, the number of points. c implicit none character * ( * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was an I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a,a,a)' ) & ' the file "', trim ( input_filename ), '".' stop 1 end if call file_row_count ( input_filename, n ) if ( n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was an I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a,a,a)' ) & ' the file "', trim ( input_filename ), '".' stop 1 end if return end subroutine r8mat_write ( output_filename, m, n, table ) c*********************************************************************72 c cc R8MAT_WRITE writes a R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 22 October 2009 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) OUTPUT_FILENAME, the output file name. c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Input, double precision TABLE(M,N), the data. c implicit none integer m integer n integer i integer j character * ( * ) output_filename integer output_unit character * ( 30 ) string double precision table(m,n) c c Open the file. c call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace' ) c c Create the format string. c if ( 0 .lt. m .and. 0 .lt. n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) & '(', m, 'g', 24, '.', 16, ')' c c Write the data. c do j = 1, n write ( output_unit, string ) ( table(i,j), i = 1, m ) end do end if c c Close the file. c close ( unit = output_unit ) return end subroutine s_to_i4 ( s, ival, ierror, length ) c*********************************************************************72 c cc S_TO_I4 reads an I4 from a string. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, a string to be examined. c c Output, integer IVAL, the integer value read from the string. c If the string is blank, then IVAL will be returned 0. c c Output, integer IERROR, an error flag. c 0, no error. c 1, an error occurred. c c Output, integer LENGTH, the number of characters of S c used to make IVAL. c implicit none character c integer i integer ierror integer isgn integer istate integer ival integer length character * ( * ) s ierror = 0 istate = 0 isgn = 1 ival = 0 do i = 1, len_trim ( s ) c = s(i:i) c c Haven't read anything. c if ( istate .eq. 0 ) then if ( c .eq. ' ' ) then else if ( c .eq. '-' ) then istate = 1 isgn = -1 else if ( c .eq. '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read the sign, expecting digits. c else if ( istate .eq. 1 ) then if ( c .eq. ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read at least one digit, expecting more. c else if ( istate .eq. 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do c c If we read all the characters in the string, see if we're OK. c if ( istate .eq. 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_r8 ( s, dval, ierror, length ) c*********************************************************************72 c cc S_TO_R8 reads an R8 from a string. c c Discussion: c c The routine will read as many characters as possible until it reaches c the end of the string, or encounters a character which cannot be c part of the number. c c Legal input is: c c 1 blanks, c 2 '+' or '-' sign, c 2.5 blanks c 3 integer part, c 4 decimal point, c 5 fraction part, c 6 'E' or 'e' or 'D' or 'd', exponent marker, c 7 exponent sign, c 8 exponent integer part, c 9 exponent decimal point, c 10 exponent fraction part, c 11 blanks, c 12 final comma or semicolon, c c with most quantities optional. c c Example: c c S DVAL c c '1' 1.0 c ' 1 ' 1.0 c '1A' 1.0 c '12,34,56' 12.0 c ' 34 7' 34.0 c '-1E2ABCD' -100.0 c '-1X2ABCD' -1.0 c ' 2E-1' 0.2 c '23.45' 23.45 c '-4.2E+2' -420.0 c '17d2' 1700.0 c '-14e-2' -0.14 c 'e2' 100.0 c '-12.73e-9.23' -12.73 * 10.0^(-9.23) c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string containing the c data to be read. Reading will begin at position 1 and c terminate at the end of the string, or when no more c characters can be read to form a legal real. Blanks, c commas, or other nonnumeric data will, in particular, c cause the conversion to halt. c c Output, double precision DVAL, the value read from the string. c c Output, integer IERROR, error flag. c 0, no errors occurred. c 1, 2, 6 or 7, the input number was garbled. The c value of IERROR is the last type of input successfully c read. For instance, 1 means initial blanks, 2 means c a plus or minus sign, and so on. c c Output, integer LENGTH, the number of characters read c to form the number, including any terminating c characters such as a trailing comma or blanks. c implicit none logical ch_eqi character c double precision dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig double precision rbot double precision rexp double precision rtop character * ( * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 10 continue length = length + 1 if ( nchar .lt. length + 1 ) then go to 20 end if c = s(length+1:length+1) c c Blank character. c if ( c .eq. ' ' ) then if ( ihave .eq. 2 ) then else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then iterm = 1 else if ( 1 .lt. ihave ) then ihave = 11 end if c c Comma. c else if ( c .eq. ',' .or. c .eq. ';' ) then if ( ihave .ne. 1 ) then iterm = 1 ihave = 12 length = length + 1 end if c c Minus sign. c else if ( c .eq. '-' ) then if ( ihave .eq. 1 ) then ihave = 2 isgn = -1 else if ( ihave .eq. 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if c c Plus sign. c else if ( c .eq. '+' ) then if ( ihave .eq. 1 ) then ihave = 2 else if ( ihave .eq. 6 ) then ihave = 7 else iterm = 1 end if c c Decimal point. c else if ( c .eq. '.' ) then if ( ihave .lt. 4 ) then ihave = 4 else if ( 6 .le. ihave .and. ihave .le. 8 ) then ihave = 9 else iterm = 1 end if c c Scientific notation exponent marker. c else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave .lt. 6 ) then ihave = 6 else iterm = 1 end if c c Digit. c else if ( ihave .lt. 11 .and. lle ( '0', c ) & .and. lle ( c, '9' ) ) then if ( ihave .le. 2 ) then ihave = 3 else if ( ihave .eq. 4 ) then ihave = 5 else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then ihave = 8 else if ( ihave .eq. 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave .eq. 3 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) else if ( ihave .eq. 5 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) rbot = 10.0D+00 * rbot else if ( ihave .eq. 8 ) then jtop = 10 * jtop + ndig else if ( ihave .eq. 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if c c Anything else is regarded as a terminator. c else iterm = 1 end if c c If we haven't seen a terminator, and we haven't examined the c entire string, go get the next character. c if ( iterm .eq. 1 ) then go to 20 end if go to 10 20 continue c c If we haven't seen a terminator, and we have examined the c entire string, then we're done, and LENGTH is equal to NCHAR. c if ( iterm .ne. 1 .and. length+1 .eq. nchar ) then length = nchar end if c c Number seems to have terminated. Have we got a legal number? c Not if we terminated in states 1, 2, 6 or 7. c if ( ihave .eq. 1 .or. ihave .eq. 2 .or. & ihave .eq. 6 .or. ihave .eq. 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a,a)' ) ' ', s return end if c c Number seems OK. Form it. c if ( jtop .eq. 0 ) then rexp = 1.0D+00 else if ( jbot .eq. 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( dble ( jsgn * jtop ) / dble ( jbot ) ) end if end if dval = dble ( isgn ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) c*********************************************************************72 c cc S_TO_R8VEC reads an R8VEC from a string. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string to be read. c c Input, integer N, the number of values expected. c c Output, double precision RVEC(N), the values read from the string. c c Output, integer IERROR, error flag. c 0, no errors occurred. c -K, could not read data for entries -K through N. c implicit none integer n integer i integer ierror integer ilo integer lchar double precision rvec(n) character * ( * ) s i = 0 ierror = 0 ilo = 1 10 continue if ( i .lt. n ) then i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror .ne. 0 ) then ierror = -i go to 20 end if ilo = ilo + lchar go to 10 end if 20 continue return end subroutine s_word_count ( s, nword ) c*********************************************************************72 c cc S_WORD_COUNT counts the number of "words" in a string. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string to be examined. c c Output, integer NWORD, the number of "words" in the string. c Words are presumed to be separated by one or more blanks. c implicit none logical blank integer i integer lens integer nword character * ( * ) s nword = 0 lens = len ( s ) if ( lens .le. 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) .eq. ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end subroutine tuple_next ( m1, m2, n, rank, x ) c*********************************************************************72 c cc TUPLE_NEXT computes the next element of a tuple space. c c Discussion: c c The elements are N vectors. Each entry is constrained to lie c between M1 and M2. The elements are produced one at a time. c The first element is c (M1,M1,...,M1), c the second element is c (M1,M1,...,M1+1), c and the last element is c (M2,M2,...,M2) c Intermediate elements are produced in lexicographic order. c c Example: c c N = 2, M1 = 1, M2 = 3 c c INPUT OUTPUT c ------- ------- c Rank X Rank X c ---- --- ----- --- c 0 * * 1 1 1 c 1 1 1 2 1 2 c 2 1 2 3 1 3 c 3 1 3 4 2 1 c 4 2 1 5 2 2 c 5 2 2 6 2 3 c 6 2 3 7 3 1 c 7 3 1 8 3 2 c 8 3 2 9 3 3 c 9 3 3 0 0 0 c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 25 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, integer M1, M2, the minimum and maximum entries. c c Input, integer N, the number of components. c c Input/output, integer RANK, counts the elements. c On first call, set RANK to 0. Thereafter, the output value of RANK c will indicate the order of the element returned. When there are no c more elements, RANK will be returned as 0. c c Input/output, integer X(N), on input the previous tuple. c On output, the next tuple. c implicit none integer n integer i integer m1 integer m2 integer rank integer x(n) if ( m2 .lt. m1 ) then rank = 0 return end if if ( rank .le. 0 ) then do i = 1, n x(i) = m1 end do rank = 1 else rank = rank + 1 i = n 10 continue if ( x(i) .lt. m2 ) then x(i) = x(i) + 1 go to 20 end if x(i) = m1 if ( i .eq. 1 ) then rank = 0 do i = 1, n x(i) = m1 end do go to 20 end if i = i - 1 go to 10 20 continue end if return end