4 April 2015 12:49:39.084 PM NMS_PRB FORTRAN77 version Test the NMS library. TEST01 DCFT2D computes a 2D Fourier transform. COMPUTING... DCFT2D RESULTS (EX 11.8: PLOTS HAVE BEEN SKIPPED) MAXIMUM ERROR IS 0.1829951166D-15 REFERENCE RESULTS FROM IBM PC/AT MAXIMUM ERROR IS 0.1885421720E-15 TEST02: DFZERO finds the root of a function. Initial interval: 0.2000000000D+01 0.3000000000D+01 Tolerances: 0.1000000000D-05 0.1000000000D-05 DFZERO results Estimate of zero 0.2094551435D+01 Function value = -0.5157851950D-06 Reference results: Estimate of zero = 0.2094551435e+01 Function value = -0.5157851953e-06 TEST03: DGEFS factors and solves a linear system. Coefficient matrix = 0.100000000000D+02 -0.700000000000D+01 0.000000000000D+00 -0.300000000000D+01 0.200000000000D+01 0.600000000000D+01 0.500000000000D+01 -0.100000000000D+01 0.500000000000D+01 Right-hand side = 0.700000000000D+01 0.400000000000D+01 0.600000000000D+01 DGEFS results Number of accurate digits = 14 SOLUTION = 0.000000000000D+00 -0.100000000000D+01 0.100000000000D+01 REFERENCE RESULTS FROM IBM PC/AT NUMBER OF ACCURATE DIGITS = 14 SOLUTION = 0.000000000000E+00 -0.100000000000E+01 0.100000000000E+01 TEST04 DUNI computes uniform random numbers. DUNI RESULTS 305 0.30500000D+03 0.241576136599321D+00 REFERENCE RESULTS FROM AN IBM P/C 305 0.30500000E+03 0.241576136599321E+00 TEST05 DCFFTI initializes a complex FFT. DCFFTF computes it. DCFFTF RESULTS FOR N = 16 CZERO = 0.54922232D+00 0.00000000D+00 J OUTPUT FROM DCFFTF, SCALED COEFFICIENTS 1 -0.27549191D+01 -0.27755576D-16 0.34436489D+00 0.45640590D-16 2 0.14052329D+01 0.55511151D-16 0.17565412D+00 0.49960324D-16 3 -0.77835776D+00 0.27755576D-16 0.97294719D-01 0.32274873D-16 4 0.40105574D+00 0.00000000D+00 0.50131968D-01 0.24556770D-16 5 -0.22872217D+00 0.27755576D-16 0.28590271D-01 0.14036467D-16 6 0.11996600D+00 -0.55511151D-16 0.14995750D-01 0.40794405D-17 7 -0.84154781D-01 0.83266727D-16 0.10519348D-01 -0.13908989D-17 8 0.61404351D-01 0.00000000D+00 0.76755439D-02 0.75196159D-17 9 -0.84154781D-01 -0.27755576D-16 0.10519348D-01 0.15063301D-16 10 0.11996600D+00 -0.55511151D-16 0.14995750D-01 0.11424997D-16 11 -0.22872217D+00 0.27755576D-16 0.28590271D-01 0.13661661D-15 12 0.40105574D+00 0.00000000D+00 0.50131968D-01 0.73670311D-16 13 -0.77835776D+00 0.27755576D-16 0.97294719D-01 -0.19423768D-15 14 0.14052329D+01 0.55511151D-16 0.17565412D+00 0.30808890D-15 15 -0.27549191D+01 -0.13877788D-15 0.34436489D+00 0.18733442D-14 DCFFTF RESULTS FOR N = 17 CZERO = 0.54916123D+00 0.00000000D+00 J OUTPUT FROM DCFFTF, SCALED COEFFICIENTS 1 -0.29260638D+01 0.00000000D+00 0.34424280D+00 0.42156192D-16 2 0.14919178D+01 0.00000000D+00 0.17551974D+00 0.42988517D-16 3 -0.82441729D+00 0.00000000D+00 0.96990270D-01 0.35632470D-16 4 0.42197531D+00 0.00000000D+00 0.49644154D-01 0.24317818D-16 5 -0.23457290D+00 0.00000000D+00 0.27596811D-01 0.16897615D-16 6 0.11248160D+00 0.00000000D+00 0.13233130D-01 0.97232249D-17 7 -0.60345454D-01 0.00000000D+00 0.70994651D-02 0.60858351D-17 8 0.12012646D-01 0.00000000D+00 0.14132525D-02 0.13845424D-17 9 0.12012646D-01 0.00000000D+00 -0.14132525D-02 -0.15576102D-17 10 -0.60345454D-01 0.00000000D+00 -0.70994651D-02 -0.86940501D-17 11 0.11248160D+00 0.00000000D+00 -0.13233130D-01 -0.64839434D-16 12 -0.23457290D+00 0.00000000D+00 -0.27596811D-01 -0.40554277D-16 13 0.42197531D+00 0.00000000D+00 -0.49644154D-01 0.97338554D-16 14 -0.82441729D+00 0.00000000D+00 -0.96990270D-01 -0.16628486D-15 15 0.14919178D+01 0.00000000D+00 -0.17551974D+00 -0.94598525D-15 16 -0.29260638D+01 0.00000000D+00 -0.34424280D+00 -0.67449908D-15 REFERENCE RESULTS (PARTIAL) FROM IBM PC/AT DCFFTF RESULTS FOR N = 17 CZERO = (0.54916124E+00, 0.00000000E+00) . . 10 -0.60345452E-01 -0.37837322E-16 11 0.11248162E+00 -0.47424091E-16 12 -0.23457294E+00 0.73973161E-16 13 0.42197537E+00 -0.25268310E-17 14 -0.82441735E+00 -0.14952867E-16 15 0.14919178E+01 0.31242621E-16 16 -0.29260639E+01 -0.69144627E-16 TEST06 DRNOR computes normal random numbers. RUNNING 10,000 NORMALS INTO 32 BINS... HISTOGRAM FOR DRNOR: NUMBER IN BIN 1,...,32 (-INFINITY,-3],(-3,-2.8],...,(2.8,3],(3,INFINITY) (VALUES ARE SLIGHTLY COMPUTER DEPENDENT) 16 14 21 32 46 96 135 198 292 334 454 549 611 665 743 801 785 751 747 634 503 421 351 274 184 124 90 53 35 19 13 9 REFERENCE RESULTS FROM IBM PC/AT 16 14 21 32 46 96 135 198 292 334 454 549 611 665 743 801 785 751 747 634 503 421 351 274 184 124 90 53 35 19 13 9 DPCHEZ_TEST DPCHEZ sets up piecewise cubic Hermite splines. -0.1000000000D+01 0.3846153846D-01 0.0000000000D+00 -0.3828750435D-02 -0.9900000000D+00 0.3918095023D-01 -0.3089175003D-04 -0.2387672443D-02 -0.9800000000D+00 0.3993548517D-01 -0.4852122901D-04 -0.1176935510D-02 -0.9700000000D+00 0.4072366516D-01 -0.5521138358D-04 -0.2004830510D-03 -0.9600000000D+00 0.4154401207D-01 -0.5332570402D-04 0.5375172514D-03 -0.9500000000D+00 0.4239504776D-01 -0.4527053969D-04 0.1032658723D-02 -0.9400000000D+00 0.4327529412D-01 -0.3349756706D-04 0.1280279888D-02 -0.9300000000D+00 0.4418327300D-01 -0.2050642163D-04 0.1275447480D-02 -0.9200000000D+00 0.4511750628D-01 -0.8847506049D-05 0.1012938179D-02 -0.9100000000D+00 0.4607651584D-01 -0.1124987686D-05 0.4872189665D-03 -0.9000000000D+00 0.4705882353D-01 0.0000000000D+00 -0.3075740100D-03 -0.8900000000D+00 0.4806886029D-01 -0.2285000919D-05 -0.1520108851D-03 -0.8800000000D+00 0.4911281046D-01 -0.3103098476D-05 -0.1532546803D-04 -0.8700000000D+00 0.5019182598D-01 -0.2677721452D-05 0.9548217271D-04 -0.8600000000D+00 0.5130705882D-01 -0.1304439682D-05 0.1729789674D-03 -0.8500000000D+00 0.5245966095D-01 0.6445542698D-06 0.2092681223D-03 -0.8400000000D+00 0.5365078431D-01 0.2715644198D-05 0.1959559629D-03 -0.8300000000D+00 0.5488158088D-01 0.4368644735D-05 0.1241161329D-03 -0.8200000000D+00 0.5615320261D-01 0.4971283666D-05 -0.1574907890D-04 -0.8100000000D+00 0.5746680147D-01 0.3793282110D-05 -0.2337505349D-03 -0.8000000000D+00 0.5882352941D-01 0.0000000000D+00 -0.5406574394D-03 -0.7900000000D+00 0.6022789822D-01 -0.3994568046D-05 -0.2627181018D-03 -0.7800000000D+00 0.6168495023D-01 -0.5364385616D-05 -0.1781306579D-04 -0.7700000000D+00 0.6319663326D-01 -0.4504359216D-05 0.1810037206D-03 -0.7600000000D+00 0.6476489510D-01 -0.1944278155D-05 0.3197988901D-03 -0.7500000000D+00 0.6639168355D-01 0.1642059763D-05 0.3836924553D-03 -0.7400000000D+00 0.6807894642D-01 0.5427022757D-05 0.3567849746D-03 -0.7300000000D+00 0.6982863151D-01 0.8418561030D-05 0.2220785866D-03 -0.7200000000D+00 0.7164268662D-01 0.9448800181D-05 -0.3860862763D-04 -0.7100000000D+00 0.7352305956D-01 0.7161742444D-05 -0.4447355431D-03 -0.7000000000D+00 0.7547169811D-01 0.0000000000D+00 -0.1017138789D-02 -0.6900000000D+00 0.7749693628D-01 -0.7423337617D-05 -0.4764416915D-03 -0.6800000000D+00 0.7960808659D-01 -0.9747802489D-05 -0.1492972557D-05 -0.6700000000D+00 0.8180856466D-01 -0.7757698069D-05 0.3820430068D-03 -0.6600000000D+00 0.8410178610D-01 -0.2503223043D-05 0.6466272837D-03 -0.6500000000D+00 0.8649116652D-01 0.4680033966D-05 0.7626944863D-03 -0.6400000000D+00 0.8898012155D-01 0.1215001784D-04 0.6984880993D-03 -0.6300000000D+00 0.9157206679D-01 0.1793541405D-04 0.4198817521D-03 -0.6200000000D+00 0.9427041787D-01 0.1971099422D-04 -0.1098145809D-03 -0.6100000000D+00 0.9707859040D-01 0.1477094327D-04 -0.9300646297D-03 -0.6000000000D+00 0.1000000000D+00 0.0000000000D+00 -0.2083333333D-02 -0.5900000000D+00 0.1030514128D+00 -0.1480729370D-04 -0.9005248009D-03 -0.5800000000D+00 0.1062513833D+00 -0.1854233717D-04 0.1226047806D-03 -0.5700000000D+00 0.1096060100D+00 -0.1306376044D-04 0.9330287360D-03 -0.5600000000D+00 0.1131213912D+00 -0.7807447501D-06 0.1473609986D-02 -0.5500000000D+00 0.1168036254D+00 0.1530422847D-04 0.1682768074D-02 -0.5400000000D+00 0.1206588109D+00 0.3154917820D-04 0.1494121946D-02 -0.5300000000D+00 0.1246930462D+00 0.4362272832D-04 0.8361078649D-03 -0.5200000000D+00 0.1289124296D+00 0.4645026580D-04 -0.3684277566D-03 -0.5100000000D+00 0.1333230596D+00 0.3415590290D-04 -0.2202660292D-02 -0.5000000000D+00 0.1379310345D+00 0.0000000000D+00 -0.4756242568D-02 -0.4900000000D+00 0.1427742464D+00 -0.3189423123D-04 -0.1698785596D-02 -0.4800000000D+00 0.1478933175D+00 -0.3567660365D-04 0.8481385628D-03 -0.4700000000D+00 0.1532984408D+00 -0.1700568700D-04 0.2772512107D-02 -0.4600000000D+00 0.1589998098D+00 0.1729782661D-04 0.3953842492D-02 -0.4500000000D+00 0.1650076174D+00 0.5916381149D-04 0.4262651367D-02 -0.4400000000D+00 0.1713320571D+00 0.9918036258D-04 0.3559981404D-02 -0.4300000000D+00 0.1779833219D+00 0.1264966825D-03 0.1696939573D-02 -0.4200000000D+00 0.1849716052D+00 0.1287216829D-03 -0.1485698602D-02 -0.4100000000D+00 0.1923071002D+00 0.9181906351D-04 -0.6157791661D-02 -0.4000000000D+00 0.2000000000D+00 0.0000000000D+00 -0.1250000000D-01 -0.3900000000D+00 0.2081515311D+00 -0.7335180841D-04 -0.2523778436D-02 -0.3800000000D+00 0.2168618540D+00 -0.5788565292D-04 0.5229086715D-02 -0.3700000000D+00 0.2261395636D+00 0.2311363773D-04 0.1054676961D-01 -0.3600000000D+00 0.2359932544D+00 0.1441978341D-03 0.1320864009D-01 -0.3500000000D+00 0.2464315212D+00 0.2776750493D-03 0.1298693294D-01 -0.3400000000D+00 0.2574629586D+00 0.3935498395D-03 0.9649181924D-02 -0.3300000000D+00 0.2690961612D+00 0.4594923373D-03 0.2961631695D-02 -0.3200000000D+00 0.2813397239D+00 0.4408474614D-03 -0.7306110738D-02 -0.3100000000D+00 0.2942022411D+00 0.3006981412D-03 -0.2137486626D-01 -0.3000000000D+00 0.3076923077D+00 0.0000000000D+00 -0.3944773176D-01 -0.2900000000D+00 0.3221509800D+00 -0.1697290760D-03 0.3432250653D-02 -0.2800000000D+00 0.3378648915D+00 0.2705368090D-04 0.3383677637D-01 -0.2700000000D+00 0.3547610022D+00 0.4651651950D-03 0.5169157409D-01 -0.2600000000D+00 0.3727662722D+00 0.1019060293D-02 0.5700243168D-01 -0.2500000000D+00 0.3918076615D+00 0.1563759050D-02 0.4988143937D-01 -0.2400000000D+00 0.4118121302D+00 0.1976064604D-02 0.3057896583D-01 -0.2300000000D+00 0.4327066383D+00 0.2136132393D-02 -0.4779252360D-03 -0.2200000000D+00 0.4544181460D+00 0.1929458174D-02 -0.4264006333D-01 -0.2100000000D+00 0.4768736132D+00 0.1249356329D-02 -0.9498351925D-01 -0.2000000000D+00 0.5000000000D+00 0.0000000000D+00 -0.1562500000D+00 -0.1900000000D+00 0.5252243750D+00 -0.3998037122D-03 0.6389511615D-01 -0.1800000000D+00 0.5535200000D+00 0.1033812155D-02 0.2108311102D+00 -0.1700000000D+00 0.5841331250D+00 0.3581601052D-02 0.2872218884D+00 -0.1600000000D+00 0.6163100000D+00 0.6553902439D-02 0.2963300119D+00 -0.1500000000D+00 0.6492968750D+00 0.9296875000D-02 0.2420625000D+00 -0.1400000000D+00 0.6823400000D+00 0.1119906040D-01 0.1289888744D+00 -0.1300000000D+00 0.7146856250D+00 0.1169792728D-01 -0.3768357040D-01 -0.1200000000D+00 0.7455800000D+00 0.1028588235D-01 -0.2521946367D+00 -0.1100000000D+00 0.7742693750D+00 0.6515056382D-02 -0.5083943157D+00 -0.1000000000D+00 0.8000000000D+00 0.0000000000D+00 -0.8000000000D+00 -0.9000000000D-01 0.8250400000D+00 -0.6560831601D-02 -0.5200197440D+00 -0.8000000000D-01 0.8515200000D+00 -0.1054896552D-01 -0.2846516052D+00 -0.7000000000D-01 0.8784800000D+00 -0.1238859688D-01 -0.8976399919D-01 -0.6000000000D-01 0.9049600000D+00 -0.1247119266D-01 0.6696002020D-01 -0.5000000000D-01 0.9300000000D+00 -0.1117647059D-01 0.1854671280D+00 -0.4000000000D-01 0.9526400000D+00 -0.8898461538D-02 0.2628875740D+00 -0.3000000000D-01 0.9719200000D+00 -0.6075110024D-02 0.2932883472D+00 -0.2000000000D-01 0.9868800000D+00 -0.3219009901D-02 0.2677039506D+00 -0.1000000000D-01 0.9965600000D+00 -0.9462344140D-03 0.1744906562D+00 0.0000000000D+00 0.1000000000D+01 0.0000000000D+00 0.0000000000D+00 Integral from 0 to 1 = 0.274679262702D+00 IERR = 0 Reference results: -0.3000000000D-01 0.9719200000D+00 -0.6075110024D-02 0.2932883472D+00 -0.2000000000D-01 0.9868800000D+00 -0.3219009901D-02 0.2677039506D+00 -0.1000000000D-01 0.9965600000D+00 -0.9462344140D-03 0.1744906562D+00 0.0000000000D+00 0.1000000000D+01 0.0000000000D+00 0.0000000000D+00 Integral from 0 to 1 = 0.274679262702D+00 IERR = 0 TEST08 DFMIN minimizes a function. DFMIN RESULTS XSTAR = 0.8164961769D+00 REFERENCE RESULTS FROM IBM PC/AT XSTAR = 0.8164961769E+00 TEST09 DNSQE solves a system of nonlinear equations. INITIAL GUESS 0.200000000000D+01 0.300000000000D+01 DNSQE RESULTS ESTIMATE OF SOLUTION 0.199999999997D+01 0.100000000001D+01 VALUES OF NONLINEAR FUNCTIONS -0.415918410823D-10 -0.940891808909D-10 REFERENCE RESULTS FROM IBM PC/AT ESTIMATE OF SOLUTION 0.199999999997E+01 0.100000000001E+01 VALUES OF NONLINEAR FUNCTIONS -0.415920631269E-10 -0.940900690694E-10 TEST10 DQRLS solves a least squares problem. COEFFICIENT MATRIX 0.10000000D+01 0.10000000D+01 0.10000000D+01 0.10000000D+01 0.20000000D+01 0.40000000D+01 0.10000000D+01 0.30000000D+01 0.90000000D+01 0.10000000D+01 0.40000000D+01 0.16000000D+02 0.10000000D+01 0.50000000D+01 0.25000000D+02 RIGHT-HAND SIDE 0.1000000D+01 0.2300000D+01 0.4600000D+01 0.3100000D+01 0.1200000D+01 RANK OF MATRIX = 3 PARAMETERS -0.30200000D+01 0.44914286D+01 -0.72857141D+00 RESIDUALS 0.2571429D+00 -0.7485714D+00 0.7028571D+00 -0.1885714D+00 -0.2285714D-01 REFERENCE RESULTS FROM IBM PC/AT RANK OF MATRIX = 3 PARAMETERS -0.30200000E+01 0.44914286E+01 -0.72857143E+00 RESIDUALS 0.2571429E+00 -0.7485714E+00 0.7028571E+00 -0.1885714E+00 -0.2285714E-01 TEST11 DFZERO solves a nonlinear equation. INITIAL INTERVAL: 0.2000000000D+01 0.3000000000D+01 TOLERANCES: 0.1000000000D-05 0.1000000000D-05 DFZERO RESULTS ESTIMATE OF ZERO 0.2094551435D+01 FUNCTION VALUE = -0.5157851950D-06 REFERENCE RESULTS FROM IBM PC/AT ESTIMATE OF ZERO = 0.2094551435E+01 FUNCTION VALUE = -0.5157851953E-06 TEST12 UNCMND performs nonlinear least squares data fitting. 0.10000000D+01 0.10000000D+01 0.00000000D+00 0.10000000D+01 0.10000000D+01 0.00000000D+00 0.10000000D+01 0.10000000D+01 0.00000000D+00 -0.42633851D+03 -0.13471030D+04 0.22360680D+01 -0.20136545D+03 -0.63739199D+03 0.22360680D+01 -0.82667722D+02 -0.26294230D+03 0.22360680D+01 -0.35029177D+02 -0.11265941D+03 0.22360680D+01 -0.14521886D+02 -0.47966104D+02 0.22360680D+01 -0.57189483D+01 -0.20195924D+02 0.22360680D+01 -0.57189481D+01 -0.20195924D+02 0.22360680D+01 -0.57189483D+01 -0.20195924D+02 -0.51437895D+02 -0.52716742D+01 -0.20203044D+02 -0.51437895D+02 -0.52716740D+01 -0.20203044D+02 -0.51437895D+02 -0.52716742D+01 -0.20203044D+02 -0.50543348D+02 0.20000013D+02 -0.20605341D+02 -0.50543348D+02 0.20000013D+02 -0.20605341D+02 -0.50543348D+02 0.20000013D+02 -0.20605340D+02 0.25884657D-04 WARNING IN... UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL UNCMND FOR NONLINEAR LEAST SQUARES RESULTS ERROR CODE = 1 F(X*) = 0.91000000D+02 X* = 0.200000126255D+02 -0.206053410471D+02 REFERENCE RESULTS (PARTIAL-LAST 8 LINES) FROM IBM PC/AT -0.52716742E+01 -0.20203044E+02 -0.57189483E+01 0.20000000E+02 -0.20605341E+02 -0.52716742E+01 0.20000001E+02 -0.20605341E+02 -0.52716742E+01 0.20000000E+02 -0.20605340E+02 -0.52716742E+01 UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL UNCMND FOR NONLINEAR LEAST SQUARES RESULTS ERROR CODE = 1 F(X*) = 0.91000000E+02 X* = 0.200000001134E+02 -0.206053408470E+02 TEST13 DQK15 estimates an integral. DQK15 ESTIMATE OF ERF(1) 2.0/SQRT(PI)*RESULT 0.842700792950D+00 0.828974787422D-14 REFERENCE RESULTS COMPUTED ON IBM PC/AT 0.842700792950E+00 0.828974787422E-14 TEST14 DSVDC computes the singular value decomposition. SINGULAR VALUES ARE: 0.10594723D+08 0.64774566D+02 0.34620247D-03 COEFFICIENTS (ASSUMING DATA GOOD TO 6 DIGITS) ARE: -0.16714353D-02 -0.16169731D+01 0.87095700D-03 FOR YEAR 1900 POP ESTM, MEAS, AND RESIDUAL ARE 0.71904237D+02 0.75994575D+02 0.40903377D+01 FOR YEAR 1910 POP ESTM, MEAS, AND RESIDUAL ARE 0.88917968D+02 0.91972266D+02 0.30542978D+01 FOR YEAR 1920 POP ESTM, MEAS, AND RESIDUAL ARE 0.10610589D+03 0.10571062D+03 -0.39527035D+00 FOR YEAR 1930 POP ESTM, MEAS, AND RESIDUAL ARE 0.12346800D+03 0.12277505D+03 -0.69295796D+00 FOR YEAR 1940 POP ESTM, MEAS, AND RESIDUAL ARE 0.14100431D+03 0.13166927D+03 -0.93350340D+01 FOR YEAR 1950 POP ESTM, MEAS, AND RESIDUAL ARE 0.15871481D+03 0.15069736D+03 -0.80174444D+01 FOR YEAR 1960 POP ESTM, MEAS, AND RESIDUAL ARE 0.17659949D+03 0.17932317D+03 0.27236818D+01 FOR YEAR 1970 POP ESTM, MEAS, AND RESIDUAL ARE 0.19465837D+03 0.20323530D+03 0.85769256D+01 FOR YEAR 1980 POP ESTMATE IS 0.21289144D+03 SQUARE ROOT OF RESIDUAL SUM OF SQUARES IS: 0.16096596D+02 REFERENCE RESULTS (PARTIAL) FROM IBM PC/AT SINGULAR VALUES ARE: 0.10594723E+08 0.64774566E+02 0.34620247E-03 COEFFICIENTS (ASSUMING DATA GOOD TO 6 DIGITS) ARE: -0.16714353E-02 -0.16169731E+01 0.87095700E-03 . . . FOR YEAR 1980 POP ESTMATE IS 0.21289144E+03 SQUARE ROOT OF RESIDUAL SUM OF SQUARES IS: 0.16096596E+02 TEST15 DQ1DA estimates the integral of a function. INTERVAL: 0.0000000000D+00 0.1000000000D+01 DQ1DA RESULTS: 0.1000000000D-02 0.4747297202D+14 0.7039814216D+03 30 2 REFERENCE RESULTS ON IBM PC/AT (CALLED DUNI) 0.0000000000E+00 0.1000000000E+01 0.1000000000E-02 0.4140675161E-01 0.4286574121E-11 30 0 TEST16 DEZFTF computes the discrete Fourier transform. DEZFTF RESULTS FOR N= 16 AZERO = 0.2746111618D+00 J DFTA(J) DFTB(J) 1 0.3443648927D+00 0.5258087722D-16 2 0.1756541175D+00 0.4302285055D-16 3 0.9729471745D-01 0.3921494624D-16 4 0.5013196495D-01 0.2455758016D-16 5 0.2859026735D-01 0.1403704274D-16 6 0.1499574989D-01 0.1101869826D-16 7 0.1051935326D-01 0.1248719156D-16 8 0.3837775107D-02 0.3759935201D-17 FOR BREVITY 101 EVALUATION POINTS OMITTED DEZFTF RESULTS FOR N= 17 AZERO = 0.2745806197D+00 J DFTA(J) DFTB(J) 1 0.3442428079D+00 0.5640338357D-16 2 0.1755197395D+00 0.4392499559D-16 3 0.9699027603D-01 0.2465250741D-16 4 0.4964416088D-01 0.2240208486D-16 5 0.2759681609D-01 0.2284432765D-16 6 0.1323313221D-01 0.1219863720D-16 7 0.7099464912D-02 0.4859291579D-17 8 0.1413251200D-02 -0.2868188100D-18 FOR BREVITY 101 EVALUATION POINTS OMITTED REFERENCE RESULTS FROM IBM PC/AT DEZFTF RESULTS FOR N= 17 AZERO = 0.274581 J DFTA(J) DFTB(J) 1 0.3442428079E+00 0.5030951647E-16 2 0.1755197395E+00 0.4668315002E-16 3 0.9699027603E-01 0.3740740688E-16 4 0.4964416088E-01 0.2403131256E-16 5 0.2759681609E-01 0.8202373493E-17 6 0.1323313221E-01 0.4148226049E-17 7 0.7099464912E-02 0.1053997863E-16 8 0.1413251200E-02 0.5512226224E-17 TEST17 DDRIV2 solves a differential equation. DDRIV2 RESULTS 0.0000000000D+00 0.1000000000D+02 0.0000000000D+00 1 0.0000000000D+00 0.1000000000D+02 0.0000000000D+00 1 0.1000000000D+00 0.9875337924D+01 -0.2202703389D+01 2 0.2000000000D+00 0.9599056278D+01 -0.3192450224D+01 2 0.3000000000D+00 0.9254641447D+01 -0.3637131580D+01 2 0.4000000000D+00 0.8879610289D+01 -0.3836882310D+01 2 0.5000000000D+00 0.8490836939D+01 -0.3926695510D+01 2 0.6000000000D+00 0.8095882554D+01 -0.3967060431D+01 2 0.7000000000D+00 0.7698148310D+01 -0.3985186477D+01 2 0.8000000000D+00 0.7299167537D+01 -0.3993340297D+01 2 0.9000000000D+00 0.6899624932D+01 -0.3996999455D+01 2 0.1000000000D+01 0.6499829883D+01 -0.3998639062D+01 2 0.1100000000D+01 0.6099923075D+01 -0.3999384598D+01 2 0.1200000000D+01 0.5699965170D+01 -0.3999721360D+01 2 0.1300000000D+01 0.5299983966D+01 -0.3999871727D+01 2 0.1400000000D+01 0.4899992319D+01 -0.3999938551D+01 2 0.1500000000D+01 0.4499996483D+01 -0.3999971863D+01 2 0.1600000000D+01 0.4099998617D+01 -0.3999988932D+01 2 0.1700000000D+01 0.3699999509D+01 -0.3999996074D+01 2 0.1800000000D+01 0.3299999784D+01 -0.3999998273D+01 2 0.1900000000D+01 0.2899999727D+01 -0.3999997820D+01 2 0.2000000000D+01 0.2499999743D+01 -0.3999997946D+01 2 0.2100000000D+01 0.2099999659D+01 -0.3999997273D+01 2 0.2200000000D+01 0.1699999736D+01 -0.3999997890D+01 2 0.2300000000D+01 0.1299999774D+01 -0.3999998190D+01 2 0.2400000000D+01 0.8999998607D+00 -0.3999998886D+01 2 0.2500000000D+01 0.4999999247D+00 -0.3999999398D+01 2 0.2600000000D+01 0.9999996863D-01 -0.3999999749D+01 2 0.2624999995D+01 0.0000000000D+00 -0.3999999828D+01 5 <-- Y=0 AT T= 0.2624999995D+01 REFERENCE RESULTS (LAST LINE) FROM IBM PC/AT 0.2624999995E+01 -0.5648151218E-15 -0.3999999828E+01 5 <-- Y=0 AT T= 0.2624999995E+01 TEST18 Find autocorrelation in el Nino data. EX 11.6: AUTOCORRELATION (DIRECT) OUTPUT SUPRESSED EX 11.6: AUTOCORRELATION (COMPLEX FFT) OUTPUT SUPRESSED EX 11.6: AUTOCORRELATION (DBLE FFT) OUTPUT REDUCED 0.1000000000D+01 0.6067398062D+00 0.3538571074D+00 0.1843027185D+00 -0.1529114172D-01 -0.2198717698D+00 -0.2962181307D+00 -0.2914580887D+00 -0.1550562043D+00 0.3680803130D-01 0.1735588664D+00 0.2665974779D+00 0.3049896546D+00 0.2011691615D+00 0.1780362880D-01 -0.2103672514D+00 -0.3773868663D+00 -0.4379599788D+00 -0.4603327597D+00 -0.4255892823D+00 REFERENCE RESULTS (EX 11.6 PARTIAL-LAST 7 LINES) FROM IBM PC/AT 0.1000000000E+01 0.6067398062E+00 0.3538571074E+00 0.1843027185E+00 -0.1529114172E-01 -0.2198717698E+00 -0.2962181307E+00 -0.2914580887E+00 -0.1550562043E+00 0.3680803130E-01 0.1735588664E+00 0.2665974779E+00 0.3049896546E+00 0.2011691615E+00 0.1780362880E-01 -0.2103672514E+00 -0.3773868663E+00 -0.4379599788E+00 -0.4603327597E+00 -0.4255892823E+00 TEST19 UNCMND finds the minimum of a function. COMPUTING... OPTDRD SHIFT FROM FORWARD TO CENTRAL DIFFERENCES IN ITERATION 71 WARNING IN... UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL UNCMND RESULTS ERROR CODE = 1 F(X*) = 0.100000000000D+01 X* = 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.9999999D+00 REFERENCE RESULTS FROM IBM PC/AT UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL UNCMND RESULTS ERROR CODE = 1 F(X*) = 0.100000000000E+01 X* = 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.1000000D+01 0.9999999D+00 TEST20 DQAGI estimates an integral. DQAGI RESULT, ABSERR, NEVAL, IER: 0.7026028726D+00 0.6401518223D-05 1005 0 REFERENCE RESULTS FROM IBM PC/AT BE SURE THAT UNDERFLOWS ARE SET TO ZERO... DQAGI RESULT, ABSERR, NEVAL, IER: 0.7026028726E+00 0.6401518223E-05 1005 0 TEST21 Reactor shielding problem Number of particles = 1000 Slab thickness = 2.00000 TALLIES % ABSORBED, ENERGY, SD: 0.3720D+02 0.3774710846D+00 0.5346582010D+00 % REFLECTED, ENERGY, SD: 0.5570D+02 0.3574806938D+00 0.4750421507D+00 % TRANSMITTED, ENERGY, SD: 0.7000D+01 0.4324209753D+00 0.5652865881D+00 NMS_PRB Normal end of execution. 4 April 2015 12:49:39.123 PM