subroutine ch_cap ( ch ) c*********************************************************************72 c cc ch_cap() capitalizes a single character. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input/output, character CH, the character to capitalize. c implicit none character ch integer itemp itemp = ichar ( ch ) if ( 97 .le. itemp .and. itemp .le. 122 ) then ch = char ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) c*********************************************************************72 c cc ch_eqi() is a case insensitive comparison of two characters for equality. c c Example: c c CH_EQI ( 'A', 'a' ) is TRUE. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, character C1, C2, the characters to compare. c c Output, logical CH_EQI, the result of the comparison. c implicit none character c1 character c1_cap character c2 character c2_cap logical ch_eqi c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap .eq. c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) c*********************************************************************72 c cc CH_TO_DIGIT returns the integer value of a base 10 digit. c c Example: c c C DIGIT c --- ----- c '0' 0 c '1' 1 c ... ... c '9' 9 c ' ' 0 c 'X' -1 c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 04 August 1999 c c Author: c c John Burkardt c c Parameters: c c Input, character C, the decimal digit, '0' through '9' or blank c are legal. c c Output, integer DIGIT, the corresponding integer value. If C was c 'illegal', then DIGIT is -1. c implicit none character c integer digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c .eq. ' ' ) then digit = 0 else digit = -1 end if return end subroutine get_unit ( iunit ) c*********************************************************************72 c cc GET_UNIT returns a free FORTRAN unit number. c c Discussion: c c A "free" FORTRAN unit number is a value between 1 and 99 which c is not currently associated with an I/O device. A free FORTRAN unit c number is needed in order to open a file with the OPEN command. c c If IUNIT = 0, then no free FORTRAN unit could be found, although c all 99 units were checked (except for units 5, 6 and 9, which c are commonly reserved for console I/O). c c Otherwise, IUNIT is a value between 1 and 99, representing a c free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 c are special, and will never return those values. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 02 September 2013 c c Author: c c John Burkardt c c Parameters: c c Output, integer IUNIT, the free unit number. c implicit none integer i integer iunit logical value iunit = 0 do i = 1, 99 if ( i .ne. 5 .and. i .ne. 6 .and. i .ne. 9 ) then inquire ( unit = i, opened = value, err = 10 ) if ( .not. value ) then iunit = i return end if end if 10 continue end do return end subroutine gmsh_data_read ( gmsh_filename, node_dim, node_num, & node_x, element_order, element_num, element_node ) c*********************************************************************72 c cc GMSH_DATA_READ reads data from a GMSH file. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 16 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) GMSH_FILENAME, the GMSH filename. c c Input, integer NODE_DIM, the spatial dimension. c c Input, integer NODE_NUM, the number of nodes. c c Input, double precision NODE_X(NODE_DIM,NODE_NUM), the node coordinates. c c Input, integer ELEMENT_ORDER, the order of the elements. c c Input, integer ELEMENT_NUM, the number of elements. c c Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), c the nodes that make up each element. c implicit none integer element_num integer element_order integer node_dim integer node_num integer element_node(element_order,element_num) character * ( * ) gmsh_filename integer i integer i4_dummy integer ierror integer indx integer input integer input_stat integer j integer k integer length integer level double precision node_x(node_dim,node_num) double precision r8_big parameter ( r8_big = 1.0D+30 ) logical s_begin character * ( 255 ) text double precision x call get_unit ( input ) open ( unit = input, file = gmsh_filename, status = 'old', & iostat = input_stat ) if ( input_stat .ne. 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'GMSH_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Could not open input file "' // & trim ( gmsh_filename ) // '"' stop 1 end if level = 0 10 continue read ( input, '(a)', iostat = input_stat ) text if ( input_stat .ne. 0 ) then write ( *, '(a)' ) 'GMSH_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while seeking node coordinates.' stop 1 end if if ( level .eq. 0 ) then if ( s_begin ( text(1:6), '$Nodes' ) ) then level = 1 j = 0 end if else if ( level .eq. 1 ) then call s_to_i4 ( text, i4_dummy, ierror, length ) level = 2 else if ( level .eq. 2 ) then if ( s_begin ( text(1:9), '$EndNodes' ) ) then go to 20 else j = j + 1 call s_to_i4 ( text, indx, ierror, length ) text = text(length+1:) do i = 1, node_dim call s_to_r8 ( text, x, ierror, length ) text = text(length+1:) node_x(i,j) = x end do end if end if go to 10 20 continue c c Now read element information. c level = 0 30 continue read ( input, '(a)', iostat = input_stat ) text if ( input_stat .ne. 0 ) then write ( *, '(a)' ) 'GMSH_DATA_READ - Fatal error!' write ( *, '(a)' ) & ' Error while seeking element connectivity.' stop 1 end if if ( level .eq. 0 ) then if ( s_begin ( text(1:9), '$Elements' ) ) then level = 1 j = 0 end if else if ( level .eq. 1 ) then call s_to_i4 ( text, i4_dummy, ierror, length ) level = 2 else if ( level .eq. 2 ) then if ( s_begin ( text(1:12), '$EndElements' ) ) then go to 40 else j = j + 1 k = 0 do k = 1, 5 call s_to_i4 ( text, i4_dummy, ierror, length ) text = text(length+1:) end do do i = 1, element_order call s_to_i4 ( text, k, ierror, length ) text = text(length+1:) element_node(i,j) = k end do end if end if go to 30 40 continue close ( unit = input ) return end subroutine gmsh_size_read ( gmsh_filename, node_num, node_dim, & element_num, element_order ) c*********************************************************************72 c cc GMSH_SIZE_READ reads sizes from a GMSH file. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 16 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) GMSH_FILENAME, the GMSH filename. c c Output, integer NODE_NUM, the number of nodes. c c Output, integer NODE_DIM, the spatial dimension. c c Output, integer ELEMENT_NUM, the number of elements. c c Output, integer ELEMENT_ORDER, the order of the elements. c implicit none integer element_num integer element_order character * ( * ) gmsh_filename integer ierror integer indx integer input integer input_stat integer k integer length integer level integer node_dim integer node_num double precision r8_big parameter ( r8_big = 1.0D+30 ) logical s_begin character * ( 255 ) text double precision x double precision x_max double precision x_min double precision y double precision y_max double precision y_min double precision z double precision z_max double precision z_min node_num = 0 node_dim = 0 x_max = - r8_big x_min = + r8_big y_max = - r8_big y_min = + r8_big z_max = - r8_big z_min = + r8_big call get_unit ( input ) open ( unit = input, file = gmsh_filename, status = 'old', & iostat = input_stat ) if ( input_stat .ne. 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'GMSH_SIZE_READ - Fatal error!' write ( *, '(a)' ) ' Could not open input file "' // & trim ( gmsh_filename ) // '"' stop 1 end if level = 0 10 continue read ( input, '(a)', iostat = input_stat ) text if ( level .eq. 0 ) then if ( s_begin ( text(1:6), '$Nodes' ) ) then level = 1 end if else if ( level .eq. 1 ) then call s_to_i4 ( text, node_num, ierror, length ) level = 2 else if ( level .eq. 2 ) then if ( s_begin ( text(1:9), '$EndNodes' ) ) then go to 20 else call s_to_i4 ( text, indx, ierror, length ) text = text(length+1:) call s_to_r8 ( text, x, ierror, length ) x_min = min ( x_min, x ) x_max = max ( x_max, x ) text = text(length+1:) c c Need to check that we actually were able to read an R8 here. c call s_to_r8 ( text, y, ierror, length ) y_min = min ( y_min, y ) y_max = max ( y_max, y ) text = text(length+1:) call s_to_r8 ( text, z, ierror, length ) text = text(length+1:) z_min = min ( z_min, z ) z_max = max ( z_max, z ) end if end if go to 10 20 continue c c Make a very simple guess as to the dimensionality of the data. c node_dim = 3 if ( z_max .eq. z_min ) then node_dim = 2 if ( y_max .eq. y_min ) then node_dim = 1 end if end if c c Now read element information. c level = 0 30 continue read ( input, '(a)', iostat = input_stat ) text if ( level .eq. 0 ) then if ( s_begin ( text(1:9), '$Elements' ) ) then level = 1 end if else if ( level .eq. 1 ) then call s_to_i4 ( text, element_num, ierror, length ) level = 2 else if ( level .eq. 2 ) then if ( s_begin ( text(1:12), '$EndElements' ) ) then go to 50 else k = 0 do call s_to_i4 ( text, indx, ierror, length ) text = text(length+1:) if ( ierror .ne. 0 ) then go to 40 end if k = k + 1 end do 40 continue element_order = k - 5 go to 50 end if end if go to 30 50 continue close ( unit = input ) return end subroutine gmsh_mesh1d_write ( gmsh_filename, m, node_num, & node_x, element_order, element_num, element_node ) c*********************************************************************72 c cc GMSH_MESH1D_WRITE writes 1D mesh data as a Gmsh mesh file. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 06 October 2014 c c Author: c c John Burkardt c c Reference: c c Christophe Geuzaine, Jean-Francois Remacle, c Gmsh: a three-dimensional finite element mesh generator with c built-in pre- and post-processing facilities, c International Journal for Numerical Methods in Engineering, c Volume 79, Number 11, pages 1309-1331, 2009. c c Parameters: c c Input, character * ( * ) GMSH_FILENAME, the name of the Gmsh file. c c Input, integer M, the spatial dimension. c c Input, integer NODE_NUM, the number of nodes. c c Input, double precision NODE_X(M,NODE_NUM), the node coordinates. c c Input, integer ELEMENT_ORDER, the order of the elements. c c Input, integer ELEMENT_NUM, the number of elements. c c Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), c the nodes that make up each element. c implicit none integer element_num integer element_order integer m integer node_num integer element integer element_node(element_order,element_num) integer element_type character * ( * ) gmsh_filename integer gmsh_unit integer node double precision node_x(m,node_num) integer tag_num integer tag1 c c Enforce 1-based indexing of nodes. c call mesh_base_one ( node_num, element_order, element_num, & element_node ) c c Open the file. c call get_unit ( gmsh_unit ) open ( unit = gmsh_unit, file = gmsh_filename, & status = 'replace' ) c c Write the data. c write ( gmsh_unit, '(a)' ) '$MeshFormat' write ( gmsh_unit, '(a)' ) '2.2 0 8' write ( gmsh_unit, '(a)' ) '$EndMeshFormat' write ( gmsh_unit, '(a)' ) '$Nodes' write ( gmsh_unit, '(i6)' ) node_num do node = 1, node_num write ( gmsh_unit, '(i6,2x,g14.6,a)' ) & node, node_x(1:m,node), ' 0.0 0.0' end do write ( gmsh_unit, '(a)' ) '$EndNodes' element_type = 1 tag_num = 2 tag1 = 0 write ( gmsh_unit, '(a)' ) '$Elements' write ( gmsh_unit, '(i6)' ) element_num do element = 1, element_num write ( gmsh_unit, '(i6,2x,i2,2x,i2,2x,i2,2x,i6,2(2x,i6))' ) & element, element_type, tag_num, tag1, element, & element_node(1:element_order,element) end do write ( gmsh_unit, '(a)' ) '$EndElements' close ( unit = gmsh_unit ) return end subroutine gmsh_mesh2d_element_data_example ( element_num, & element_order, element_node ) c*********************************************************************72 c cc GMSH_MESH2D_ELEMENT_DATA_EXAMPLE returns element data for the 2D example. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 10 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer ELEMENT_NUM, the number of elements. c c Input, integer ELEMENT_ORDER, the order of the elements. c c Output, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), c the indices of the nodes that make up each element. c implicit none integer element_num integer element_order integer element_node(element_order,element_num) integer element_node_save(3,24) save element_node_save data element_node_save / & 1, 2, 6, & 7, 6, 2, & 2, 3, 7, & 8, 7, 3, & 3, 4, 8, & 9, 8, 4, & 4, 5, 9, & 10, 9, 5, & 6, 7, 11, & 12, 11, 7, & 7, 8, 12, & 13, 12, 8, & 8, 9, 13, & 14, 13, 9, & 9, 10, 14, & 15, 14, 10, & 11, 12, 16, & 17, 16, 12, & 12, 13, 17, & 18, 17, 13, & 16, 17, 19, & 20, 19, 17, & 17, 18, 20, & 21, 20, 18 / call i4mat_copy ( element_order, element_num, element_node_save, & element_node ) return end subroutine gmsh_mesh2d_element_size_example ( element_num, & element_order ) c*********************************************************************72 c cc GMSH_MESH2D_ELEMENT_SIZE_EXAMPLE returns element sizes for the 2D example. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 10 October 2014 c c Author: c c John Burkardt c c Parameters: c c Output, integer ELEMENT_NUM, the number of elements. c c Output, integer ELEMENT_ORDER, the order of the elements. c implicit none integer element_num integer element_order element_num = 24 element_order = 3 return end subroutine gmsh_mesh2d_node_data_example ( node_num, node_dim, & node_x ) c*********************************************************************72 c cc GMSH_MESH2D_NODE_DATA_EXAMPLE returns node data for the 2D example. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 10 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer NODE_NUM, the number of nodes. c c Input, integer NODE_DIM, the spatial dimension. c c Output, double precision NODE_X(NODE_DIM,NODE_NUM), the nodal c coordinates. c implicit none integer node_dim integer node_num double precision node_x(node_dim,node_num) double precision node_x_save(2,21) save node_x_save data node_x_save / & 0.0, 0.0, & 1.0, 0.0, & 2.0, 0.0, & 3.0, 0.0, & 4.0, 0.0, & 0.0, 1.0, & 1.0, 1.0, & 2.0, 1.0, & 3.0, 1.0, & 4.0, 1.0, & 0.0, 2.0, & 1.0, 2.0, & 2.0, 2.0, & 3.0, 2.0, & 4.0, 2.0, & 0.0, 3.0, & 1.0, 3.0, & 2.0, 3.0, & 0.0, 4.0, & 1.0, 4.0, & 2.0, 4.0 / call r8mat_copy ( node_dim, node_num, node_x_save, node_x ) return end subroutine gmsh_mesh2d_node_size_example ( node_num, node_dim ) c*********************************************************************72 c cc GMSH_MESH2D_NODE_SIZE_EXAMPLE returns node sizes for the 2D example. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 16 October 2014 c c Author: c c John Burkardt c c Parameters: c c Output, integer NODE_NUM, the number of nodes. c c Output, integer NODE_DIM, the spatial dimension. c implicit none integer node_dim integer node_num node_num = 21 node_dim = 2 return end subroutine gmsh_mesh2d_write ( gmsh_filename, m, node_num, & node_x, element_order, element_num, element_node ) c*********************************************************************72 c cc GMSH_MESH2D_WRITE writes 2D mesh data as a Gmsh mesh file. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 25 May 2014 c c Author: c c John Burkardt c c Reference: c c Christophe Geuzaine, Jean-Francois Remacle, c Gmsh: a three-dimensional finite element mesh generator with c built-in pre- and post-processing facilities, c International Journal for Numerical Methods in Engineering, c Volume 79, Number 11, pages 1309-1331, 2009. c c Parameters: c c Input, character * ( * ) GMSH_FILENAME, the name of the Gmsh file. c c Input, integer M, the spatial dimension. c c Input, integer NODE_NUM, the number of nodes. c c Input, double precision NODE_X(M,NODE_NUM), the node coordinates. c c Input, integer ELEMENT_ORDER, the order of the elements. c c Input, integer ELEMENT_NUM, the number of elements. c c Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), c the nodes that make up each element. c implicit none integer element_num integer element_order integer m integer node_num integer element integer element_node(element_order,element_num) integer element_type character * ( * ) gmsh_filename integer gmsh_unit integer node double precision node_x(m,node_num) integer tag_num integer tag1 c c Enforce 1-based indexing of nodes. c call mesh_base_one ( node_num, element_order, element_num, & element_node ) c c Open the file. c call get_unit ( gmsh_unit ) open ( unit = gmsh_unit, file = gmsh_filename, & status = 'replace' ) c c Write the data. c write ( gmsh_unit, '(a)' ) '$MeshFormat' write ( gmsh_unit, '(a)' ) '2.2 0 8' write ( gmsh_unit, '(a)' ) '$EndMeshFormat' write ( gmsh_unit, '(a)' ) '$Nodes' write ( gmsh_unit, '(i6)' ) node_num do node = 1, node_num write ( gmsh_unit, '(i6,2x,g14.6,2x,g14.6,a)' ) & node, node_x(1:m,node), ' 0.0' end do write ( gmsh_unit, '(a)' ) '$EndNodes' if ( element_order .eq. 3 ) then element_type = 2 else if ( element_order .eq. 6 ) then element_type = 9 end if tag_num = 2 tag1 = 0 write ( gmsh_unit, '(a)' ) '$Elements' write ( gmsh_unit, '(i6)' ) element_num do element = 1, element_num write ( gmsh_unit, '(i6,2x,i2,2x,i2,2x,i2,2x,i6,6(2x,i6))' ) & element, element_type, tag_num, tag1, element, & element_node(1:element_order,element) end do write ( gmsh_unit, '(a)' ) '$EndElements' close ( unit = gmsh_unit ) return end subroutine gmsh_mesh3d_write ( gmsh_filename, m, node_num, & node_x, element_order, element_num, element_node ) c*********************************************************************72 c cc GMSH_MESH3D_WRITE writes 3D mesh data as a Gmsh mesh file. c c Discussion: c c The node ordering for the 20 node element is not standard. c c Assuming the vertices are A, B, C and D, Gmsh uses the following ordering: c c 1: a c 2: b c 3: c c 4: d c 5: (2*a +b )/3 c 6: ( a+2*b )/3 c 7: ( 2*b+ c )/3 c 8: ( b+2*c )/3 c 9: ( a +2*c )/3 c 10: (2*a + c )/3 c 11: (2*a + d)/3 c 12: ( a +2*d)/3 c 13: ( b +2*d)/3 c 14: ( 2*b + d)/3 c 15: ( + c+2*d)/3 c 16: ( +2*c+ d)/3 c 17: ( a+ b+ c )/3 c 18: ( a+ b + d)/3 c 19: ( b+ c+ d)/3 c 20: ( a+ c+ d)/3 c c Leo Rebholz used the following ordering: c c 1: a c 2: b c 3: c c 4: d c 5: (2*a +b )/3 c 6: (2*a + c )/3 c 7: ( a+2*b )/3 c 8: ( a +2*c )/3 c 9: ( a+ b+ c )/3 c 10: ( 2*b+ c )/3 c 11: ( b+2*c )/3 c 12: (2*a + d)/3 c 13: ( 2*b + d)/3 c 14: ( +2*c+ d)/3 c 15: ( a+ b + d)/3 c 16: ( b+ c+ d)/3 c 17: ( a+ c+ d)/3 c 18: ( a +2*d)/3 c 19: ( b +2*d)/3 c 20: ( + c+2*d)/3 c c Since the only 20 node data we have is from Leo, we will assume that c all 20 node input data is in Leo's format, and needs to be converted c to the Gmsh convention. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 06 October 2014 c c Author: c c John Burkardt c c Reference: c c Christophe Geuzaine, Jean-Francois Remacle, c Gmsh: a three-dimensional finite element mesh generator with c built-in pre- and post-processing facilities, c International Journal for Numerical Methods in Engineering, c Volume 79, Number 11, pages 1309-1331, 2009. c c Parameters: c c Input, character * ( * ) GMSH_FILENAME, the name of the Gmsh file. c c Input, integer M, the spatial dimension. c c Input, integer NODE_NUM, the number of nodes. c c Input, double precision NODE_X(M,NODE_NUM), the node coordinates. c c Input, integer ELEMENT_ORDER, the order of the elements. c c Input, integer ELEMENT_NUM, the number of elements. c c Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), c the nodes that make up each element. c implicit none integer element_num integer element_order integer m integer node_num integer element integer element_node(element_order,element_num) integer element_type character * ( * ) gmsh_filename integer gmsh_unit integer leo_to_gmsh(20) integer node double precision node_x(m,node_num) integer tag_num integer tag1 save leo_to_gmsh data leo_to_gmsh / & 1, 2, 3, 4, 5, & 7, 10, 11, 8, 6, & 12, 18, 19, 13, 20, & 14, 9, 15, 16, 17 / c c Enforce 1-based indexing of nodes. c call mesh_base_one ( node_num, element_order, element_num, & element_node ) c c Open the file. c call get_unit ( gmsh_unit ) open ( unit = gmsh_unit, file = gmsh_filename, & status = 'replace' ) c c Write the data. c write ( gmsh_unit, '(a)' ) '$MeshFormat' write ( gmsh_unit, '(a)' ) '2.2 0 8' write ( gmsh_unit, '(a)' ) '$EndMeshFormat' write ( gmsh_unit, '(a)' ) '$Nodes' write ( gmsh_unit, '(i6)' ) node_num do node = 1, node_num write ( gmsh_unit, '(i6,2x,g14.6,2x,g14.6,2x,g14.6)' ) & node, node_x(1:3,node) end do write ( gmsh_unit, '(a)' ) '$EndNodes' if ( element_order .eq. 4 ) then element_type = 4 else if ( element_order .eq. 10 ) then element_type = 11 else if ( element_order .eq. 20 ) then element_type = 29 end if tag_num = 2 tag1 = 0 write ( gmsh_unit, '(a)' ) '$Elements' write ( gmsh_unit, '(i6)' ) element_num do element = 1, element_num if ( element_order .eq. 20 ) then write ( gmsh_unit, '(i6,2x,i2,2x,i2,2x,i2,2x,i6,6(2x,i6))' ) & element, element_type, tag_num, tag1, element, & element_node(leo_to_gmsh(1:element_order),element) else write ( gmsh_unit, '(i6,2x,i2,2x,i2,2x,i2,2x,i6,6(2x,i6))' ) & element, element_type, tag_num, tag1, element, & element_node(1:element_order,element) end if end do write ( gmsh_unit, '(a)' ) '$EndElements' close ( unit = gmsh_unit ) return end subroutine i4mat_copy ( m, n, a1, a2 ) c*********************************************************************72 c cc I4MAT_COPY copies an I4MAT. c c Discussion: c c An I4MAT is an array of I4's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 04 June 2009 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the number of rows. c c Input, integer N, the number of columns. c c Input, integer A1(M,N), the matrix to copy. c c Output, integer A2(M,N), the copy. c implicit none integer m integer n integer a1(m,n) integer a2(m,n) integer i integer j do j = 1, n do i = 1, m a2(i,j) = a1(i,j) end do end do return end subroutine i4mat_transpose_print ( m, n, a, title ) c*********************************************************************72 c cc I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. c c Discussion: c c An I4MAT is an array of I4's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 39 October 2007 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, integer A(M,N), an M by N matrix to be printed. c c Input, character * ( * ) TITLE, a title. c implicit none integer m integer n integer a(m,n) character * ( * ) title call i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, & jhi, title ) c*********************************************************************72 c cc I4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of an I4MAT. c c Discussion: c c An I4MAT is an array of I4's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 30 October 2007 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, integer A(M,N), an M by N matrix to be printed. c c Input, integer ILO, JLO, the first row and column to print. c c Input, integer IHI, JHI, the last row and column to print. c c Input, character * ( * ) TITLE, a title. c implicit none integer incx parameter ( incx = 10 ) integer m integer n integer a(m,n) character*8 ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character * ( * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) title if ( m .le. 0 .or. n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8)' ) i end do write ( *, '('' Row '',10a8)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(i8)' ) a(i,j) end do write ( *, '(i5,a,10a8)' ) j, ':', ( ctemp(i), i = 1, inc ) end do end do return end subroutine mesh_base_one ( node_num, element_order, element_num, & element_node ) c*********************************************************************72 c cc MESH_BASE_ONE ensures that the element definition is one-based. c c Discussion: c c The ELEMENT_NODE array contains nodes indices that form elements. c The convention for node indexing might start at 0 or at 1. c Since a FORTRAN90 program will naturally assume a 1-based indexing, it is c necessary to check a given element definition and, if it is actually c 0-based, to convert it. c c This function attempts to detect 0-based node indexing and correct it. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 18 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, int NODE_NUM, the number of nodes. c c Input, int ELEMENT_ORDER, the order of the elements. c c Input, int ELEMENT_NUM, the number of elements. c c Input/output, int ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the element c definitions. c implicit none integer element_num integer element_order integer element_node(element_order,element_num) integer i integer i4_huge parameter ( i4_huge = 2147483647 ) integer j integer node_max integer node_min integer node_num node_min = + i4_huge node_max = - i4_huge do j = 1, element_num do i = 1, element_order node_min = min ( node_min, element_node(i,j) ) node_max = max ( node_max, element_node(i,j) ) end do end do if ( node_min .eq. 0 .and. node_max .eq. node_num - 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MESH_BASE_ONE:' write ( *, '(a)' ) & ' The element indexing appears to be 0-based!' write ( *, '(a)' ) ' This will be converted to 1-based.' do j = 1, element_num do i = 1, element_order element_node(i,j) = element_node(i,j) + 1 end do end do else if ( node_min .eq. 1 .and. node_max .eq. node_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MESH_BASE_ONE:' write ( *, '(a)' ) & ' The element indexing appears to be 1-based!' write ( *, '(a)' ) ' No conversion is necessary.' else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MESH_BASE_ONE - Warning!' write ( *, '(a)' ) & ' The element indexing is not of a recognized type.' write ( *, '(a,i8)' ) ' NODE_MIN = ', node_min write ( *, '(a,i8)' ) ' NODE_MAX = ', node_max write ( *, '(a,i8)' ) ' NODE_NUM = ', node_num end if return end subroutine r8mat_copy ( m, n, a1, a2 ) c*********************************************************************72 c cc R8MAT_COPY copies an R8MAT. c c Discussion: c c An R8MAT is an MxN array of R8's, stored by (I,J) -> [I+J*M]. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 26 July 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the order of the matrix. c c Input, double precision A1(M,N), the matrix to be copied. c c Output, double precision A2(M,N), a copy of the matrix. c implicit none integer m integer n double precision a1(m,n) double precision a2(m,n) integer i integer j do j = 1, n do i = 1, m a2(i,j) = a1(i,j) end do end do return end subroutine r8mat_transpose_print ( m, n, a, title ) c*********************************************************************72 c cc R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, double precision A(M,N), an M by N matrix to be printed. c c Input, character*(*) TITLE, a title. c implicit none integer m integer n double precision a(m,n) character*(*) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, & jhi, title ) c*********************************************************************72 c cc R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT transposed. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, double precision A(M,N), an M by N matrix to be printed. c c Input, integer ILO, JLO, the first row and column to print. c c Input, integer IHI, JHI, the last row and column to print. c c Input, character * ( * ) TITLE, a title. c implicit none integer incx parameter ( incx = 5 ) integer m integer n double precision a(m,n) character * ( 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character * ( * ) title integer title_len title_len = len_trim ( title ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) title(1:title_len) if ( m .le. 0 .or. n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)') i end do write ( *, '('' Row'',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(2x,i8,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end function s_begin ( s1, s2 ) c*********************************************************************72 c cc S_BEGIN is TRUE if one string matches the beginning of the other. c c Discussion: c c The strings are compared, ignoring blanks, spaces and capitalization. c c Example: c c S1 S2 S_BEGIN c c 'Bob' 'BOB' TRUE c ' B o b ' ' bo b' TRUE c 'Bob' 'Bobby' TRUE c 'Bobo' 'Bobb' FALSE c ' ' 'Bob' FALSE (Do not allow a blank to match c anything but another blank string.) c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 23 November 2010 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( ) S1, S2, the strings to be compared. c c Output, logical S_BEGIN, is TRUE if the strings match up to c the end of the shorter string, ignoring case. c implicit none logical ch_eqi integer i1 integer i2 logical s_begin character * ( * ) s1 integer s1_length character * ( * ) s2 integer s2_length s1_length = len_trim ( s1 ) s2_length = len_trim ( s2 ) c c If either string is blank, then both must be blank to match. c Otherwise, a blank string matches anything, which is not c what most people want. c if ( s1_length .eq. 0 .or. s2_length .eq. 0 ) then if ( s1_length .eq. 0 .and. s2_length .eq. 0 ) then s_begin = .true. else s_begin = .false. end if return end if i1 = 0 i2 = 0 c c Find the next nonblank in S1. c 10 continue 20 continue i1 = i1 + 1 if ( s1_length .lt. i1 ) then s_begin = .true. return end if if ( s1(i1:i1) .ne. ' ' ) then go to 30 end if go to 20 30 continue c c Find the next nonblank in S2. c 40 continue i2 = i2 + 1 if ( s2_length .lt. i2 ) then s_begin = .true. return end if if ( s2(i2:i2) .ne. ' ' ) then go to 50 end if go to 40 50 continue c c If the characters match, get the next pair. c if ( .not. ch_eqi ( s1(i1:i1), s2(i2:i2) ) ) then go to 60 end if go to 10 60 continue s_begin = .false. return end subroutine s_to_i4 ( s, ival, ierror, length ) c*********************************************************************72 c cc S_TO_I4 reads an I4 from a string. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, a string to be examined. c c Output, integer IVAL, the integer value read from the string. c If the string is blank, then IVAL will be returned 0. c c Output, integer IERROR, an error flag. c 0, no error. c 1, an error occurred. c c Output, integer LENGTH, the number of characters of S c used to make IVAL. c implicit none character c integer i integer ierror integer isgn integer istate integer ival integer length character * ( * ) s integer s_len ierror = 0 istate = 0 isgn = 1 ival = 0 s_len = len_trim ( s ) do i = 1, s_len c = s(i:i) c c Haven't read anything. c if ( istate .eq. 0 ) then if ( c .eq. ' ' ) then else if ( c .eq. '-' ) then istate = 1 isgn = -1 else if ( c .eq. '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read the sign, expecting digits. c else if ( istate .eq. 1 ) then if ( c .eq. ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read at least one digit, expecting more. c else if ( istate .eq. 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do c c If we read all the characters in the string, see if we're OK. c if ( istate .eq. 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_r8 ( s, dval, ierror, length ) c*********************************************************************72 c cc S_TO_R8 reads an R8 from a string. c c Discussion: c c The routine will read as many characters as possible until it reaches c the end of the string, or encounters a character which cannot be c part of the number. c c Legal input is: c c 1 blanks, c 2 '+' or '-' sign, c 2.5 blanks c 3 integer part, c 4 decimal point, c 5 fraction part, c 6 'E' or 'e' or 'D' or 'd', exponent marker, c 7 exponent sign, c 8 exponent integer part, c 9 exponent decimal point, c 10 exponent fraction part, c 11 blanks, c 12 final comma or semicolon, c c with most quantities optional. c c Example: c c S DVAL c c '1' 1.0 c ' 1 ' 1.0 c '1A' 1.0 c '12,34,56' 12.0 c ' 34 7' 34.0 c '-1E2ABCD' -100.0 c '-1X2ABCD' -1.0 c ' 2E-1' 0.2 c '23.45' 23.45 c '-4.2E+2' -420.0 c '17d2' 1700.0 c '-14e-2' -0.14 c 'e2' 100.0 c '-12.73e-9.23' -12.73 * 10.0^(-9.23) c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string containing the c data to be read. Reading will begin at position 1 and c terminate at the end of the string, or when no more c characters can be read to form a legal real. Blanks, c commas, or other nonnumeric data will, in particular, c cause the conversion to halt. c c Output, double precision DVAL, the value read from the string. c c Output, integer IERROR, error flag. c 0, no errors occurred. c 1, 2, 6 or 7, the input number was garbled. The c value of IERROR is the last type of input successfully c read. For instance, 1 means initial blanks, 2 means c a plus or minus sign, and so on. c c Output, integer LENGTH, the number of characters read c to form the number, including any terminating c characters such as a trailing comma or blanks. c implicit none logical ch_eqi character c double precision dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig double precision rbot double precision rexp double precision rtop character * ( * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 10 continue length = length + 1 if ( nchar .lt. length + 1 ) then go to 20 end if c = s(length+1:length+1) c c Blank character. c if ( c .eq. ' ' ) then if ( ihave .eq. 2 ) then else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then iterm = 1 else if ( 1 .lt. ihave ) then ihave = 11 end if c c Comma. c else if ( c .eq. ',' .or. c .eq. ';' ) then if ( ihave .ne. 1 ) then iterm = 1 ihave = 12 length = length + 1 end if c c Minus sign. c else if ( c .eq. '-' ) then if ( ihave .eq. 1 ) then ihave = 2 isgn = -1 else if ( ihave .eq. 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if c c Plus sign. c else if ( c .eq. '+' ) then if ( ihave .eq. 1 ) then ihave = 2 else if ( ihave .eq. 6 ) then ihave = 7 else iterm = 1 end if c c Decimal point. c else if ( c .eq. '.' ) then if ( ihave .lt. 4 ) then ihave = 4 else if ( 6 .le. ihave .and. ihave .le. 8 ) then ihave = 9 else iterm = 1 end if c c Scientific notation exponent marker. c else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave .lt. 6 ) then ihave = 6 else iterm = 1 end if c c Digit. c else if ( ihave .lt. 11 .and. lle ( '0', c ) & .and. lle ( c, '9' ) ) then if ( ihave .le. 2 ) then ihave = 3 else if ( ihave .eq. 4 ) then ihave = 5 else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then ihave = 8 else if ( ihave .eq. 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave .eq. 3 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) else if ( ihave .eq. 5 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) rbot = 10.0D+00 * rbot else if ( ihave .eq. 8 ) then jtop = 10 * jtop + ndig else if ( ihave .eq. 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if c c Anything else is regarded as a terminator. c else iterm = 1 end if c c If we haven't seen a terminator, and we haven't examined the c entire string, go get the next character. c if ( iterm .eq. 1 ) then go to 20 end if go to 10 20 continue c c If we haven't seen a terminator, and we have examined the c entire string, then we're done, and LENGTH is equal to NCHAR. c if ( iterm .ne. 1 .and. length+1 .eq. nchar ) then length = nchar end if c c Number seems to have terminated. Have we got a legal number? c Not if we terminated in states 1, 2, 6 or 7. c if ( ihave .eq. 1 .or. ihave .eq. 2 .or. & ihave .eq. 6 .or. ihave .eq. 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a,a)' ) ' ', s return end if c c Number seems OK. Form it. c if ( jtop .eq. 0 ) then rexp = 1.0D+00 else if ( jbot .eq. 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( dble ( jsgn * jtop ) / dble ( jbot ) ) end if end if dval = dble ( isgn ) * rexp * rtop / rbot return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end